1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
# mypy: allow-untyped-defs
from __future__ import annotations
import functools
import logging
import os
import sys
from concurrent.futures import Future, ThreadPoolExecutor
from concurrent.futures.process import BrokenProcessPool
from time import time
from typing import Any, Callable, Dict, List, Optional, Set, TYPE_CHECKING
import torch
from torch._dynamo.device_interface import get_registered_device_interfaces
from torch._dynamo.utils import dynamo_timed, set_feature_use
from torch._inductor import config
from torch._inductor.codecache import (
CodeCacheFuture,
CppCodeCache,
CppPythonBindingsCodeCache,
CUDACodeCache,
HalideCodeCache,
LambdaFuture,
ROCmCodeCache,
TritonCodeCache,
TritonFuture,
)
from torch._inductor.compile_worker.subproc_pool import SubprocPool
from torch._inductor.runtime.compile_tasks import (
_set_triton_ptxas_path,
_worker_compile_triton,
)
from torch.hub import _Faketqdm, tqdm
from torch.utils._triton import has_triton_package
if TYPE_CHECKING:
from torch._inductor.runtime.hints import HalideMeta
# timing metrics for time spent in the compilation
_cumulative_compile_time = 0.0
_t0: Optional[float] = None
kernel_code_log = torch._logging.getArtifactLogger(__name__, "kernel_code")
log = logging.getLogger(__name__)
def pre_fork_setup():
"""
Setup that must be done prior to forking with a process pool.
"""
# ensure properties have been calculated before processes
# are forked
caching_device_properties()
# Computing the triton key can be slow. If we call it before fork,
# it will be cached for the forked subprocesses.
try:
from triton.compiler.compiler import triton_key
triton_key()
except ImportError:
# Triton might not be installed or might be an old version.
pass
def caching_device_properties():
for _, device_interface in get_registered_device_interfaces():
if device_interface.is_available():
device_interface.Worker.get_device_properties()
def _compile_start() -> None:
global _t0
if _t0 is None:
_t0 = time()
def _compile_end() -> None:
global _cumulative_compile_time, _t0
if _t0 is not None:
t1 = time()
_cumulative_compile_time += t1 - _t0
_t0 = None
# print("CUMULATIVE COMPILE TIME", _cumulative_compile_time)
_IS_WINDOWS = sys.platform == "win32"
log = logging.getLogger(__name__)
# Used to keep track of all process pools invoked so far.
_pool_set: Set[SubprocPool] = set()
def shutdown_compile_workers() -> None:
"""Shut down all outstanding compile-worker pools."""
for pool in _pool_set:
pool.shutdown()
after_fork()
def after_fork():
"""Reset pools to initial state without shutting them down"""
_pool_set.clear()
AsyncCompile.process_pool.cache_clear()
try:
os.register_at_fork(after_in_child=after_fork)
except AttributeError:
pass # register_at_fork does not exists on windows
def get_compile_threads() -> int:
"""
Temporary for internal rollout. Assign config.compile_threads lazily and return it.
TODO: remove after rollout.
"""
if config.compile_threads is None:
config.compile_threads = config.decide_compile_threads()
return config.compile_threads
class AsyncCompile:
def __init__(self) -> None:
pass
@staticmethod
@functools.lru_cache(1)
def pool() -> ThreadPoolExecutor:
assert get_compile_threads() > 1
return ThreadPoolExecutor(get_compile_threads())
@staticmethod
def _get_ready():
"""No-op function to help mark when the subprocess pool is ready."""
return "ready"
@staticmethod
@functools.lru_cache(1)
def process_pool() -> SubprocPool:
assert get_compile_threads() > 1
# Wrapper around ProcessPoolExecutor forks in a new process we control
log.info("Creating subprocess pool with %d workers", get_compile_threads())
pool = SubprocPool(get_compile_threads())
# Set an attribute we can check to see if the pool is ready.
pool.ready_future = pool.submit(AsyncCompile._get_ready) # type: ignore[attr-defined]
_pool_set.add(pool)
return pool
@classmethod
def warm_pool(cls) -> None:
if get_compile_threads() <= 1:
return
_compile_start()
# Pool is initialized on first access
cls.process_pool()
_compile_end()
@classmethod
def submit(cls, task: Callable[..., Any]) -> Any:
if get_compile_threads() <= 1:
return task()
return cls.pool().submit(task)
def _use_process_pool(self):
return (
get_compile_threads() > 1
and self.process_pool().ready_future.done() # type: ignore[attr-defined]
)
def triton(self, kernel_name: str, source_code: str, device_str: str = "cuda"):
kernel_code_log.info("Triton Kernel:\n%s", source_code)
_compile_start()
_set_triton_ptxas_path()
if os.environ.get("TRITON_INTERPRET", "0") == "1":
return getattr(
torch._inductor.codecache.PyCodeCache.load(source_code), kernel_name
)
kernel = TritonCodeCache.load(kernel_name, source_code)
if self._use_process_pool():
set_feature_use(
"pytorch/inductor:enable_parallel_compile_version (post_warmup)", True
)
