1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
|
# mypy: allow-untyped-defs
from __future__ import annotations
import contextlib
import ctypes
import dataclasses
import functools
import logging
import os
import queue
import time
import warnings
from concurrent.futures import ThreadPoolExecutor
from ctypes import byref, c_size_t, c_void_p, CDLL
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Sequence,
TYPE_CHECKING,
Union,
)
import torch
import torch._inductor.async_compile # noqa: F401 required to warm up AsyncCompile pools
from torch import multiprocessing
from torch._dynamo.testing import rand_strided
from torch._inductor import ir
from torch._inductor.codecache import (
CppCodeCache,
CUDACodeCache,
DLLWrapper,
get_hash,
PyCodeCache,
)
if TYPE_CHECKING:
from multiprocessing.process import BaseProcess
from multiprocessing.queues import Queue
from types import ModuleType
from torch._inductor.select_algorithm import TritonTemplateCaller
from .codegen.common import WorkspaceArg
from . import config
from .codegen.common import WorkspaceZeroMode
from .runtime.benchmarking import benchmarker
from .virtualized import V
CUDA_VISIBLE_DEVICES = "CUDA_VISIBLE_DEVICES"
EXIT_HANDLER_REGISTERED = False
log = logging.getLogger(__name__)
# Used to synchronize between parent and child processes
class Ping:
pass
class Pong:
pass
class NonzeroWorkspaceNotSupportedError(Exception):
pass
@contextlib.contextmanager
def set_cuda_visible_device(device: Optional[int]):
"""
Context manager to set the CUDA_VISIBLE_DEVICES environment variable to the
specified single device. If device is None, don't manipulate the environment.
"""
if device is None:
yield
return
current = os.environ.get(CUDA_VISIBLE_DEVICES)
os.environ[CUDA_VISIBLE_DEVICES] = str(device)
try:
yield
finally:
if current is None:
del os.environ[CUDA_VISIBLE_DEVICES]
else:
os.environ[CUDA_VISIBLE_DEVICES] = current
@dataclasses.dataclass
class TuningProcess:
"""
Abstraction for launching a helper process to benchmark kernels. Spawns
the parent process and uses multiprocessing queues to send benchmark
requests and return results.
"""
device: Optional[int] = None
process: Optional[BaseProcess] = None
request_queue: Optional[Queue[Any]] = None
response_queue: Optional[Queue[Any]] = None
@staticmethod
def process_main(
request_queue: Queue[Any],
response_queue: Queue[Any],
) -> None:
"""
Entry point for the child process.
"""
log.debug(
"Entering TuningProcess child. Visible devices = %s",
os.environ.get(CUDA_VISIBLE_DEVICES),
)
try:
TuningProcess.workloop(request_queue, response_queue)
except Exception as ex:
log.exception("Exception in TuningProcess")
@staticmethod
def workloop(request_queue: Queue[Any], response_queue: Queue[Any]) -> None:
"""
Work loop for the benchmarking subprocess.
"""
while True:
obj = request_queue.get()
if obj is None:
break # None is a sentinel for the child to terminate
elif isinstance(obj, Ping):
response_queue.put(Pong())
elif isinstance(obj, BenchmarkRequest):
response_queue.put(obj.benchmark())
else:
raise RuntimeError(f"Invalid request type {type(obj)}")
def valid(self) -> bool:
"""
True if the sub-process has been initialized.
"""
return (
self.process is not None
and self.request_queue is not None
and self.response_queue is not None
)
def clear(self) -> None:
"""
Reset to an uninitialized state.
"""
self.process = self.request_queue = self.response_queue = None
def initialize(self) -> None:
"""
Create child process, request/response queues, and do the warm up.
Set the environment to make only the provided GPU device visible
to the process.
"""
if self.valid():
return
# cuda runtime does not work with "fork", use "spawn" to start processes.
ctx = multiprocessing.get_context("spawn")
self.request_queue = ctx.Queue()
self.response_queue = ctx.Queue()
self.process = ctx.Process(
target=self.process_main,
args=(
self.request_queue,
self.response_queue,
),
)
assert self.process is not None
with set_cuda_visible_device(self.device):
self.process.start()
def put(self, obj: Any) -> None:
"""
Push a work item to the child process.
