1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
# mypy: allow-untyped-defs
import functools
import itertools
from typing import Any, Callable, List, Tuple
import torch
import torch._prims_common as utils
import torch._subclasses.functional_tensor
import torch.utils._pytree as pytree
from torch._C import DispatchKey
from torch._higher_order_ops.utils import (
_has_potential_branch_input_alias,
_has_potential_branch_input_mutation,
_set_compilation_env,
autograd_not_implemented,
reenter_make_fx,
unique_graph_id,
UnsupportedAliasMutationException,
validate_subgraph_args_types,
)
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import (
_temp_remove_metadata_torch_function_mode,
disable_proxy_modes_tracing,
ProxyTorchDispatchMode,
track_tensor_tree,
)
from torch.utils._python_dispatch import _get_current_dispatch_mode
aten = torch._ops.ops.aten
def wrap_combine_fn_flat(
*args, combine_fn, spec_init, spec_xs, num_init_leaves, num_inp_leaves
):
assert len(args) == (num_init_leaves + num_inp_leaves)
carry = pytree.tree_unflatten(args[:num_init_leaves], spec_init)
xs = pytree.tree_unflatten(args[num_init_leaves:], spec_xs)
carry, combined = combine_fn(carry, xs)
carry_flat = pytree.tree_leaves(carry)
combined_flat = pytree.tree_leaves(combined)
assert num_init_leaves == len(carry_flat)
return [*carry_flat, *combined_flat]
def _extract_carry_and_out(flat_out: List[Any], num_carry: int):
return flat_out[:num_carry], flat_out[num_carry:]
def scan(
combine_fn: Callable[
[pytree.PyTree, pytree.PyTree], Tuple[pytree.PyTree, pytree.PyTree]
],
init: pytree.PyTree,
xs: pytree.PyTree,
*,
dim: int = 0,
reverse: bool = False,
) -> Tuple[pytree.PyTree, pytree.PyTree]:
r"""
Performs an inclusive scan with a combine function.
.. warning::
`torch.scan` is a prototype feature in PyTorch. It currently
does not support autograd and you may run into miscompiles.
Read more about feature classification at:
https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype
Args:
combine_fn (Callable): A binary callable with type ``(Tensor, Tensor) -> (Tensor, Tensor)``,
or if xs is a pytree ``(pytree, pytree) -> (pytree, pytree)``.
The first input to ``combine_fn`` is the previous or initial scan carry
and the second input element to ``combine_fn`` is a slice of the input along dim.
The first output element of ``combine_fn`` is the next scan carry
and the second output of ``combine_fn`` represents a slice of the output.
This function must be pure, i.e., no lifted arguments are supported at the moment
and may not have any side effects.
init (torch.Tensor or pytree with tensor leaves): The inital scan carry, a tensor, or nested pytree of tensors.
The ``init`` is expected to have the same pytree structure as the first output element (i.e. carry)
of ``combine_fn``.
xs (torch.Tensor or pytree with tensor leaves): The input tensor, or nested pytree of tensors.
Kwargs:
dim (int): the dimension to scan over, default 0.
reverse (bool): A boolean stating if the scan should be reversed with respect to ``dim``, default ``False``.
Returns:
final_carry (torch.Tensor or pytree with tensor leaves),
the final carry of the scan operation with same pytree structure as init.
out (torch.Tensor or pytree with tensor leaves),
each tensor leaf is a stacked output along first dim, where each slice is the output of a scan iteration.
Example::
def add(x: torch.Tensor, y: torch.Tensor):
next_carry = y = x + y
return next_carry, y
i0 = torch.zeros(1)
xs = torch.arange(5)