# We want to support changing these env vars after (and while) the
# process pool is running, so pass them to the subprocess to reset.
env_vars = ["TORCHINDUCTOR_CACHE_DIR", "TRITON_CACHE_DIR"]
extra_env = {v: os.environ[v] for v in env_vars if v in os.environ}
return TritonFuture(
kernel,
self.process_pool().submit(
_worker_compile_triton,
kernel._reload_in_subproc,
extra_env,
),
)
else:
set_feature_use(
"pytorch/inductor:enable_parallel_compile_version (post_warmup)", False
)
with dynamo_timed(
"async_compile.precompile",
log_pt2_compile_event=True,
dynamo_compile_column_us="triton_compile_time_us",
log_waitcounter=True,
):
kernel.precompile()
return kernel
def multi_kernel(self, *args, **kwargs) -> Any:
from torch._inductor.codegen.multi_kernel import MultiKernelCall
# no need to call this in parallel since the sub-kernels are already parallel tasks
return MultiKernelCall(*args, **kwargs)
def cpp(self, source_code: str):
kernel_code_log.info("CPP Kernel:\n%s", source_code)
if get_compile_threads() <= 1:
return CppCodeCache.load(source_code).kernel
else:
get_result = CppCodeCache.load_async(source_code, submit_fn=self.submit)
return LambdaFuture(lambda: get_result().kernel)
def cpp_pybinding(self, argtypes: List[str], source_code: str):
kernel_code_log.info("CPP+Bindings Kernel:\n%s", source_code)
if get_compile_threads() <= 1:
return CppPythonBindingsCodeCache.load_pybinding(argtypes, source_code)
else:
get_result = CppPythonBindingsCodeCache.load_pybinding_async(
argtypes, source_code, submit_fn=self.submit
)
return LambdaFuture(get_result)
def cuda(self, source_code, dst_file_ext, aot_compile=False):
kernel_code_log.info("CUDA Kernel:\n%s", source_code)
def task():
if aot_compile:
# We rely on JITInductor to compile the CUDA code,
# so that we can load it into AOTInductor.
CUDACodeCache.compile(source_code, "o")
return CUDACodeCache.load(source_code, dst_file_ext)[0]
return self.submit(task)
def rocm(
self,
source_code,
dst_file_ext,
aot_compile=False,
):
kernel_code_log.info("ROCm Kernel:\n%s", source_code)
def task():
if aot_compile:
_ = ROCmCodeCache.compile(source_code, dst_file_ext="o")
if config.rocm.generate_test_runner:
_ = ROCmCodeCache.compile(source_code, dst_file_ext="exe")
return ROCmCodeCache.load(source_code, dst_file_ext)[0]
return self.submit(task)
def halide(self, meta: HalideMeta, source_code: str):
kernel_code_log.info("Halide Kernel:\n%r\n%s", meta, source_code)
if get_compile_threads() <= 1:
return HalideCodeCache.generate_halide(meta, source_code)
else:
get_result = HalideCodeCache.generate_halide_async(
meta, source_code, submit_fn=self.submit
)
return LambdaFuture(get_result)
def wait(self, scope: Dict[str, Any]) -> None:
with dynamo_timed(
"async_compile.wait",
log_pt2_compile_event=True,
dynamo_compile_column_us="triton_compile_time_us",
log_waitcounter=True,
):
num_kernels = len(
[
value
for key, value in scope.items()
if isinstance(value, (Future, CodeCacheFuture))
]
)
pbar = tqdm(
total=num_kernels,
desc="Inductor Compilation",
disable=config.disable_progress,
delay=0,
)
if get_compile_threads() > 1:
for key, result in scope.items():
if config.verbose_progress and not isinstance(pbar, _Faketqdm):
pbar.set_postfix_str(key)
if isinstance(result, (Future, CodeCacheFuture)):
try:
scope[key] = result.result()
except BrokenProcessPool as e:
raise RuntimeError(
"A compilation subprocess exited unexpectedly. This "
"is likely due to a crash. To facilitate debugging, "
"you can re-run with TORCHINDUCTOR_COMPILE_THREADS=1 "
"to cause compilation to occur in the main process."
) from e
pbar.update(1)
_compile_end()
if (
os.environ.get("TORCH_TNT_IN_USE", "0") == "1"
or os.environ.get("TORCH_WARM_POOL", "1") != "1"
# The subprocess pool is only used for the Triton backend
or not has_triton_package()
# Skip for fbcode. We have internal reports of usages inside multiprocessing
# pools that lead a multiplicative number of compile subprocesses.
or config.is_fbcode()
):
pass
else:
AsyncCompile.warm_pool()
|