1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
from __future__ import annotations
import typing
from typing import Any, Dict, List, Type, TYPE_CHECKING
import sympy
from . import config
from .codecache import write_text
from .metrics import get_metric_table, is_metric_table_enabled
from .runtime.hints import DeviceProperties, ReductionHint
from .scheduler import BaseSchedulerNode, Scheduler, WhyNoFuse
from .virtualized import V
if TYPE_CHECKING:
import torch
from .codegen.simd_kernel_features import SIMDKernelFeatures
from .codegen.triton import TritonKernel
class Sortable(typing.Protocol):
"""Anything that can be used as a list.sort() key (int/tuple/etc)"""
def __lt__(self, other: typing.Self) -> bool:
...
class InductorChoices:
"""
This class contains a collection of default heuristics that effect performance of our generated
code. We try to not put correctness requirements in this file.
You can override the choices made here by doing:
class MyHeuristics(InductorChoices):
...
torch._inductor.virtualized.V.set_choices_handler(MyHeuristics())
"""
def triton_kernel_kwargs(
self,
kernel_cls: Type[TritonKernel],
features: SIMDKernelFeatures,
groups: List[sympy.Expr],
kernel_kwargs: Dict[str, Any],
) -> Dict[str, Any]:
"""Hook to change the kwargs passed to TritonKernel, used to apply fixed configurations"""
return kernel_kwargs
@staticmethod
def should_use_cooperative_reduction(features: SIMDKernelFeatures) -> bool:
"""Heuristic to decide if a cooperative reduction should be used."""
if config.triton.force_cooperative_reductions:
return True
if (
not config.triton.cooperative_reductions
or V.graph.get_current_device_or_throw().type == "cpu"
):
return False
xhint = V.graph.sizevars.size_hint(features.numel, fallback=2)
if xhint <= 8:
threshold = 32768 * xhint
elif xhint <= 16:
threshold = 2097152
else:
return False
# TODO(jansel): should this default on for dynamic shapes?
return V.graph.sizevars.statically_known_geq(
features.reduction_numel, threshold
)
@staticmethod
def should_use_persistent_reduction(
features: SIMDKernelFeatures, cooperative_reduction: bool
) -> bool:
"""
Heuristic to decide if a persistent reduction should be used.
"""
if not config.triton.persistent_reductions:
return False
threshold = {
ReductionHint.INNER: 1024,
}.get(features.get_reduction_hint(), 64)
if cooperative_reduction:
# The RSPLIT of cooperative reductions means each thread block is operating on fewer elements
try:
threshold *= 32 // min(V.graph.sizevars.size_hint(features.numel), 32)
except ValueError:
pass # unbacked symint
# If multi_kernel is enabled, we do more aggressive persistent reduction.
# This may result in some persistent reductions slower than the
# corresponding non-persistent reductions. MultiKernel will do benchmarking
# to pick the faster one.
if config.triton.multi_kernel:
threshold *= 16
return V.graph.sizevars.statically_known_leq(features.reduction_numel, threshold) # type: ignore[arg-types]
@staticmethod
def want_no_x_dim(features: SIMDKernelFeatures) -> bool:
"""
Heuristic to decide if we should drop the X dimension from a persistent reduction kernel.
So the [XBLOCK, RBLOCK] block becomes a [RBLOCK] block and XBLOCK is forced to be always 1.
Strangely this is faster than a [1, RBLOCK] block in some cases.
"""
return (
features.get_reduction_hint() == ReductionHint.INNER
and V.graph.sizevars.statically_known_geq(features.reduction_numel, 256)
)
@staticmethod
def reduction_split_factor(
device: torch.device,
reduction_numel_hint: int,
numel_hint: int,
inner_reduction: bool,
) -> int:
"""Heuristic to decide the RSPLIT used for split reductions.
When a reduction has a small number of outputs there is not enough parallelism,
so we will do the reduction in two phases."""