# returns torch.tensor([10.]), torch.tensor([[0], [1.], [3.], [6.], [10.]])
last_carry, cumsum = scan(add, init=i0, xs=xs)
"""
if not callable(combine_fn):
raise RuntimeError("Combine_fn must be a callable, but got {combine_fn}")
if not isinstance(dim, int):
raise RuntimeError("Dim must be an int, but got " + str(type(dim)))
if not isinstance(reverse, bool):
raise RuntimeError("Reverse must be a bool, but got " + str(type(reverse)))
leaves_init, spec_init = pytree.tree_flatten(init)
leaves_xs, spec_xs = pytree.tree_flatten(xs)
if len(leaves_init) == 0:
raise RuntimeError("Init tensors must be provided")
for x in leaves_init:
if not isinstance(x, torch.Tensor):
raise RuntimeError(f"All init leaves must be a Tensor but got {x}")
for x in leaves_xs:
if not isinstance(x, torch.Tensor):
raise RuntimeError(f"All xs leaves must be a Tensor but got {x}")
if x.shape[dim] == 0:
raise RuntimeError(
f"All xs leaves must have a scan dimension > 0 but got {x}"
)
if len(leaves_xs) == 0:
return pytree.tree_unflatten(leaves_init, spec_init), xs
shape = leaves_xs[0].shape
ndim = len(shape)
dim = utils.canonicalize_dim(ndim, dim)
out = combine_fn(
pytree.tree_unflatten(leaves_init, spec_init),
pytree.tree_unflatten([elem.select(dim, 0) for elem in leaves_xs], spec_xs),
)
# The first output needs to have the same pytree as init
carry_leaves = pytree.tree_leaves(out[0])
if len(carry_leaves) != len(leaves_init):
raise RuntimeError(
f"The number of leaves of the pytree of the new carry produced by the operator is {len(carry_leaves)}\
doesn't match the length of the pytree of the init {len(leaves_init)}"
)
def _check_new_carry_match_init(leaves_init, carry_leaves):
for i, (init, new_carry) in enumerate(zip(leaves_init, carry_leaves)):
if init.shape != new_carry.shape:
raise RuntimeError(
f"The shape of the new_carry[{i}] {new_carry.shape} doesn't match that of the init[{i}] {init.shape}."
)
if init.stride() != new_carry.stride():
raise RuntimeError(
f"The stride of the new_carry[{i}] {new_carry.stride()} doesn't match that of the init[{i}] {init.stride()}."
)
if init.dtype != new_carry.dtype:
raise RuntimeError(
f"The dtype of the new_carry[{i}] {new_carry.dtype} doesn't match that of the init[{i}] {init.dtype}."
)
if init.requires_grad != new_carry.requires_grad:
raise RuntimeError(
f"The requires_grad of the new_carry[{i}] {new_carry.requires_grad} doesn't match that of the init[{i}] {init.requires_grad}." # noqa: B950
)
_check_new_carry_match_init(leaves_init, carry_leaves)
# There are no pytree restrictions on the second output of the operator
out_leaves, tree_out = pytree.tree_flatten(out[1])
# TODO: Support closures/nn_modules in order to be able represent RNNs with scan
# TODO: Support _inductor lowering
# TODO: Support Autograd
# TODO: Unify handling of pytrees for control flow ops, such as cond, while_loop, etc.
# TODO: Unify the list inputs of control flow ops to tuple.
combine_fn = functools.partial(
wrap_combine_fn_flat,
combine_fn=combine_fn,
spec_init=spec_init,
spec_xs=spec_xs,
num_init_leaves=len(leaves_init),
num_inp_leaves=len(leaves_xs),
)
def run_flattened_scan(combine_fn, leaves_init, leaves_xs, dim, reverse):
return scan_op(
combine_fn, leaves_init, leaves_xs, dim, reverse, additional_inputs=[]
)
if not torch._dynamo.is_compiling():
from torch._dynamo.backends.debugging import (
make_eager_backend_with_torch_function_mode,
)
with _set_compilation_env(), torch._dynamo.utils.disable_cache_limit():
with _temp_remove_metadata_torch_function_mode() as metadata_mode:
if metadata_mode:
backend = make_eager_backend_with_torch_function_mode(metadata_mode)
else:
backend = "eager"
result = torch.compile(
run_flattened_scan, backend=backend, fullgraph=True
)(
combine_fn,
leaves_init,
leaves_xs,
dim=dim,
reverse=reverse,
)
else:
result = run_flattened_scan(combine_fn, leaves_init, leaves_xs, dim, reverse)
result_carry, result_flat = _extract_carry_and_out(
result,
len(leaves_init),
)
return pytree.tree_unflatten(result_carry, spec_init), pytree.tree_unflatten(
result_flat, tree_out
)
class ScanOp(HigherOrderOperator):
def __init__(self):
super().__init__("scan")
def __call__(self, combine_fn, init, xs, dim, reverse, additional_inputs):
assert isinstance(additional_inputs, list), "additional_inputs must be a list."
