1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
import json
import logging
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple
from unittest import mock
import torch
import torch._export
from torch._inductor.utils import is_cpu_device
from .runtime.runtime_utils import cache_dir
log = logging.getLogger(__name__)
def aoti_eager_cache_dir(namespace: str, device: str) -> Path:
return Path(cache_dir()) / "aoti_eager" / namespace / device
def aoti_eager_op_conf_lock(op_func_name_with_overload: str) -> Any:
from filelock import FileLock
# Avoid circular import
from torch._inductor.codecache import get_lock_dir, LOCK_TIMEOUT
op_conf_lock_file = f"{op_func_name_with_overload}.lock"
lock_dir = get_lock_dir()
return FileLock(os.path.join(lock_dir, op_conf_lock_file), timeout=LOCK_TIMEOUT)
def load_aoti_eager_cache(
ns: str, op_func_name_with_overload: str, device_type: str
) -> List[Optional[Dict[str, Any]]]:
device_kernel_cache = aoti_eager_cache_dir(ns, device_type)
op_conf = device_kernel_cache / f"{op_func_name_with_overload}.json"
if not op_conf.exists():
return []
try:
with aoti_eager_op_conf_lock(op_func_name_with_overload):
with open(op_conf) as f:
json_data = json.load(f)
for item in json_data:
# Get absolution path for kernel library
kernel_lib_abs_path = device_kernel_cache / item["kernel_path"]
item["kernel_path"] = kernel_lib_abs_path.as_posix()
# Check if the kernel library exists
if not kernel_lib_abs_path.exists():
return []
for metadata in item["meta_info"]:
if metadata.get("is_dynamic"):
raise NotImplementedError(
"Only support static shape for now"
)
if (
"device_type" in metadata
and metadata["device_type"] == "cpu"
):
metadata["device_index"] = -1
for dtype_key in ["dtype", "dtype_value"]:
if dtype_key in metadata:
metadata[dtype_key] = getattr(
torch, metadata[dtype_key].split(".")[-1]
)
if "layout_value" in metadata:
metadata["layout_value"] = getattr(
torch, metadata["layout_value"].split(".")[-1]
)
if "memory_format_value" in metadata:
metadata["memory_format_value"] = getattr(
torch, metadata["memory_format_value"].split(".")[-1]
)
return json_data
except Exception as e:
err_msg = f"Failed to load aoti eager cache: {e}"
log.exception(err_msg)
return []
def supported_builtin_dtype_torch_dtype() -> Dict[type, torch.dtype]:
return {int: torch.int32, float: torch.float, bool: torch.bool}
def supported_scalar_types() -> Tuple[type, ...]:
type_to_torch_dtype = supported_builtin_dtype_torch_dtype()
return tuple(type_to_torch_dtype.keys())
def extract_tensor_metadata(dynamic: bool, input: torch.Tensor) -> Dict[str, Any]:
metadata: Dict[str, Any] = {}
metadata["is_dynamic"] = dynamic
assert isinstance(input, torch.Tensor)
metadata["device_type"] = f"{input.device.type}"
if is_cpu_device([input]):
metadata["device_index"] = -1
else:
metadata["device_index"] = input.device.index
metadata["dtype"] = f"{input.dtype}"
metadata["sizes"] = list(input.size())
metadata["strides"] = list(input.stride())
metadata["requires_grad"] = input.requires_grad
metadata["dispatch_key_set"] = torch._C._dispatch_keys(input).raw_repr()
return metadata
def extract_tensor_list_metadata(
dynamic: bool,
input: List[torch.Tensor],
) -> Dict[str, Any]:
metadata_list = []
for item in input:
assert isinstance(item, torch.Tensor)
metadata_list.append(extract_tensor_metadata(dynamic, item))
metadata: Dict[str, Any] = {}
metadata["tensor_list"] = metadata_list
return metadata
def extract_scalar_metadata(device_type: str, input: Any) -> Dict[str, Any]:
assert isinstance(input, supported_scalar_types())
metadata: Dict[str, Any] = {}
metadata["is_dynamic"] = False
# Scalar tensor
metadata["device_type"] = device_type
metadata["device_index"] = -1 if device_type == "cpu" else 0
type_to_torch_dtype = supported_builtin_dtype_torch_dtype()
metadata["dtype"] = f"{type_to_torch_dtype[type(input)]}"
metadata["scalar_value"] = input
return metadata
def extract_string_metadata(input: str) -> Dict[str, Any]:
assert isinstance(input, str)
metadata: Dict[str, Any] = {}
metadata["string_value"] = input
return metadata
def extract_dtype_metadata(input: torch.dtype) -> Dict[str, Any]:
assert isinstance(input, torch.dtype)
metadata: Dict[str, Any] = {}
metadata["dtype_value"] = f"{input}"
return metadata
def extract_device_metadata(input: torch.device) -> Dict[str, Any]:
assert isinstance(input, torch.device)
metadata: Dict[str, Any] = {}
metadata["device_type_value"] = f"{input.type}"
metadata["device_index_value"] = input.index
return metadata
def extract_layout_metadata(input: torch.layout) -> Dict[str, Any]:
assert isinstance(input, torch.layout)
metadata: Dict[str, Any] = {}
metadata["layout_value"] = f"{input}"
return metadata
def aoti_compile_with_persistent_cache(
ns: str,
op_func_name_with_overload: str,
device_type: str,
dynamic: bool,
f: Callable[..., Any],
args: Tuple[Any],
kwargs: Dict[str, Any],
*,
dynamic_shapes: Optional[Dict[str, Any]] = None,
options: Optional[Dict[str, Any]] = None,
remove_runtime_assertions: bool = False,
disable_constraint_solver: bool = False,
) -> str:
"""
Compile the given function with persistent cache for AOTI eager mode.