"""
# In case of a prior crash, ensure the subprocess is running
self.initialize()
assert self.request_queue is not None
self.request_queue.put(obj)
def get(
self, result_timeout=120.0, graceful_timeout=3.0, terminate_timeout=1.0
) -> Any:
"""
Get a response from the child process. Raises queue.Empty on timeout
or if the process dies.
This method is (so far) only used by TuningProcessPool, where torch._inductor.config entries are being used
to populate the timeouts:
Arguments:
@param result_timeout: Timeout in seconds, defaults to 120.0 or to
config.max_autotune_subproc_result_timeout_seconds when called by TuningProcessPool
@param graceful_timeout: Timeout in seconds to allow graceful shutdown (SIGTERM is sent after this time).
Defaults to 3.0 or to config.max_autotune_subproc_graceful_timeout_seconds
@param terminate_timeout: Timeout in seconds after SIGTERM, until we send SIGKILL if the process
remains alive. Defaults to 1.0 or to
config.max_autotune_subproc_terminate_timeout_seconds.
Returns:
A response from the child process (Any type)
"""
assert self.process is not None
assert self.response_queue is not None
while True:
try:
remaining_timeout = result_timeout
res = None
while remaining_timeout is not None and remaining_timeout >= 1.0:
remaining_timeout -= 0.5
try:
res = self.response_queue.get(timeout=0.5)
break
except queue.Empty:
if not self.process.is_alive():
raise # is being caught a few lines below
if res is None:
res = self.response_queue.get(timeout=remaining_timeout)
return res
except queue.Empty:
status = self.process.exitcode
if status is None:
self.kill(
graceful_timeout=graceful_timeout,
terminate_timeout=terminate_timeout,
)
else:
# child process crashed
self.clear()
raise
def terminate(self) -> None:
"""
Signal the child process to terminate.
"""
if self.valid():
assert self.process is not None
assert self.request_queue is not None
self.request_queue.put(None)
def wait(self) -> None:
"""
Wait for the child process to exit.
"""
if self.process is not None:
self.process.join()
self.clear()
def kill(self, graceful_timeout=5.0, terminate_timeout=1.0) -> None:
# Tries to kill the process, using a graceful_timeout in which the process
# is allowed to exit gracefully. If the process is still alive,
# it will be terminated. If that is not sufficient to end it
# within terminate_timeout seconds, it will be killed.
if self.process is not None:
self.terminate()
self.process.join(timeout=graceful_timeout)
if self.process.is_alive():
log.warning(
"Sending SIGTERM to process with PID %d",
self.process.pid,
)
self.process.terminate()
self.process.join(timeout=terminate_timeout)
if self.process.is_alive():
log.error(
"Sending SIGKILL to process with PID %d",
self.process.pid,
)
self.process.kill() # This should definitely end the process
self.clear()
@dataclasses.dataclass
class TuningProcessPool:
"""
Maintains a pool of TuningProcesses to benchmark kernels in parallel
across devices. By default, we create one TuningProcess per device and
set the sub-process environment to make only that device visible.
"""
processes: Optional[queue.Queue[TuningProcess]] = None
executor: Optional[ThreadPoolExecutor] = None
def initialize(self) -> None:
"""
Start the child processes.
"""
assert (self.processes is None) == (self.executor is None)
if self.processes is not None:
return
devices = self.get_device_list()
log.debug("Sub-process autotune device list: %s", devices)
# Launch the child processes and push a msg to "warm up"
self.processes = queue.Queue()
for device in devices:
p = TuningProcess(device=device)
p.initialize()
p.put(Ping())
self.processes.put(p)
# Wait for the initialization to finish
for p in self.processes.queue:
assert isinstance(p.get(result_timeout=None), Pong)
# Use a thread pool to manage distributing work to the subprocesses.
# Threads block on an available process, so it makes sense to match
# the number of threads with the number of devices.
self.executor = ThreadPoolExecutor(max_workers=len(devices))
# Register the exit handler for the parent process so it will terminate
# the child processes.
global EXIT_HANDLER_REGISTERED
if not EXIT_HANDLER_REGISTERED:
EXIT_HANDLER_REGISTERED = True
import atexit
atexit.register(self.terminate)
def get_device_list(self) -> Sequence[Optional[int]]:
"""
Gather the list of devices to be used in the pool.