validate_subgraph_args_types(additional_inputs)
return super().__call__(combine_fn, init, xs, dim, reverse, additional_inputs)
scan_op = ScanOp()
def generic_scan(operator, init, xs, dim=0, reverse=False, additional_inputs=None):
additional_inputs = additional_inputs if additional_inputs is not None else []
def _scan(init, xs):
"""Perform scan on `elems` using `elems_init."""
carry = init
if len(xs) == 0:
return carry, []
num_elems = xs[0].shape[dim]
if reverse:
ind = num_elems - 1
else:
ind = 0
# Compute dummy shapes for the pre-allocation
num_init_leaves = len(init)
dummy_carry, dummy_out = _extract_carry_and_out(
operator(
*carry,
*[first_slice_copy(elem, dim) for elem in xs],
*additional_inputs,
),
num_init_leaves,
)
# Pre-alocate
# outs -> Output matrix
# idxs -> Index matrix for scatter_
# out: (num_elems, M, N, ...)
# idx: (1, M, N)
outs, idxs = zip(
*[
[
torch.zeros(
[num_elems] + list(e.size()),
dtype=e.dtype,
device=e.device,
),
torch.ones_like(e, dtype=torch.int64).unsqueeze(0),
]
for i, e in enumerate(dummy_out)
]
)
def store_out_in_outs(out, ind):
# Store the intermediate out in the outs matrix
for o, x, idx in zip(outs, out, idxs):
# o: (num_elems, M, N ...)
# x: (M, N, ...) -> (1, M, N)
# ind * idx: (1, M, N,) with values to be ind
# essentially: o[ind][n][k] = x[0][n][k]
o.scatter_(0, ind * idx, x.unsqueeze(0))
for i in range(num_elems):
ind = i if not reverse else num_elems - i - 1
carry, out = _extract_carry_and_out(
operator(
*carry,
*[elem.select(dim, ind) for elem in xs],
*additional_inputs,
),
num_init_leaves,
)
# Store the inits in the outs matrix.
store_out_in_outs(out, ind)
return [*carry, *list(outs)]
scans = _scan(init, xs)
return scans
def first_slice_copy(t: torch.Tensor, dim: int) -> torch.Tensor:
return torch.select_copy(t, dim, 0)
# We also do a clone with contiguous_format. This is to be consistent with
# eager semantic of scan, which stacks the outputs. The result is contiguous
# as a result of the stack operation.
def stack_y(y: torch.Tensor, scan_length: int) -> torch.Tensor:
return (
y.unsqueeze(0)
.repeat(*([scan_length] + [1] * y.ndim))
.clone(memory_format=torch.contiguous_format)
)
def trace_scan(
proxy_mode,
func_overload,
combine_fn: Callable,
init: List[torch.Tensor],
xs: List[torch.Tensor],
dim: int,
reverse: bool,
additional_inputs: List[torch.Tensor],
):
from torch._dynamo.utils import clone_input
with disable_proxy_modes_tracing():
sample_inits = [clone_input(x_init) for x_init in init]
sample_inputs = [first_slice_copy(x, dim) for x in xs]
sample_additional_inputs = [
clone_input(x) if isinstance(x, torch.Tensor) else x
for x in additional_inputs
]
combine_graph = reenter_make_fx(combine_fn)(
*sample_inits, *sample_inputs, *sample_additional_inputs
)
outputs = None
for node in combine_graph.graph.nodes:
if node.op == "output":
assert outputs is None
assert len(node.args) == 1
outputs = node.args[0]
assert outputs is not None
carry, output = _extract_carry_and_out(outputs, len(init))
for ini, ca in zip(init, carry):
ini_meta = ini
carry_meta = ca.meta["tensor_meta"]
carry_val = ca.meta["val"]
if (
carry_val.device != ini_meta.device
or carry_meta.dtype != ini_meta.dtype
or carry_meta.shape != ini_meta.shape
):
raise RuntimeError(
f"Expected metadata of the combine_fn result {carry_meta} to be the same as "
+ f"the metadata of init with {ini_meta}"
)
_, combine_graph_name = unique_graph_id(proxy_mode, prefix="scan_combine_graph")
proxy_mode.tracer.root.register_module(combine_graph_name, combine_graph)
args = (combine_graph, init, xs, dim, reverse, additional_inputs)
proxy_args = pytree.tree_map(proxy_mode.tracer.unwrap_proxy, args)
