1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
# mypy: allow-untyped-defs
import torch
import torch.utils._pytree as pytree
from torch._C import DispatchKey
from torch._dispatch.python import suspend_functionalization
from torch._functorch.aot_autograd import AOTConfig, create_joint
from torch._higher_order_ops.utils import (
_has_potential_branch_input_alias,
_has_potential_branch_input_mutation,
_maybe_run_with_interpreter,
reenter_make_fx,
UnsupportedAliasMutationException,
)
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch._subclasses.functional_tensor import disable_functional_mode
from torch.fx.experimental.proxy_tensor import (
disable_proxy_modes_tracing,
make_fx,
ProxyTorchDispatchMode,
track_tensor_tree,
)
from .utils import (
_from_fun,
_stack_pytree,
_unstack_pytree,
clone_outputs_aliasing_inputs,
prepare_fw_with_masks,
save_tensors_and_symints_for_backward,
saved_tensors_and_symints,
)
# TODO: We add this to prevent dymamo from tracing into map_wrapper,
# remove the wrapper call when it's ready.
class MapWrapper(HigherOrderOperator):
def __init__(self):
super().__init__("map")
def __call__(self, xs, *args):
return map_wrapper(xs, *args)
class MapImpl(HigherOrderOperator):
def __init__(self):
super().__init__("map_impl")
def __call__(self, *args, **kwargs):
return super().__call__(*args, **kwargs)
map = MapWrapper()
map_impl = MapImpl()
dummy_aot_config = AOTConfig(
fw_compiler=None, # type: ignore[arg-type]
bw_compiler=None, # type: ignore[arg-type]
partition_fn=None, # type: ignore[arg-type]
decompositions={},
num_params_buffers=0,
aot_id=0,
keep_inference_input_mutations=False,
)
def create_fw_bw_graph(f, num_mapped_args, *args):
mapped_xs = args[:num_mapped_args]
pos_args = args[num_mapped_args:]
# See Note [HOP create fw_bw graph] in create_fw_bw_graph in utils.py
with suspend_functionalization(), disable_functional_mode():
with disable_proxy_modes_tracing():
unwrapped_mapped_xs = pytree.tree_map(_from_fun, mapped_xs)
example_xs = _unstack_pytree(unwrapped_mapped_xs)[0]
example_pos_args = [
_from_fun(arg) if isinstance(arg, torch.Tensor) else arg
for arg in pos_args
]
example_flat_out = pytree.tree_map(
_from_fun, f(*example_xs, *example_pos_args)
)
if any(
not isinstance(out, torch.Tensor)
for out in example_flat_out
if out is not None
):
raise RuntimeError(
"Expect outputs of map only contains tensors or None. "
f"Got types {[type(out) for out in example_flat_out]}."
)
example_grad = [_from_fun(out) for out in example_flat_out]
fw_graph = make_fx(f)(*example_xs, *example_pos_args)
def joint_f(*example_args):
joint_mapped_args = example_args[:joint_num_mapped]
args = example_args[joint_num_mapped:]
mapped_input = joint_mapped_args[:num_mapped_args]
mapped_grads = joint_mapped_args[num_mapped_args:]
joint = create_joint(prepare_fw_with_masks(f), aot_config=dummy_aot_config)
_, grads = joint(
list(mapped_input) + list(args),
[
grad
for grad in mapped_grads
if grad is not None and grad.requires_grad
],
)
# In order to keep map functional for backward graph,
# we clone outputs that are aliasing inputs
maybe_clone = clone_outputs_aliasing_inputs(example_args)
return pytree.tree_map(maybe_clone, grads)
joint_num_mapped = len(example_grad) + len(example_xs)
joint_graph = make_fx(joint_f)(*example_xs, *example_grad, *example_pos_args)
return fw_graph, joint_graph
def map_wrapper(f, xs, *args):
flat_xs, xs_spec = pytree.tree_flatten(xs)
if not all(isinstance(t, torch.Tensor) for t in flat_xs):
raise RuntimeError(f"Mapped xs can only consist of tensors. Got xs {flat_xs}.")
num_mapped_args = len(flat_xs)
shapes = [xs.shape for xs in flat_xs]
leading_dim_size = shapes[0][0]
if leading_dim_size == 0:
raise RuntimeError("Leading dimensions of mapped xs cannot be 0.")
if any(cur_shape[0] != leading_dim_size for cur_shape in shapes):
raise RuntimeError(
f"Leading dimensions of mapped xs must be consistent. Got shapes {shapes}."
