1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
# mypy: allow-untyped-defs
import functools
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Any, Callable, List, Tuple, Union
import torch
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._ops import OperatorBase
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.passes.shape_prop import TensorMetadata
from torch.multiprocessing.reductions import StorageWeakRef
@dataclass
class UnsupportedAliasMutationException(RuntimeError):
reason: str
def autograd_not_implemented_inner(
operator: OperatorBase, delayed_error: bool, *args: Any, **kwargs: Any
) -> Any:
"""If autograd is enabled and any of the arguments require grad this will either
raise an error or return a DelayedError depending on the value of delayed.
Args:
operator: The Operator to call with the *args and **kwargs with
op_name: The name of the Operator
delayed_error: If True, return a DelayedError instead of raising an error
args: The flattened operands to the Operator
kwargs: The keyword arguments to the Operator
Raises:
RuntimeError: If autograd is enabled and any of the arguments to the Operator
"""
with torch._C._AutoDispatchBelowAutograd():
result = operator(*args, **kwargs)
flat_operands = pytree.arg_tree_leaves(*args)
if torch.is_grad_enabled() and any(
f.requires_grad for f in flat_operands if isinstance(f, torch.Tensor)
):
if delayed_error:
err_fn = torch._C._functions.DelayedError(
f"Autograd not implemented for {str(operator)}",
1,
)
def fake_requires_grad(tensor):
if torch.is_floating_point(tensor) or torch.is_complex(tensor):
tensor = tensor.detach()
tensor.requires_grad = True
return tensor
return pytree.tree_map_only(
torch.Tensor, lambda x: err_fn(fake_requires_grad(x)), result
)
else:
raise RuntimeError(f"Autograd not implemented for {str(operator)}")
return result
def autograd_not_implemented(op: OperatorBase, deferred_error: bool) -> Callable:
def inner(*args, **kwargs):
return autograd_not_implemented_inner(op, deferred_error, *args, **kwargs)
return inner
def _maybe_run_with_interpreter(fn):
maybe_interpreted_fn = fn
if isinstance(fn, torch.fx.GraphModule) and fx_traceback.has_preserved_node_meta():
# Running graph with interpreter is needed for propagating the stack_trace
def graph_with_interpreter(*args):
with fx_traceback.preserve_node_meta():
return torch.fx.Interpreter(fn).run(*args)
maybe_interpreted_fn = graph_with_interpreter
return maybe_interpreted_fn
def reenter_make_fx(fn):
from torch.fx.experimental.proxy_tensor import _CURRENT_MAKE_FX_TRACER
@functools.wraps(fn)
def wrapped(*args):
assert (
_CURRENT_MAKE_FX_TRACER is not None
), "Cannot reenter make_fx when we're not under a make_fx tracing session"
return _CURRENT_MAKE_FX_TRACER.trace_subgraph(
_maybe_run_with_interpreter(fn), *args
)
return wrapped
def _maybe_reenter_make_fx(fn):
from torch.fx.experimental.proxy_tensor import _CURRENT_MAKE_FX_TRACER
if _CURRENT_MAKE_FX_TRACER is not None:
return reenter_make_fx(fn)
else:
def _maybe_make_fx_with_fake_mode(fn):
@functools.wraps(fn)
def wrapped(*args):
from torch._guards import detect_fake_mode
fake_mode = detect_fake_mode(args)
if fake_mode is None:
# we creaeta a fake_mode here to make sure we could
# trace the graph with data-dependent calls e.g. .item()
return make_fx(fn, tracing_mode="fake")(*args)
# Tracing with real if all inputs have been fakfied
return make_fx(fn)(*args)
return wrapped
return _maybe_make_fx_with_fake_mode(fn)
@contextmanager
def _set_compilation_env():
_old_is_tracing = torch.fx._symbolic_trace._is_fx_tracing_flag
try:
# We need to turn off the is_fx_tracing_flag. Remove this flag check from dyanmo
# once we are confident fx tracing works with dynamo.
torch.fx._symbolic_trace._is_fx_tracing_flag = False
yield
finally:
torch.fx._symbolic_trace._is_fx_tracing_flag = _old_is_tracing
def _detect_input_mutation(gm):
input_nodes = set()
for node in gm.graph.nodes:
if node.op == "placeholder":
input_nodes.add(node)
if node.op == "call_function":
target = node.target
if isinstance(target, torch._ops.OpOverload) and target._schema.is_mutable:
for arg in node.args:
if arg in input_nodes:
return True
for _, module in gm.named_children():
if isinstance(module, torch.fx.GraphModule):
if _detect_input_mutation(module):
return True
return False
def _detect_input_alias(gm):
input_storages = set()
for node in gm.graph.nodes:
# We need to check existence of "val" because we reuse the logic here
# for map operator, where num_mapped_args is a scalar
# and doesn't have a "val" meta.
if (
node.op == "placeholder"
and "val" in node.meta
and isinstance(node.meta["val"], torch.Tensor)
):
input_storages.add(StorageWeakRef(node.meta["val"]._typed_storage()))
if node.op == "output":
def check_alias(out):
if (
out is not None
and "val" in out.meta
and isinstance(out.meta["val"], torch.Tensor)
):
out_storage = StorageWeakRef(out.meta["val"]._typed_storage())
return out_storage in input_storages
return False
if any(pytree.tree_leaves(pytree.tree_map(check_alias, node.args))):
return True
for _, module in gm.named_children():
if isinstance(module, torch.fx.GraphModule) and _detect_input_alias(module):
return True
return False
def has_potential_input_alias_or_mutation(gm, inputs, pre_dispatch=False):
try:
gm = make_fx(gm, pre_dispatch=pre_dispatch)(*inputs)
except UnsupportedAliasMutationException:
# this can happen when nested cond_op is
# functionalized
return True
except Exception as e:
raise e
return _detect_input_mutation(gm) or _detect_input_alias(gm)
def _has_potential_branch_input_mutation(branch, inputs, pre_dispatch=False):
"""
Dispatch-trace the branch with inputs and check if
producing graph has mutable op on the input. This is
bit restrictive as the branch must be traceable.
"""
try:
gm = make_fx(branch, pre_dispatch=pre_dispatch)(*inputs)
except UnsupportedAliasMutationException:
# this can happen when nested cond_op is
# functionalized
return True
except Exception as e:
raise e
return _detect_input_mutation(gm)
def _has_potential_branch_input_alias(branch, inputs, pre_dispatch=False):
"""
Dispatch-trace the branch with inputs and check if
producing graph has output aliasing the branch input. This is
bit restrictive as the branch must be traceable.
"""
try:
gm = make_fx(branch, pre_dispatch=pre_dispatch)(*inputs)
except UnsupportedAliasMutationException:
# this can happen when nested cond_op is
# functionalized
return True
except Exception as e:
raise e
return _detect_input_alias(gm)
def unique_graph_id(proxy_mode, prefix):
"""Returns a unique name and id for a graph to be added to a proxy_mode tracer"""
# There are probably better ways - I know that create_arg has some self incrementing name
# magic to it, but since we explicitly have to get the name for register_module,
# I was not sure how to do that. This kinda simulates it.
next_name = None
i = 0
while not next_name:
candidate = f"{prefix}_{i}"
if hasattr(proxy_mode.tracer.root, candidate):
i += 1
else:
next_name = candidate
return i, next_name
def _from_fun(t):
from torch._functorch.aot_autograd import from_fun
from torch._subclasses.functional_tensor import FunctionalTensor
if isinstance(t, torch.Tensor):
if t.dtype != torch.bool:
return torch.empty_strided(
t.size(),
t.stride(),
dtype=t.dtype,
requires_grad=t.requires_grad,
device=t.device,
)
else:
# clone of a functional tensor produces a functional tensor
# but we want to avoid it so we clone a non-functional version
maybe_unfunc_t = t
if isinstance(t, FunctionalTensor):
torch._sync(t)
maybe_unfunc_t = from_fun(t)
elif torch._is_functional_tensor(t):
# need to handle both types of functionalization here:
# these are the tensors that came from the user,
# which could be either FunctionalTensorWrapper or FunctionalTensor
torch._sync(t)
maybe_unfunc_t = torch._from_functional_tensor(t)
return maybe_unfunc_t.clone()
return t
def clone_outputs_aliasing_inputs(args):
input_storage = {
StorageWeakRef(arg._typed_storage())
for arg in args
if isinstance(arg, torch.Tensor)
}
def maybe_clone(t):
if (
isinstance(t, torch.Tensor)
and StorageWeakRef(t._typed_storage()) in input_storage
):
return t.clone()
return t
return maybe_clone
def prepare_fw_with_masks(fn):
def fw_with_masks(*args):
fw_out = fn(*args)
return fw_out, [
True if isinstance(ret, torch.Tensor) and ret.requires_grad else False
for ret in fw_out
]
return fw_with_masks
# TODO: The parameter use_output_and_grad_bw is required because some operations
# that utilize this function, such as the while_loop, may require (grad, fwd_outputs)
def create_fw_bw_graph(fn, use_output_and_grad_bw, fw_inputs, fw_outputs):
