File: utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (519 lines) | stat: -rw-r--r-- 19,284 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# mypy: allow-untyped-defs
import functools
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Any, Callable, List, Tuple, Union

import torch
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._ops import OperatorBase
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.passes.shape_prop import TensorMetadata
from torch.multiprocessing.reductions import StorageWeakRef


@dataclass
class UnsupportedAliasMutationException(RuntimeError):
    reason: str


def autograd_not_implemented_inner(
    operator: OperatorBase, delayed_error: bool, *args: Any, **kwargs: Any
) -> Any:
    """If autograd is enabled and any of the arguments require grad this will either
    raise an error or return a DelayedError depending on the value of delayed.

    Args:
        operator: The Operator to call with the *args and **kwargs with
        op_name: The name of the Operator
        delayed_error: If True, return a DelayedError instead of raising an error
        args: The flattened operands to the Operator
        kwargs: The keyword arguments to the Operator

    Raises:
        RuntimeError: If autograd is enabled and any of the arguments to the Operator
    """
    with torch._C._AutoDispatchBelowAutograd():
        result = operator(*args, **kwargs)
        flat_operands = pytree.arg_tree_leaves(*args)
        if torch.is_grad_enabled() and any(
            f.requires_grad for f in flat_operands if isinstance(f, torch.Tensor)
        ):
            if delayed_error:
                err_fn = torch._C._functions.DelayedError(
                    f"Autograd not implemented for {str(operator)}",
                    1,
                )

                def fake_requires_grad(tensor):
                    if torch.is_floating_point(tensor) or torch.is_complex(tensor):
                        tensor = tensor.detach()
                        tensor.requires_grad = True
                    return tensor

                return pytree.tree_map_only(
                    torch.Tensor, lambda x: err_fn(fake_requires_grad(x)), result
                )
            else:
                raise RuntimeError(f"Autograd not implemented for {str(operator)}")
        return result


def autograd_not_implemented(op: OperatorBase, deferred_error: bool) -> Callable:
    def inner(*args, **kwargs):
        return autograd_not_implemented_inner(op, deferred_error, *args, **kwargs)

    return inner


def _maybe_run_with_interpreter(fn):
    maybe_interpreted_fn = fn
    if isinstance(fn, torch.fx.GraphModule) and fx_traceback.has_preserved_node_meta():
        # Running graph with interpreter is needed for propagating the stack_trace
        def graph_with_interpreter(*args):
            with fx_traceback.preserve_node_meta():
                return torch.fx.Interpreter(fn).run(*args)

        maybe_interpreted_fn = graph_with_interpreter
    return maybe_interpreted_fn


def reenter_make_fx(fn):
    from torch.fx.experimental.proxy_tensor import _CURRENT_MAKE_FX_TRACER

    @functools.wraps(fn)
    def wrapped(*args):
        assert (
            _CURRENT_MAKE_FX_TRACER is not None
        ), "Cannot reenter make_fx when we're not under a make_fx tracing session"
        return _CURRENT_MAKE_FX_TRACER.trace_subgraph(
            _maybe_run_with_interpreter(fn), *args
        )

    return wrapped


def _maybe_reenter_make_fx(fn):
    from torch.fx.experimental.proxy_tensor import _CURRENT_MAKE_FX_TRACER

    if _CURRENT_MAKE_FX_TRACER is not None:
        return reenter_make_fx(fn)
    else:

        def _maybe_make_fx_with_fake_mode(fn):
            @functools.wraps(fn)
            def wrapped(*args):
                from torch._guards import detect_fake_mode

                fake_mode = detect_fake_mode(args)
                if fake_mode is None:
                    # we creaeta a fake_mode here to make sure we could
                    # trace the graph with data-dependent calls e.g. .item()
                    return make_fx(fn, tracing_mode="fake")(*args)
                # Tracing with real if all inputs have been fakfied
                return make_fx(fn)(*args)

            return wrapped

        return _maybe_make_fx_with_fake_mode(fn)


@contextmanager
def _set_compilation_env():
    _old_is_tracing = torch.fx._symbolic_trace._is_fx_tracing_flag
    try:
        # We need to turn off the is_fx_tracing_flag. Remove this flag check from dyanmo
        # once we are confident fx tracing works with dynamo.
        torch.fx._symbolic_trace._is_fx_tracing_flag = False
        yield
    finally:
        torch.fx._symbolic_trace._is_fx_tracing_flag = _old_is_tracing


def _detect_input_mutation(gm):
    input_nodes = set()
    for node in gm.graph.nodes:
        if node.op == "placeholder":
            input_nodes.add(node)
        if node.op == "call_function":
            target = node.target
            if isinstance(target, torch._ops.OpOverload) and target._schema.is_mutable:
                for arg in node.args:
                    if arg in input_nodes:
                        return True