"""
assert not dynamic, "Only support static shape for now"
flattened_inputs = list(args) + list(kwargs.values())
if not all(
isinstance(
input,
(
supported_scalar_types(),
torch.Tensor,
list,
str,
torch.dtype,
torch.device,
torch.layout,
),
)
for input in flattened_inputs
):
err_msg = f"Unsupported input types: {flattened_inputs}"
log.exception(err_msg)
raise NotImplementedError(err_msg)
for input in flattened_inputs:
if isinstance(input, list) and not all(
isinstance(item, torch.Tensor) for item in input
):
err_msg = f"_impl_with_aoti_compile encounters unsupported input types: {flattened_inputs}"
log.exception(err_msg)
raise NotImplementedError(err_msg)
persistent_cache = aoti_eager_cache_dir(ns, device_type)
if not persistent_cache.exists():
persistent_cache.mkdir(parents=True)
persistent_cache_lib = persistent_cache / "lib"
if not persistent_cache_lib.exists():
persistent_cache_lib.mkdir()
with mock.patch.dict(
os.environ,
{"TORCHINDUCTOR_CACHE_DIR": persistent_cache_lib.absolute().as_posix()},
):
try:
kernel_lib_path = torch._export.aot_compile(
f,
args,
kwargs,
dynamic_shapes=dynamic_shapes,
remove_runtime_assertions=remove_runtime_assertions,
disable_constraint_solver=disable_constraint_solver,
# Some operations may have non-Tensor parameters like int, float, bool. These
# non-Tensor parameters will not be the input of the graph. Therefore, we do
# need to keep the same signature.
same_signature=False,
)
assert isinstance(kernel_lib_path, str)
kernel_metadata_items = []
for idx, input in enumerate(flattened_inputs):
if isinstance(input, torch.Tensor):
metadata = extract_tensor_metadata(dynamic, input)
elif isinstance(input, list):
assert all(isinstance(item, torch.Tensor) for item in input)
metadata = extract_tensor_list_metadata(dynamic, input)
elif isinstance(input, supported_scalar_types()):
metadata = extract_scalar_metadata(device_type, input)
elif isinstance(input, str):
metadata = extract_string_metadata(input)
elif isinstance(input, torch.dtype):
metadata = extract_dtype_metadata(input)
elif isinstance(input, torch.device):
metadata = extract_device_metadata(input)
elif isinstance(input, torch.layout):
metadata = extract_layout_metadata(input)
else:
raise NotImplementedError(f"Unsupported input type: {type(input)}")
metadata["arg_order"] = idx
kernel_metadata_items.append(metadata)
kernel_meta_info: Dict[str, Any] = {}
kernel_meta_info["meta_info"] = kernel_metadata_items
kernel_meta_info["kernel_path"] = (
Path(kernel_lib_path).relative_to(persistent_cache).as_posix()
)
json_data = []
update_json = True
op_conf = persistent_cache / f"{op_func_name_with_overload}.json"
mode = "r" if op_conf.exists() else "w"
with aoti_eager_op_conf_lock(op_func_name_with_overload):
with open(op_conf, mode) as op_conf_file:
try:
json_data = json.load(op_conf_file)
except Exception as e:
json_data = []
assert isinstance(json_data, list)
for item in json_data:
assert isinstance(item, dict)
# Same kernel meta info already exists in the json file
if item["meta_info"] == kernel_metadata_items:
update_json = False
break
if update_json:
json_data.append(kernel_meta_info)
with open(op_conf, "w") as op_conf_file:
json.dump(json_data, op_conf_file, indent=4)
return kernel_lib_path
except Exception as e:
err_msg = f"Failed to compile {op_func_name_with_overload}: {e}"
log.exception(err_msg)
return ""
|