from torch._functorch.aot_autograd import AOTConfig, create_joint
# Note:[HOP create fw_bw graph] We create "clean" environments for make_fx by suspending all dispatch keys
# between Autograd and Python key. Currently, we only suspend functionalization but more can be
# added when required. Will encounter two problems if we don't suspend functionalization:
#
# 1. make_fx fails to capture operations on input: the inputs are wrapped as _to_functional_tensor_wrapper,
# but they will be unwrapped before entering ProxyTorchDispatchMode as part of the dispatching.
# However, it's the outside wrapper that tracer creates proxies for. This casuses tracer fail to
# fetch the proxy for the inputs and fail to capture any operations on them.
#
# 2. make_fx fails to capture output: the outputs after ProxyTorchDispatchMode are further
# wrapped as FunctionalTensorWrapper in Functionalize key after return. However, the tracer
# only associates the inner tensor with proxy in ProxyTorchDispatchMode. Therefore,
# when creating the output node, it fails to associate the wrapped tensor with its proxy.
# Instead, it will create _tensor_constant as output.
dummy_aot_config = AOTConfig(
fw_compiler=None, # type: ignore[arg-type]
bw_compiler=None, # type: ignore[arg-type]
partition_fn=None, # type: ignore[arg-type]
decompositions={},
num_params_buffers=0,
aot_id=0,
keep_inference_input_mutations=False,
)
example_grad = [_from_fun(out) for out in fw_outputs]
num_grads = len(example_grad)
fw_graph = _maybe_reenter_make_fx(fn)(*fw_inputs)
def joint_fn(*joint_operands_grads):
if use_output_and_grad_bw:
grads = joint_operands_grads[0]
inputs = joint_operands_grads[1][-1:]
else:
grads = joint_operands_grads[:num_grads]
inputs = joint_operands_grads[num_grads:]
joint = create_joint(prepare_fw_with_masks(fn), aot_config=dummy_aot_config)
_, grads = joint(
list(inputs),
[grad for grad in grads if grad is not None and grad.requires_grad],
)
# In order to keep map functional for backward graph,
# we clone outputs that are aliasing inputs
maybe_clone = clone_outputs_aliasing_inputs(joint_operands_grads)
return pytree.tree_map(maybe_clone, grads)
if use_output_and_grad_bw:
example_xs_out = list(fw_inputs) + list(fw_outputs)
joint_graph = _maybe_reenter_make_fx(joint_fn)(
(list(example_grad), list(example_xs_out))
)
else:
example_xs_out = list(fw_inputs)
joint_graph = _maybe_reenter_make_fx(joint_fn)(
*(list(example_grad) + list(example_xs_out))
)
return fw_graph, joint_graph
def _unstack_pytree(xs):
flat_xs, inspec = pytree.tree_flatten(xs)
if not all(isinstance(xs, torch.Tensor) for xs in flat_xs):
raise RuntimeError(f"Leaves of xs must be Tensor {flat_xs}")
if not all(xs.shape[0] == flat_xs[0].shape[0] for xs in flat_xs):
raise RuntimeError(
f"Leaves of xs must have same leading dimension size {[xs.shape for xs in flat_xs]}"
)
a = zip(*flat_xs)
pytrees = [pytree.tree_unflatten(tuple, inspec) for tuple in a]
return pytrees
def _stack_pytree(pytrees):
flat_out = []
out_spec = None
for pt in pytrees:
flat_pt, out_spec = pytree.tree_flatten(pt)
flat_out.append(flat_pt)
assert out_spec is not None
b = zip(*flat_out)
stacked_out = []
for leaves in b:
if all(isinstance(leaf, torch.Tensor) for leaf in leaves):
stacked_out.append(torch.stack(leaves))
elif all(leaf is None for leaf in leaves):
# Backward graph can return None output when forward inputs doesn't require grad.
# When we eagerly execute backward graph, we need to call _stack_pytree on its output,
# therefore we need to deal with None output.
stacked_out.append(None) # type: ignore[arg-type]
else:
raise RuntimeError(f"Cannot stack {leaves}.")