    for _, module in gm.named_children():
        if isinstance(module, torch.fx.GraphModule):
            if _detect_input_mutation(module):
                return True

    return False


def _detect_input_alias(gm):
    input_storages = set()
    for node in gm.graph.nodes:
        # We need to check existence of "val" because we reuse the logic here
        # for map operator, where num_mapped_args is a scalar
        # and doesn't have a "val" meta.
        if (
            node.op == "placeholder"
            and "val" in node.meta
            and isinstance(node.meta["val"], torch.Tensor)
        ):
            input_storages.add(StorageWeakRef(node.meta["val"]._typed_storage()))
        if node.op == "output":

            def check_alias(out):
                if (
                    out is not None
                    and "val" in out.meta
                    and isinstance(out.meta["val"], torch.Tensor)
                ):
                    out_storage = StorageWeakRef(out.meta["val"]._typed_storage())
                    return out_storage in input_storages
                return False

            if any(pytree.tree_leaves(pytree.tree_map(check_alias, node.args))):
                return True

    for _, module in gm.named_children():
        if isinstance(module, torch.fx.GraphModule) and _detect_input_alias(module):
            return True

    return False


def has_potential_input_alias_or_mutation(gm, inputs, pre_dispatch=False):
    try:
        gm = make_fx(gm, pre_dispatch=pre_dispatch)(*inputs)
    except UnsupportedAliasMutationException:
        # this can happen when nested cond_op is
        # functionalized
        return True
    except Exception as e:
        raise e

    return _detect_input_mutation(gm) or _detect_input_alias(gm)


def _has_potential_branch_input_mutation(branch, inputs, pre_dispatch=False):
    """
    Dispatch-trace the branch with inputs and check if
    producing graph has mutable op on the input. This is
    bit restrictive as the branch must be traceable.
    """
    try:
        gm = make_fx(branch, pre_dispatch=pre_dispatch)(*inputs)
    except UnsupportedAliasMutationException:
        # this can happen when nested cond_op is
        # functionalized
        return True
    except Exception as e:
        raise e

    return _detect_input_mutation(gm)


def _has_potential_branch_input_alias(branch, inputs, pre_dispatch=False):
    """
    Dispatch-trace the branch with inputs and check if
    producing graph has output aliasing the branch input. This is
    bit restrictive as the branch must be traceable.
    """
    try:
        gm = make_fx(branch, pre_dispatch=pre_dispatch)(*inputs)
    except UnsupportedAliasMutationException:
        # this can happen when nested cond_op is
        # functionalized
        return True
    except Exception as e:
        raise e

    return _detect_input_alias(gm)


def unique_graph_id(proxy_mode, prefix):
    """Returns a unique name and id for a graph to be added to a proxy_mode tracer"""
    # There are probably better ways - I know that create_arg has some self incrementing name
    # magic to it, but since we explicitly have to get the name for register_module,
    # I was not sure how to do that. This kinda simulates it.
    next_name = None
    i = 0
    while not next_name:
        candidate = f"{prefix}_{i}"
        if hasattr(proxy_mode.tracer.root, candidate):
            i += 1
        else:
            next_name = candidate
    return i, next_name


def _from_fun(t):
    from torch._functorch.aot_autograd import from_fun
    from torch._subclasses.functional_tensor import FunctionalTensor

    if isinstance(t, torch.Tensor):
        if t.dtype != torch.bool:
            return torch.empty_strided(
                t.size(),
                t.stride(),
                dtype=t.dtype,
                requires_grad=t.requires_grad,
                device=t.device,
            )
        else:
            # clone of a functional tensor produces a functional tensor
            # but we want to avoid it so we clone a non-functional version
            maybe_unfunc_t = t
            if isinstance(t, FunctionalTensor):
                torch._sync(t)
                maybe_unfunc_t = from_fun(t)
            elif torch._is_functional_tensor(t):
                # need to handle both types of functionalization here:
                # these are the tensors that came from the user,
                # which could be either FunctionalTensorWrapper or FunctionalTensor
                torch._sync(t)
                maybe_unfunc_t = torch._from_functional_tensor(t)
            return maybe_unfunc_t.clone()
    return t


def clone_outputs_aliasing_inputs(args):
    input_storage = {
        StorageWeakRef(arg._typed_storage())
        for arg in args
        if isinstance(arg, torch.Tensor)
    }

    def maybe_clone(t):
        if (
            isinstance(t, torch.Tensor)
            and StorageWeakRef(t._typed_storage()) in input_storage
        ):
            return t.clone()
        return t

    return maybe_clone


def prepare_fw_with_masks(fn):
    def fw_with_masks(*args):
        fw_out = fn(*args)
        return fw_out, [
            True if isinstance(ret, torch.Tensor) and ret.requires_grad else False
            for ret in fw_out
        ]

    return fw_with_masks


# TODO: The parameter use_output_and_grad_bw is required because some operations
# that utilize this function, such as the while_loop, may require (grad, fwd_outputs)
def create_fw_bw_graph(fn, use_output_and_grad_bw, fw_inputs, fw_outputs):
    from torch._functorch.aot_autograd import AOTConfig, create_joint