"""
if not config.autotune_multi_device:
# Don't use multiple devices
return [None]
count = torch.cuda.device_count()
# If the user specified the visible devices in the env, use those.
if CUDA_VISIBLE_DEVICES in os.environ:
devices = [int(d) for d in os.environ[CUDA_VISIBLE_DEVICES].split(",")]
assert len(devices) <= count
return devices
return list(range(count))
def terminate(self) -> None:
"""
Signal all child processes to terminate.
"""
if self.executor is not None:
self.executor.shutdown()
self.executor = None
if self.processes is not None:
for p in self.processes.queue:
p.terminate()
for p in self.processes.queue:
p.wait()
self.processes = None
def target(self, choice: TritonTemplateCaller) -> float:
"""
Entry point for the thread-pool helper threads: Wait for an open TuningProcess,
remove it from the queue, execute the benchmark in that subprocess, and return
the TuningProcess to the queue.
"""
assert choice.bmreq is not None
assert self.processes is not None
process = self.processes.get()
process.put(choice.bmreq)
try:
return process.get(
config.max_autotune_subproc_result_timeout_seconds,
config.max_autotune_subproc_graceful_timeout_seconds,
config.max_autotune_subproc_terminate_timeout_seconds,
)
except queue.Empty:
warnings.warn(
f"Failed to benchmark choice '{choice}'. It will be ignored. "
"Please debug the root cause in case the choice can bring perf gains."
)
# set to INF so this choice will be ignored
return float("inf")
finally:
self.processes.put(process)
def benchmark(
self,
choices: List[TritonTemplateCaller],
) -> Dict[TritonTemplateCaller, float]:
"""
Benchmark each choice in a separate process.
"""
assert self.processes is not None, "Tuning process pool is not initialized"
assert self.executor is not None
results = {}
# Use a ThreadExecutorPool to spread the work across the subprocesses and
# to grab subprocesses as soon as they're free.
for choice, result in zip(choices, self.executor.map(self.target, choices)):
results[choice] = result
return results
tuning_pool = TuningProcessPool()
LayoutOrBuffer = Union[ir.Layout, ir.Buffer]
@dataclasses.dataclass
class TensorMeta:
device: torch.device
dtype: torch.dtype
sizes: torch._prims_common.ShapeType
strides: torch._prims_common.StrideType
offset: int
name: Optional[str] = None
@classmethod
def from_irnodes(
cls, irnodes: Union[LayoutOrBuffer, Sequence[LayoutOrBuffer]]
) -> Union[TensorMeta, List[TensorMeta]]:
if isinstance(irnodes, Sequence):
result: List[Any] = [cls.from_irnodes(x) for x in irnodes]
assert all(isinstance(x, TensorMeta) for x in result)
return result
node = irnodes
if isinstance(node, ir.Layout):
node = ir.Buffer(name="fake", layout=node)
dtype = node.get_dtype()
assert dtype is not None
device = node.get_device()
assert device is not None
return TensorMeta(
device=device,
dtype=dtype,
sizes=V.graph.sizevars.size_hints(
node.get_size(),
fallback=config.unbacked_symint_fallback,
),
strides=V.graph.sizevars.size_hints(
node.get_stride(),
fallback=config.unbacked_symint_fallback,
),
offset=V.graph.sizevars.size_hint(
node.get_layout().offset,
fallback=config.unbacked_symint_fallback,
),
name=node.get_name(),
)
def to_tensor(self) -> torch.Tensor:
return rand_strided(
self.sizes,
self.strides,
device=self.device,
dtype=self.dtype,
extra_size=self.offset,
)
@dataclasses.dataclass
class BenchmarkRequest:
"""
Only handle triton template benchmark for now. The extern kernel benchmark
can be done inside the same process since they usually don't cause crash.