return pytree.tree_unflatten(stacked_out, out_spec)
# We cannot call save_for_backward for symints. This helper function
# can be used to save symints as direct attributes of ctx in autograd.Function.
#
# For example, if args = (x, y, s0, z, s1),
# save_tensors_and_symints_for_backward will partition the args into two lists, and a bookkeeping list pos:
# partitioned_args[0] = (x, y, z)
# partitioned_args[1] = (s0, s1)
# pos = (0, 0, 1, 0, 1)
# pos list keeps track of which partition the args
# is partitioned into in order to recover it in saved_tensors_and_symints.
#
# In saved_tensors_and_symints, we can recover the original args by:
# iterating over the pos list and pop one item from the front of paritioned_args[pos[i]].
# We use t_idx and s_idx to keep track of the next index of the item we are going to pop for the two lists.
def save_tensors_and_symints_for_backward(ctx, args):
assert all(
isinstance(arg, (torch.Tensor, torch.SymInt, int, type(None))) for arg in args
), args
partitioned_args: List[Any] = [[], []]
pos = []
for i, arg in enumerate(args):
idx = 0 if isinstance(arg, torch.Tensor) else 1
partitioned_args[idx].append(arg)
pos.append(idx)
assert not hasattr(ctx, "sym_int_args"), "ctx already has sym_int_args attribute."
assert not hasattr(ctx, "pos"), "ctx already has pos attribute."
ctx.save_for_backward(*partitioned_args[0])
ctx.sym_int_args = partitioned_args[1]
ctx.pos = pos
def saved_tensors_and_symints(ctx):
args = []
t_idx = 0
s_idx = 0
saved_tensors = ctx.saved_tensors
for p in ctx.pos:
if p == 0:
args.append(saved_tensors[t_idx])
t_idx += 1
else:
args.append(ctx.sym_int_args[s_idx])
s_idx += 1
assert t_idx + s_idx == len(ctx.pos)
return tuple(args)
def get_dummy_aot_autograd_config():
from torch._functorch.aot_autograd import AOTConfig
return AOTConfig(
fw_compiler=None, # type: ignore[arg-type]
bw_compiler=None, # type: ignore[arg-type]
partition_fn=None, # type: ignore[arg-type]
decompositions={},
num_params_buffers=0,
aot_id=0,
keep_inference_input_mutations=False,
)
# Slices off the first element of a given dimension
def first_slice_copy(t: torch.Tensor, dim: int = 0) -> torch.Tensor:
return torch.select_copy(t, dim, 0)
# Reports the difference between meta of two tensors in a string
def diff_tensor_meta(
meta1: TensorMetadata, meta2: TensorMetadata, check_grad=True
) -> List[str]:
from torch.fx.experimental.symbolic_shapes import GuardOnDataDependentSymNode
pair_diffs = []
for meta_name in TensorMetadata._fields:
if not check_grad and meta_name == "requires_grad":
continue
val1 = getattr(meta1, meta_name)
val2 = getattr(meta2, meta_name)
try:
if val1 != val2:
pair_diffs.append(f"'{meta_name}: {val1} vs {val2}'")
except GuardOnDataDependentSymNode as _:
pair_diffs.append(f"'{meta_name}: {val1} vs {val2}'")
continue
return pair_diffs
# Note [lifted arg types in hop]
# For dynamoed hops, we automatically lift the free symbols in tensors as arguments.
# This has implications for the types of lifted args for different dispatch keys:
# 1. functionalization, FakeTensorMode, ProxyTorchDispatchMode, Autograd need to support torch.Symint
# lifted args because it's on the path of torch.compile(dynamic=True).
# 2. functionalization, FakeTensorMode, ProxyTorchDispatchMode, Autograd, CompositeExplicitAutograd need
# to support int arguments. In the eager run case, we re-trace the subgraph in AutogradKey, so inner
# hops may receive int inputs from the shape of outer tensor inputs.
# However, CompositeExplicitAutograd won't receive SymInt inputs because it only accepts real tensor inputs.
def validate_subgraph_args_types(lifted_args: Union[Tuple[Any, ...], List[Any]]):
allowed_types = (torch.Tensor, int, torch.SymInt)
assert all(
isinstance(arg, (torch.Tensor, int, torch.SymInt)) for arg in lifted_args
), f"{lifted_args} can only be of {allowed_types} but got {tuple(type(arg) for arg in lifted_args)}"
|