)
out_spec = None
def flat_fn(*flat_args):
xs = pytree.tree_unflatten(list(flat_args[:num_mapped_args]), xs_spec)
unflattened_out = f(xs, *flat_args[num_mapped_args:])
flat_out, tmp_out_spec = pytree.tree_flatten(unflattened_out)
nonlocal out_spec
out_spec = tmp_out_spec
return flat_out
return pytree.tree_unflatten(
map_impl(flat_fn, flat_xs, args), out_spec # type: ignore[arg-type]
)
class MapAutogradOp(torch.autograd.Function):
@staticmethod
def forward(ctx, fw_graph, joint_graph, num_mapped_args, *flat_args):
save_tensors_and_symints_for_backward(ctx, flat_args)
ctx._joint_graph = joint_graph
ctx._num_mapped_args = num_mapped_args
with torch._C._AutoDispatchBelowAutograd():
return (
*map_impl(
fw_graph, flat_args[:num_mapped_args], flat_args[num_mapped_args:]
),
)
@staticmethod
def backward(ctx, *flat_grads):
fw_args = saved_tensors_and_symints(ctx)
fw_mapped_args = fw_args[: ctx._num_mapped_args]
pos_args = fw_args[ctx._num_mapped_args :]
grads = map_impl(
ctx._joint_graph,
fw_mapped_args + flat_grads,
pos_args,
)
return None, None, None, *grads
def trace_map(proxy_mode, func_overload, f, xs, pos_args):
leading_dim_size = xs[0].shape[0]
example_input = _unstack_pytree(xs)[0]
body_graph = f
body_graph = reenter_make_fx(body_graph)(*example_input, *pos_args)
next_name = proxy_mode.tracer.get_fresh_qualname("body_graph_")
proxy_mode.tracer.root.register_module(next_name, body_graph)
with disable_proxy_modes_tracing():
example_outs = body_graph(*example_input, *pos_args)
def expand_tensor(t):
if isinstance(t, torch.Tensor):
return t.expand(leading_dim_size, *t.shape)
return t
expanded_outs = pytree.tree_map(expand_tensor, example_outs)
node_args = (body_graph, list(xs), list(pos_args))
proxy_args = pytree.tree_map(proxy_mode.tracer.unwrap_proxy, node_args)
out_proxy = proxy_mode.tracer.create_proxy(
"call_function", func_overload, proxy_args, {}, name="map_impl"
)
return track_tensor_tree(
expanded_outs, out_proxy, constant=None, tracer=proxy_mode.tracer
)
@map_impl.py_impl(DispatchKey.CompositeExplicitAutograd)
def map_dense(f, xs, pos_args):
pytrees = [f(*inp, *pos_args) for inp in _unstack_pytree(xs)]
return _stack_pytree(pytrees)
@map_impl.py_impl(DispatchKey.Autograd)
def map_autograd(f, xs, pos_args):
num_mapped_args = len(xs)
fw_graph, bw_graph = create_fw_bw_graph(f, num_mapped_args, *xs, *pos_args)
flat_out = MapAutogradOp.apply(fw_graph, bw_graph, num_mapped_args, *xs, *pos_args)
return flat_out
@map_impl.py_impl(ProxyTorchDispatchMode)
def map_proxy_torch_dispatch_mode(mode, f, xs, args):
return trace_map(mode, map_impl, f, xs, args)
@map_impl.py_impl(FakeTensorMode)
def map_fake_tensor_mode(mode, f, xs, args):
with mode:
return map_dense(f, xs, args)
@map_impl.py_functionalize_impl
def map_functionalize(ctx, f, xs, pos_args):
unwrapped_xs = ctx.unwrap_tensors(xs)
unwrapped_args = ctx.unwrap_tensors(pos_args)
wrapped_fn = ctx.functionalize(_maybe_run_with_interpreter(f))
with ctx.redispatch_to_next():
with disable_proxy_modes_tracing():
example_inputs = (*_unstack_pytree(unwrapped_xs)[0], *unwrapped_args)
pre_dispatch = hasattr(ctx, "mode") and ctx.mode.pre_dispatch
if _has_potential_branch_input_mutation(
f, example_inputs, pre_dispatch=pre_dispatch
):
raise UnsupportedAliasMutationException("torch.map is mutating the input!")
if _has_potential_branch_input_alias(
f, example_inputs, pre_dispatch=pre_dispatch
):
raise UnsupportedAliasMutationException("torch.map is aliasing the input!")
map_return = map_impl(wrapped_fn, unwrapped_xs, unwrapped_args)
return ctx.wrap_tensors(map_return)
|