out_proxy = proxy_mode.tracer.create_proxy(
"call_function", func_overload, proxy_args, {}, name="scan"
)
with disable_proxy_modes_tracing():
scan_length = xs[0].shape[dim]
fake_carry, fake_outputs = _extract_carry_and_out(
[o.meta["val"] for o in outputs], len(init)
)
out = (
*fake_carry,
*(stack_y(t, scan_length) for t in fake_outputs),
)
return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer)
@scan_op.py_impl(DispatchKey.CompositeExplicitAutograd)
def scan_op_dense(combine_fn, init, xs, dim, reverse, additional_inputs):
mode = _get_current_dispatch_mode()
assert mode is None, "Mode should never be enabled for CPU/CUDA key"
return generic_scan(combine_fn, init, xs, dim, reverse, additional_inputs)
scan_op.py_impl(DispatchKey.Autograd)(
autograd_not_implemented(scan_op, deferred_error=True)
)
@scan_op.py_impl(ProxyTorchDispatchMode)
def scan_proxy_mode(mode, combine_fn, init, xs, dim, reverse, additional_inputs):
return trace_scan(
mode, scan_op, combine_fn, init, xs, dim, reverse, additional_inputs
)
@scan_op.py_impl(FakeTensorMode)
def scan_fake_tensor_mode(mode, combine_fn, init, xs, dim, reverse, additional_inputs):
with mode:
scan_length = xs[0].shape[dim]
carry, outputs = _extract_carry_and_out(
combine_fn(
*init,
*[first_slice_copy(inp, dim) for inp in xs],
*additional_inputs,
),
len(init),
)
out = (
*carry,
*(stack_y(t, scan_length) for t in outputs),
)
return out
@scan_op.py_functionalize_impl
def scan_functionalize(ctx, combine_fn, init, xs, dim, reverse, additional_inputs):
unwrapped_xs = ctx.unwrap_tensors(xs)
unwrapped_init = ctx.unwrap_tensors(init)
unwrapped_additional_inputs = ctx.unwrap_tensors(additional_inputs)
with ctx.redispatch_to_next() as m:
functional_combine_fn = ctx.functionalize(combine_fn)
pre_dispatch = hasattr(ctx, "mode") and ctx.mode.pre_dispatch
sample_unwrapped_xs_sliced = [
first_slice_copy(inp, dim) for inp in unwrapped_xs
]
sample_inputs = list(
itertools.chain(
unwrapped_init,
sample_unwrapped_xs_sliced,
unwrapped_additional_inputs,
)
)
if _has_potential_branch_input_mutation(
functional_combine_fn, sample_inputs, pre_dispatch=pre_dispatch
):
raise UnsupportedAliasMutationException(
"Combine_fn might be modifying the input!"
)
if _has_potential_branch_input_alias(
functional_combine_fn, sample_inputs, pre_dispatch=pre_dispatch
):
raise UnsupportedAliasMutationException(
"Combine_fn might be aliasing the input!"
)
ret = scan_op(
functional_combine_fn,
unwrapped_init,
unwrapped_xs,
dim,
reverse,
unwrapped_additional_inputs,
)
return ctx.wrap_tensors(ret)
# dense implementation for scan. Used for testing only.
def _fake_scan(combine_fn, init, xs=None, dim=0, reverse=False):
carry_leaves, carry_spec = pytree.tree_flatten(init)
inp_leaves, inp_spec = pytree.tree_flatten(xs)
if xs is None or len(inp_leaves) == 0:
return init, []
result_flat = []
carry = carry_leaves
op = reversed if reverse else lambda x: x
dummy_carry, dummy_out = combine_fn(
pytree.tree_unflatten(carry, carry_spec),
pytree.tree_unflatten(
[first_slice_copy(elem, dim) for elem in inp_leaves],
inp_spec,
),
)
dummy_out_leaves, dummy_out_spec = pytree.tree_flatten(dummy_out)
num_leaves = len(dummy_out_leaves)
for ind in op(range(inp_leaves[0].size(dim))):
xs = [elem.select(dim, ind) for elem in inp_leaves]
carry, y = combine_fn(
pytree.tree_unflatten(carry, carry_spec),
pytree.tree_unflatten(xs, inp_spec),
)
carry, _ = pytree.tree_flatten(carry)
y, _ = pytree.tree_flatten(y)
result_flat.append(y)
results = [
torch.stack([e[leave_ind] for e in op(result_flat)])
for leave_ind in range(num_leaves)
]
return (
pytree.tree_unflatten(carry, carry_spec),
pytree.tree_unflatten(results, dummy_out_spec),
)
|