File: map.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (264 lines) | stat: -rw-r--r-- 8,928 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# mypy: allow-untyped-defs
import torch
import torch.utils._pytree as pytree
from torch._C import DispatchKey
from torch._dispatch.python import suspend_functionalization
from torch._functorch.aot_autograd import AOTConfig, create_joint
from torch._higher_order_ops.utils import (
    _has_potential_branch_input_alias,
    _has_potential_branch_input_mutation,
    _maybe_run_with_interpreter,
    reenter_make_fx,
    UnsupportedAliasMutationException,
)
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch._subclasses.functional_tensor import disable_functional_mode
from torch.fx.experimental.proxy_tensor import (
    disable_proxy_modes_tracing,
    make_fx,
    ProxyTorchDispatchMode,
    track_tensor_tree,
)

from .utils import (
    _from_fun,
    _stack_pytree,
    _unstack_pytree,
    clone_outputs_aliasing_inputs,
    prepare_fw_with_masks,
    save_tensors_and_symints_for_backward,
    saved_tensors_and_symints,
)


# TODO: We add this to prevent dymamo from tracing into map_wrapper,
# remove the wrapper call when it's ready.
class MapWrapper(HigherOrderOperator):
    def __init__(self):
        super().__init__("map")

    def __call__(self, xs, *args):
        return map_wrapper(xs, *args)


class MapImpl(HigherOrderOperator):
    def __init__(self):
        super().__init__("map_impl")

    def __call__(self, *args, **kwargs):
        return super().__call__(*args, **kwargs)


map = MapWrapper()

map_impl = MapImpl()

dummy_aot_config = AOTConfig(
    fw_compiler=None,  # type: ignore[arg-type]
    bw_compiler=None,  # type: ignore[arg-type]
    partition_fn=None,  # type: ignore[arg-type]
    decompositions={},
    num_params_buffers=0,
    aot_id=0,
    keep_inference_input_mutations=False,
)


def create_fw_bw_graph(f, num_mapped_args, *args):
    mapped_xs = args[:num_mapped_args]
    pos_args = args[num_mapped_args:]

    # See Note [HOP create fw_bw graph] in create_fw_bw_graph in utils.py

    with suspend_functionalization(), disable_functional_mode():
        with disable_proxy_modes_tracing():
            unwrapped_mapped_xs = pytree.tree_map(_from_fun, mapped_xs)
            example_xs = _unstack_pytree(unwrapped_mapped_xs)[0]

            example_pos_args = [
                _from_fun(arg) if isinstance(arg, torch.Tensor) else arg
                for arg in pos_args
            ]
            example_flat_out = pytree.tree_map(
                _from_fun, f(*example_xs, *example_pos_args)
            )
            if any(
                not isinstance(out, torch.Tensor)
                for out in example_flat_out
                if out is not None
            ):
                raise RuntimeError(
                    "Expect outputs of map only contains tensors or None. "
                    f"Got types {[type(out) for out in example_flat_out]}."
                )
            example_grad = [_from_fun(out) for out in example_flat_out]

            fw_graph = make_fx(f)(*example_xs, *example_pos_args)

        def joint_f(*example_args):
            joint_mapped_args = example_args[:joint_num_mapped]
            args = example_args[joint_num_mapped:]

            mapped_input = joint_mapped_args[:num_mapped_args]
            mapped_grads = joint_mapped_args[num_mapped_args:]

            joint = create_joint(prepare_fw_with_masks(f), aot_config=dummy_aot_config)
            _, grads = joint(
                list(mapped_input) + list(args),
                [
                    grad
                    for grad in mapped_grads
                    if grad is not None and grad.requires_grad
                ],
            )

            # In order to keep map functional for backward graph,
            # we clone outputs that are aliasing inputs
            maybe_clone = clone_outputs_aliasing_inputs(example_args)

            return pytree.tree_map(maybe_clone, grads)

        joint_num_mapped = len(example_grad) + len(example_xs)
        joint_graph = make_fx(joint_f)(*example_xs, *example_grad, *example_pos_args)
        return fw_graph, joint_graph


def map_wrapper(f, xs, *args):
    flat_xs, xs_spec = pytree.tree_flatten(xs)
    if not all(isinstance(t, torch.Tensor) for t in flat_xs):
        raise RuntimeError(f"Mapped xs can only consist of tensors. Got xs {flat_xs}.")

    num_mapped_args = len(flat_xs)
    shapes = [xs.shape for xs in flat_xs]
    leading_dim_size = shapes[0][0]
    if leading_dim_size == 0:
        raise RuntimeError("Leading dimensions of mapped xs cannot be 0.")