Important: Instances of this class and subclasses have to be serializable
across process boundaries. Do not put CUDA Tensors in here!
"""
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
) -> None:
# the kernel name defined in the module
self.kernel_name = kernel_name
if isinstance(input_tensor_meta, TensorMeta):
input_tensor_meta = [input_tensor_meta]
self.input_tensor_meta = input_tensor_meta
if isinstance(output_tensor_meta, (tuple, list)):
assert len(output_tensor_meta) == 1
output_tensor_meta = output_tensor_meta[0]
self.output_tensor_meta = output_tensor_meta
self.extra_args = extra_args
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
raise NotImplementedError
def cleanup_run_fn(self) -> None:
pass
def do_bench(
self,
fn,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
raise NotImplementedError
def benchmark(
self,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
debug = log.isEnabledFor(logging.DEBUG)
if debug:
start_ts = time.time()
# create args and out tensor
if output_tensor is None:
assert len(input_tensors) == 0
input_tensors = tuple(x.to_tensor() for x in self.input_tensor_meta)
output_tensor = self.output_tensor_meta.to_tensor()
if debug:
create_tensor_elapse = time.time() - start_ts # type: ignore[possibly-undefined]
start_ts = time.time()
try:
fn = self.make_run_fn(*input_tensors, output_tensor=output_tensor)
except NonzeroWorkspaceNotSupportedError:
# Skipping all ops with nonzero workspace requirements
log.info("Skipping op due to nonzero workspace requirement")
return float("inf")
if debug:
load_elapse = time.time() - start_ts # type: ignore[possibly-undefined]
start_ts = time.time()
out = self.do_bench(fn, *input_tensors, output_tensor)
if debug:
bench_elapse = time.time() - start_ts # type: ignore[possibly-undefined]
log.debug(
"InChildProcess %s: load %f, create tensor %f, bench %f",
str(self),
load_elapse, # type: ignore[possibly-undefined]
create_tensor_elapse, # type: ignore[possibly-undefined]
bench_elapse,
)
self.cleanup_run_fn()
return out
class TestBenchmarkRequest(BenchmarkRequest):
"""
Supports unit testing. Defined in this file so that the TuningProcess
sub-process knows how to unpickle these objects.
"""
def __init__(self, value: Optional[float] = None) -> None:
self.value = value
def benchmark(
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
) -> float:
if self.value is None:
raise Exception("Failed to run") # noqa: TRY002
return self.value
class GPUDeviceBenchmarkMixin:
def do_bench(
self,
fn,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
device_idx_set = {
tensor.device.index
for tensor in [*input_tensors, output_tensor]
if isinstance(tensor, torch.Tensor)
and tensor.is_cuda
and tensor.device.index is not None
}
assert len(device_idx_set) <= 1, f"Can not mix devices {device_idx_set}"
if len(device_idx_set) == 1:
device_idx = next(iter(device_idx_set))
else:
device_idx = torch.cuda.current_device()
with torch.cuda.device(device_idx):
out = benchmarker.benchmark_gpu(fn)
torch.cuda.synchronize() # shake out any CUDA errors
return out
class CPUDeviceBenchmarkMixin:
def do_bench(
self,
fn,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
return benchmarker.benchmark_cpu(fn)
class TritonBenchmarkRequest(BenchmarkRequest):
# Important: Instances of this class have to be serializable
# across process boundaries. Do not put CUDA Tensors in here!
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
module_path: str, # the path of the module defining the triton kernel
module_cache_key: str,
grid: List[int],
num_stages: int,
num_warps: int,
matrix_instr_nonkdim: int = 0, # only used for hip to choose the shape of mfma instruction.