    # Note:[HOP create fw_bw graph] We create "clean" environments for make_fx by suspending all dispatch keys
    # between Autograd and Python key. Currently, we only suspend functionalization but more can be
    # added when required. Will encounter two problems if we don't suspend functionalization:
    #
    # 1. make_fx fails to capture operations on input: the inputs are wrapped as _to_functional_tensor_wrapper,
    # but they will be unwrapped before entering ProxyTorchDispatchMode as part of the dispatching.
    # However, it's the outside wrapper that tracer creates proxies for. This casuses tracer fail to
    # fetch the proxy for the inputs and fail to capture any operations on them.
    #
    # 2. make_fx fails to capture output: the outputs after ProxyTorchDispatchMode are further
    # wrapped as FunctionalTensorWrapper in Functionalize key after return. However, the tracer
    # only associates the inner tensor with proxy in ProxyTorchDispatchMode. Therefore,
    # when creating the output node, it fails to associate the wrapped tensor with its proxy.
    # Instead, it will create _tensor_constant as output.

    dummy_aot_config = AOTConfig(
        fw_compiler=None,  # type: ignore[arg-type]
        bw_compiler=None,  # type: ignore[arg-type]
        partition_fn=None,  # type: ignore[arg-type]
        decompositions={},
        num_params_buffers=0,
        aot_id=0,
        keep_inference_input_mutations=False,
    )

    example_grad = [_from_fun(out) for out in fw_outputs]
    num_grads = len(example_grad)
    fw_graph = _maybe_reenter_make_fx(fn)(*fw_inputs)

    def joint_fn(*joint_operands_grads):
        if use_output_and_grad_bw:
            grads = joint_operands_grads[0]
            inputs = joint_operands_grads[1][-1:]
        else:
            grads = joint_operands_grads[:num_grads]
            inputs = joint_operands_grads[num_grads:]

        joint = create_joint(prepare_fw_with_masks(fn), aot_config=dummy_aot_config)
        _, grads = joint(
            list(inputs),
            [grad for grad in grads if grad is not None and grad.requires_grad],
        )

        # In order to keep map functional for backward graph,
        # we clone outputs that are aliasing inputs
        maybe_clone = clone_outputs_aliasing_inputs(joint_operands_grads)

        return pytree.tree_map(maybe_clone, grads)

    if use_output_and_grad_bw:
        example_xs_out = list(fw_inputs) + list(fw_outputs)
        joint_graph = _maybe_reenter_make_fx(joint_fn)(
            (list(example_grad), list(example_xs_out))
        )
    else:
        example_xs_out = list(fw_inputs)
        joint_graph = _maybe_reenter_make_fx(joint_fn)(
            *(list(example_grad) + list(example_xs_out))
        )

    return fw_graph, joint_graph


def _unstack_pytree(xs):
    flat_xs, inspec = pytree.tree_flatten(xs)
    if not all(isinstance(xs, torch.Tensor) for xs in flat_xs):
        raise RuntimeError(f"Leaves of xs must be Tensor {flat_xs}")

    if not all(xs.shape[0] == flat_xs[0].shape[0] for xs in flat_xs):
        raise RuntimeError(
            f"Leaves of xs must have same leading dimension size {[xs.shape for xs in flat_xs]}"
        )

    a = zip(*flat_xs)

    pytrees = [pytree.tree_unflatten(tuple, inspec) for tuple in a]
    return pytrees


def _stack_pytree(pytrees):
    flat_out = []
    out_spec = None
    for pt in pytrees:
        flat_pt, out_spec = pytree.tree_flatten(pt)
        flat_out.append(flat_pt)
    assert out_spec is not None
    b = zip(*flat_out)
    stacked_out = []
    for leaves in b:
        if all(isinstance(leaf, torch.Tensor) for leaf in leaves):
            stacked_out.append(torch.stack(leaves))
        elif all(leaf is None for leaf in leaves):
            # Backward graph can return None output when forward inputs doesn't require grad.
            # When we eagerly execute backward graph, we need to call _stack_pytree on its output,
            # therefore we need to deal with None output.
            stacked_out.append(None)  # type: ignore[arg-type]
        else:
            raise RuntimeError(f"Cannot stack {leaves}.")
    return pytree.tree_unflatten(stacked_out, out_spec)