    if any(cur_shape[0] != leading_dim_size for cur_shape in shapes):
        raise RuntimeError(
            f"Leading dimensions of mapped xs must be consistent. Got shapes {shapes}."
        )

    out_spec = None

    def flat_fn(*flat_args):
        xs = pytree.tree_unflatten(list(flat_args[:num_mapped_args]), xs_spec)
        unflattened_out = f(xs, *flat_args[num_mapped_args:])
        flat_out, tmp_out_spec = pytree.tree_flatten(unflattened_out)

        nonlocal out_spec
        out_spec = tmp_out_spec
        return flat_out

    return pytree.tree_unflatten(
        map_impl(flat_fn, flat_xs, args), out_spec  # type: ignore[arg-type]
    )


class MapAutogradOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, fw_graph, joint_graph, num_mapped_args, *flat_args):
        save_tensors_and_symints_for_backward(ctx, flat_args)
        ctx._joint_graph = joint_graph
        ctx._num_mapped_args = num_mapped_args
        with torch._C._AutoDispatchBelowAutograd():
            return (
                *map_impl(
                    fw_graph, flat_args[:num_mapped_args], flat_args[num_mapped_args:]
                ),
            )

    @staticmethod
    def backward(ctx, *flat_grads):
        fw_args = saved_tensors_and_symints(ctx)
        fw_mapped_args = fw_args[: ctx._num_mapped_args]
        pos_args = fw_args[ctx._num_mapped_args :]

        grads = map_impl(
            ctx._joint_graph,
            fw_mapped_args + flat_grads,
            pos_args,
        )
        return None, None, None, *grads


def trace_map(proxy_mode, func_overload, f, xs, pos_args):
    leading_dim_size = xs[0].shape[0]

    example_input = _unstack_pytree(xs)[0]
    body_graph = f

    body_graph = reenter_make_fx(body_graph)(*example_input, *pos_args)

    next_name = proxy_mode.tracer.get_fresh_qualname("body_graph_")

    proxy_mode.tracer.root.register_module(next_name, body_graph)

    with disable_proxy_modes_tracing():
        example_outs = body_graph(*example_input, *pos_args)

        def expand_tensor(t):
            if isinstance(t, torch.Tensor):
                return t.expand(leading_dim_size, *t.shape)
            return t

        expanded_outs = pytree.tree_map(expand_tensor, example_outs)

    node_args = (body_graph, list(xs), list(pos_args))
    proxy_args = pytree.tree_map(proxy_mode.tracer.unwrap_proxy, node_args)
    out_proxy = proxy_mode.tracer.create_proxy(
        "call_function", func_overload, proxy_args, {}, name="map_impl"
    )
    return track_tensor_tree(
        expanded_outs, out_proxy, constant=None, tracer=proxy_mode.tracer
    )


@map_impl.py_impl(DispatchKey.CompositeExplicitAutograd)
def map_dense(f, xs, pos_args):
    pytrees = [f(*inp, *pos_args) for inp in _unstack_pytree(xs)]
    return _stack_pytree(pytrees)


@map_impl.py_impl(DispatchKey.Autograd)
def map_autograd(f, xs, pos_args):
    num_mapped_args = len(xs)
    fw_graph, bw_graph = create_fw_bw_graph(f, num_mapped_args, *xs, *pos_args)
    flat_out = MapAutogradOp.apply(fw_graph, bw_graph, num_mapped_args, *xs, *pos_args)
    return flat_out


@map_impl.py_impl(ProxyTorchDispatchMode)
def map_proxy_torch_dispatch_mode(mode, f, xs, args):
    return trace_map(mode, map_impl, f, xs, args)


@map_impl.py_impl(FakeTensorMode)
def map_fake_tensor_mode(mode, f, xs, args):
    with mode:
        return map_dense(f, xs, args)


@map_impl.py_functionalize_impl
def map_functionalize(ctx, f, xs, pos_args):
    unwrapped_xs = ctx.unwrap_tensors(xs)
    unwrapped_args = ctx.unwrap_tensors(pos_args)
    wrapped_fn = ctx.functionalize(_maybe_run_with_interpreter(f))

    with ctx.redispatch_to_next():
        with disable_proxy_modes_tracing():
            example_inputs = (*_unstack_pytree(unwrapped_xs)[0], *unwrapped_args)
        pre_dispatch = hasattr(ctx, "mode") and ctx.mode.pre_dispatch
        if _has_potential_branch_input_mutation(
            f, example_inputs, pre_dispatch=pre_dispatch
        ):
            raise UnsupportedAliasMutationException("torch.map is mutating the input!")

        if _has_potential_branch_input_alias(
            f, example_inputs, pre_dispatch=pre_dispatch
        ):
            raise UnsupportedAliasMutationException("torch.map is aliasing the input!")

        map_return = map_impl(wrapped_fn, unwrapped_xs, unwrapped_args)
        return ctx.wrap_tensors(map_return)