workspace_arg: Optional[WorkspaceArg] = None,
) -> None:
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.module_path = module_path
self.module_cache_key = module_cache_key
self.grid = grid
self.num_stages = num_stages
self.num_warps = num_warps
self.matrix_instr_nonkdim = matrix_instr_nonkdim
self.workspace_arg = workspace_arg
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
mod = PyCodeCache.load_by_key_path(self.module_cache_key, self.module_path)
log.debug(
"benchmark module key: %s, path: %s",
self.module_cache_key,
self.module_path,
)
run_method = getattr(mod, self.kernel_name).run
extra_args = list(self.extra_args)
run_method.__self__.with_bandwidth_info = False
# Newer version of triton add warmup argument to JITFunction.run.
# This code handles backward-compatibility.
warmup_arg = {}
import inspect
if "warmup" in inspect.signature(run_method).parameters:
warmup_arg["warmup"] = False
if output_tensor.device.type == "cpu":
stream = 0
else:
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
stream = get_raw_stream(self.output_tensor_meta.device.index)
if self.workspace_arg is not None:
# Create a function that handles both workspace creation and kernel execution
workspace_arg = self.workspace_arg
def run_with_workspace():
# Create workspace tensor
workspace_size = workspace_arg.count
workspace_tensor = torch.empty_strided(
(workspace_size,),
(1,),
dtype=torch.uint8,
device=output_tensor.device,
)
# Handle zero initialization if needed
if workspace_arg.zero_mode == WorkspaceZeroMode.ZERO_ON_CALL:
workspace_tensor.zero_()
# Run the kernel with workspace
run_method(
*input_tensors,
output_tensor,
*extra_args,
workspace_tensor,
grid=self.grid,
**warmup_arg,
stream=stream,
benchmark_run=True,
)
return run_with_workspace
if isinstance(
getattr(mod, self.kernel_name),
torch._inductor.runtime.triton_heuristics.DebugAutotuner,
):
return functools.partial(
run_method,
*input_tensors,
output_tensor,
*extra_args,
grid=self.grid,
**warmup_arg,
stream=stream,
)
else:
return functools.partial(
run_method,
*input_tensors,
output_tensor,
*extra_args,
grid=self.grid,
**warmup_arg,
stream=stream,
benchmark_run=True,
)
def precompile(self):
mod = PyCodeCache.load_by_key_path(self.module_cache_key, self.module_path)
getattr(mod, self.kernel_name).precompile()
def __str__(self) -> str:
return f"{self.kernel_name=}, {self.module_path=}, {self.module_cache_key=}"
class TritonGPUBenchmarkRequest(GPUDeviceBenchmarkMixin, TritonBenchmarkRequest):
pass
class TritonCPUBenchmarkRequest(CPUDeviceBenchmarkMixin, TritonBenchmarkRequest):
pass
class CUDABenchmarkRequest(GPUDeviceBenchmarkMixin, BenchmarkRequest):
# Important: Instances of this class have to be serializable
# across process boundaries. Do not put CUDA Tensors in here!
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
source_code: str,
) -> None:
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.source_code = source_code
self.workspace_size: int = 0
self.workspace: Optional[torch.Tensor] = None
self.DLL: Optional[DLLWrapper] = None
self._workspace_size_updated = False
self.hash_key: str = ""
self.source_file: str = ""
self.hash_key, self.source_file = CUDACodeCache.write(self.source_code, "so")
def precompile(self):
# Prepopulate CUDACodeCache
# may happen in separate Threadpool
log.debug("Precompiling %s", self)
CUDACodeCache.compile(self.source_code, "so")
log.debug("Done precompiling %s", self)
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
self.ensure_dll_loaded()
self.update_workspace_size()
args = [
c_void_p(tensor.data_ptr())
for tensor in list(input_tensors) + [output_tensor]
]
log.debug(
"make_run_fn: self.kernel_name=%s, self.source_file=%s, self.hash_key=%s, self.DLL=%s, args=%s, self.extra_args=%s",
self.kernel_name,
self.source_file,
self.hash_key,
self.DLL,
args,
self.extra_args,
)
stream_ptr = c_void_p(torch.cuda.current_stream().cuda_stream)
run_method = getattr(self.DLL, self.kernel_name)
workspace_ptr = c_void_p(0)
if self.workspace_size > 0:
self.workspace = torch.zeros(
(self.workspace_size + 7) // 8,
dtype=torch.float64,
device=output_tensor.device,
)
workspace_ptr = c_void_p(self.workspace.data_ptr())