# We cannot call save_for_backward for symints. This helper function
# can be used to save symints as direct attributes of ctx in autograd.Function.
#
# For example, if args = (x, y, s0, z, s1),
# save_tensors_and_symints_for_backward will partition the args into two lists, and a bookkeeping list pos:
#   partitioned_args[0] = (x, y, z)
#   partitioned_args[1] = (s0, s1)
#   pos = (0, 0, 1, 0, 1)
# pos list keeps track of which partition the args
# is partitioned into in order to recover it in saved_tensors_and_symints.
#
# In saved_tensors_and_symints, we can recover the original args by:
# iterating over the pos list and pop one item from the front of paritioned_args[pos[i]].
# We use t_idx and s_idx to keep track of the next index of the item we are going to pop for the two lists.
def save_tensors_and_symints_for_backward(ctx, args):
    assert all(
        isinstance(arg, (torch.Tensor, torch.SymInt, int, type(None))) for arg in args
    ), args
    partitioned_args: List[Any] = [[], []]
    pos = []
    for i, arg in enumerate(args):
        idx = 0 if isinstance(arg, torch.Tensor) else 1
        partitioned_args[idx].append(arg)
        pos.append(idx)

    assert not hasattr(ctx, "sym_int_args"), "ctx already has sym_int_args attribute."
    assert not hasattr(ctx, "pos"), "ctx already has pos attribute."
    ctx.save_for_backward(*partitioned_args[0])
    ctx.sym_int_args = partitioned_args[1]
    ctx.pos = pos


def saved_tensors_and_symints(ctx):
    args = []
    t_idx = 0
    s_idx = 0
    saved_tensors = ctx.saved_tensors
    for p in ctx.pos:
        if p == 0:
            args.append(saved_tensors[t_idx])
            t_idx += 1
        else:
            args.append(ctx.sym_int_args[s_idx])
            s_idx += 1
    assert t_idx + s_idx == len(ctx.pos)
    return tuple(args)


def get_dummy_aot_autograd_config():
    from torch._functorch.aot_autograd import AOTConfig

    return AOTConfig(
        fw_compiler=None,  # type: ignore[arg-type]
        bw_compiler=None,  # type: ignore[arg-type]
        partition_fn=None,  # type: ignore[arg-type]
        decompositions={},
        num_params_buffers=0,
        aot_id=0,
        keep_inference_input_mutations=False,
    )


# Slices off the first element of a given dimension
def first_slice_copy(t: torch.Tensor, dim: int = 0) -> torch.Tensor:
    return torch.select_copy(t, dim, 0)


# Reports the difference between meta of two tensors in a string
def diff_tensor_meta(
    meta1: TensorMetadata, meta2: TensorMetadata, check_grad=True
) -> List[str]:
    from torch.fx.experimental.symbolic_shapes import GuardOnDataDependentSymNode

    pair_diffs = []
    for meta_name in TensorMetadata._fields:
        if not check_grad and meta_name == "requires_grad":
            continue
        val1 = getattr(meta1, meta_name)
        val2 = getattr(meta2, meta_name)
        try:
            if val1 != val2:
                pair_diffs.append(f"'{meta_name}: {val1} vs {val2}'")
        except GuardOnDataDependentSymNode as _:
            pair_diffs.append(f"'{meta_name}: {val1} vs {val2}'")
            continue
    return pair_diffs


# Note [lifted arg types in hop]
# For dynamoed hops, we automatically lift the free symbols in tensors as arguments.
# This has implications for the types of lifted args for different dispatch keys:
#   1. functionalization, FakeTensorMode, ProxyTorchDispatchMode, Autograd need to support torch.Symint
#      lifted args because it's on the path of torch.compile(dynamic=True).
#   2. functionalization, FakeTensorMode, ProxyTorchDispatchMode, Autograd, CompositeExplicitAutograd need
#      to support int arguments. In the eager run case, we re-trace the subgraph in AutogradKey, so inner
#      hops may receive int inputs from the shape of outer tensor inputs.
#      However, CompositeExplicitAutograd won't receive SymInt inputs because it only accepts real tensor inputs.
def validate_subgraph_args_types(lifted_args: Union[Tuple[Any, ...], List[Any]]):
    allowed_types = (torch.Tensor, int, torch.SymInt)
    assert all(
        isinstance(arg, (torch.Tensor, int, torch.SymInt)) for arg in lifted_args
    ), f"{lifted_args} can only be of {allowed_types} but got {tuple(type(arg) for arg in lifted_args)}"