# Generate partial function.
return functools.partial(
run_method,
*args,
*self.extra_args,
None, # null workspace size ptr
workspace_ptr, # set workspace ptr,
stream_ptr,
)
def update_workspace_size(self) -> None:
if self._workspace_size_updated:
return
self.ensure_dll_loaded()
unique_input_count = len({meta.name for meta in self.input_tensor_meta})
args = [c_void_p(None) for _ in range(unique_input_count + 1)]
stream_ptr = c_void_p(torch.cuda.current_stream().cuda_stream)
run_method = getattr(self.DLL, self.kernel_name)
# Retrieve workspace_size and initialize workspace.
c_workspace_size = c_size_t()
run_method(
*args, # input ptrs and output ptrs
*self.extra_args,
byref(
c_workspace_size
), # set workspace size ptr to retrieve workspace size
None, # null workspace ptr
stream_ptr,
)
torch.cuda.synchronize() # shake out any CUDA errors
self.workspace_size = c_workspace_size.value
log.debug(
"update_workspace_size called: new workspace size=%d, self.kernel_name=%s, self.source_file=%s, self.hash_key=%s, self.DLL=%s, args=%s, self.extra_args=%s", # noqa: B950
self.workspace_size,
self.kernel_name,
self.source_file,
self.hash_key,
self.DLL,
args,
self.extra_args,
)
self._workspace_size_updated = True
def ensure_dll_loaded(self):
if self.DLL is None:
self.DLL, self.hash_key, self.source_file = CUDACodeCache.load(
self.source_code, "so"
)
def cleanup_run_fn(self) -> None:
if self.DLL is not None:
self.DLL.close()
self.workspace = None
def __str__(self) -> str:
return f"{self.kernel_name=}, {self.source_file=}, {self.hash_key=}"
class CppBenchmarkRequest(CPUDeviceBenchmarkMixin, BenchmarkRequest):
# Important: Instances of this class have to be serializable
# across process boundaries. Do not put Tensors in here!
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
extra_args: Iterable[Any],
source_code: str,
) -> None:
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.source_code = source_code
self.hash_key = get_hash(source_code)
self.DLL: Optional[Union[CDLL, ModuleType]] = None
def precompile(self):
# Prepopulate CppCodeCache
# may happen in separate Threadpool
log.debug("Precompiling %s", self)
CppCodeCache.load(self.source_code, device_type="cpu")
log.debug("Done precompiling %s", self)
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
# TODO(jgong5): use CppPythonBindingsCodeCache for better binding perf
self.DLL = CppCodeCache.load(self.source_code, device_type="cpu")
args = [tensor.data_ptr() for tensor in list(input_tensors) + [output_tensor]]
log.debug(
"make_run_fn: self.kernel_name=%s, self.DLL=%s, args=%s, self.extra_args=%s",
self.kernel_name,
self.DLL,
args,
self.extra_args,
)
run_method = getattr(self.DLL, self.kernel_name)
# Assume only size with type ctypes.c_ulonglong in extra_args
assert all(isinstance(arg, ctypes.c_ulonglong) for arg in self.extra_args)
run_method.argtypes = [ctypes.c_ulonglong] * (
len(args) + len(list(self.extra_args))
)
# Generate partial function.
return functools.partial(
run_method,
*args,
*self.extra_args,
)
def cleanup_run_fn(self) -> None:
if self.DLL is not None:
"""
Check close attr due to it crash on Windows.
"""
if hasattr(self.DLL, "close"):
self.DLL.close()
def __str__(self) -> str:
return f"{self.kernel_name=}"
def benchmark_in_sub_process(
choices: List[TritonTemplateCaller],
) -> Dict[TritonTemplateCaller, float]:
"""
Do benchmarking in a subprocess and return the perf number (latency).
"""
return tuning_pool.benchmark(choices)
|