props = DeviceProperties.create(device)
num_sm = props.multi_processor_count
min_elements_per_thread = 32
max_elements_per_thread = 512
threads_per_sm = 2048
min_elements_per_device = min_elements_per_thread * num_sm * threads_per_sm
max_elements_per_device = max_elements_per_thread * num_sm * threads_per_sm
num_warps = 8
num_threads = 32 * num_warps
if inner_reduction:
# do heuristics that's close to eager mode for split inner reduction
# we leak reduction autotune configs here, and will need to refactor to avoid this later
if numel_hint >= 2 * num_sm: # don't split if there are enough outputs
return 1
if reduction_numel_hint <= 8192:
return 1
if reduction_numel_hint * numel_hint <= min_elements_per_device:
split_size = min_elements_per_thread
elif reduction_numel_hint * numel_hint < max_elements_per_device:
target_blocks = num_sm * threads_per_sm // (2 * num_threads)
blocks_per_output = (target_blocks + numel_hint - 1) // numel_hint
tmp_split_size = (
reduction_numel_hint + num_threads * blocks_per_output - 1
) // (num_threads * blocks_per_output)
divisors = sympy.divisors(reduction_numel_hint)
closest = min(divisors, key=lambda x: abs(x - tmp_split_size))
if abs(closest - tmp_split_size) < 30:
# prefer even splits, but never smalle than min_elements_per_thread
split_size = max(closest, min_elements_per_thread)
else:
split_size = tmp_split_size
else:
divisors = sympy.divisors(reduction_numel_hint)
closest = min(divisors, key=lambda x: abs(x - max_elements_per_thread))
if abs(closest - max_elements_per_thread) < 50:
# prefer even splits
split_size = closest
else:
split_size = max_elements_per_thread
return (reduction_numel_hint + split_size * num_threads - 1) // (
split_size * num_threads
)
else:
# TODO the best heuristic currently has XBLOCK (corresponding to numel_hint) 128
# extend to even smaller number of outputs
rvals_per_thread = 4 # comes from heuristics, refactor to not leak here
xvals_per_block = 128
xblocks = (numel_hint + xvals_per_block - 1) // xvals_per_block
if reduction_numel_hint * numel_hint < min_elements_per_device:
split_size = min_elements_per_thread
elif reduction_numel_hint * numel_hint < max_elements_per_device:
target_blocks = num_sm * threads_per_sm // (num_threads)
target_blocks = (target_blocks + xblocks - 1) // xblocks
tmp_split_size = (
reduction_numel_hint + rvals_per_thread * target_blocks - 1
) // (rvals_per_thread * target_blocks)
divisors = sympy.divisors(reduction_numel_hint)
closest = min(divisors, key=lambda x: abs(x - tmp_split_size))
if abs(tmp_split_size - closest) < 20:
split_size = max(closest, min_elements_per_thread)
else:
split_size = tmp_split_size
else:
divisors = sympy.divisors(reduction_numel_hint)
closest = min(divisors, key=lambda x: abs(x - max_elements_per_thread))
if abs(closest - max_elements_per_thread) < 50:
# prefer even splits
split_size = closest
else:
split_size = max_elements_per_thread
return (reduction_numel_hint + rvals_per_thread * split_size - 1) // (
rvals_per_thread * split_size
)
@staticmethod
def can_fuse(
scheduler: Scheduler,
node1: BaseSchedulerNode,
node2: BaseSchedulerNode,
shared_data_score: int,
) -> bool:
"""
Heuristics to prevent fusion applied to both horizontal and vertical fusions. Heuristics here should not
be needed for correctness and tweaking them may yield additional performance.
See also some related heuristics that can be changed via config:
- config.triton.tiling_prevents_pointwise_fusion
- config.triton.tiling_prevents_reduction_fusion
- config.aggressive_fusion (will cause this function to be called more times)
"""
if shared_data_score == 0 and (
not config.aggressive_fusion or node1.is_reduction() or node2.is_reduction()
):
if is_metric_table_enabled("fusion_failure_due_to_indexing_mismatch"):
common_buf_names = (
node1.read_writes.buffer_names() & node2.read_writes.buffer_names()
)
if len(common_buf_names) > 0:
get_metric_table("fusion_failure_due_to_indexing_mismatch").add_row(
lambda: {
"pre_grad_graph_id": V.graph.graph_id,
"post_grad_graph_id": V.graph.post_grad_graph_id,
"node1_name": node1.get_name(),
"node2_name": node2.get_name(),
"node1_debug_str": write_text(node1.debug_str()),
"node2_debug_str": write_text(node2.debug_str()),
"common_buffer_names": list(common_buf_names),
"failure_reason": scheduler.decide_fusion_fail_reason(
node1, node2, common_buf_names
),
}
)
WhyNoFuse(node1, node2)("no shared data due to indexing mismatch")
return False
WhyNoFuse(node1, node2)("no shared data")
return False # heuristic not needed for correctness
if (
not node1.is_foreach()
and not node2.is_foreach()
and len(node1.get_nodes()) + len(node2.get_nodes()) > config.max_fusion_size
):
WhyNoFuse(node1, node2)("exceeds max fusion")
return False # heuristic not needed for correctness
if scheduler.can_fusion_increase_peak_memory(node1, node2):
WhyNoFuse(node1, node2)("Fusion will increase peak memory")
return False
return True
@staticmethod
def can_fuse_vertical(
scheduler: Scheduler,
node1: BaseSchedulerNode,
node2: BaseSchedulerNode,
shared_data_score: int,
) -> bool:
"""Hook for heuristics to prevent vertical (producer/consumer) fusions"""
return True
@staticmethod
def can_fuse_horizontal(
scheduler: Scheduler,
node1: BaseSchedulerNode,
node2: BaseSchedulerNode,
shared_data_score: int,
) -> bool:
"""Hook for heuristics to prevent horizontal (consumer/consumer) fusions"""
if shared_data_score < config.score_fusion_memory_threshold:
WhyNoFuse(node1, node2)("score_fusion_memory_threshold")
return False
if scheduler.are_long_distant_nodes(node1, node2):
WhyNoFuse(node1, node2)(
"Nodes are too far away. Fusing them may increase peak memory."
)
return False
return True
@staticmethod
def score_fusion(
scheduler: Scheduler,
node1: BaseSchedulerNode,
node2: BaseSchedulerNode,
) -> Sortable:
"""
Assign a score (higher comes first) to the fusion of node1 and node2.
When different fusions conflict with each other, this is the way we
decide what order to run them in.
Our current score is based on:
- The type of fusion (template/reduction/etc)
- Estimate of the saved memory operations
- Fusions closer together in original graph order
"""
memory_score = scheduler.score_fusion_memory(node1, node2)
proximity_score = -max(
abs(node1.min_order - node2.max_order),
abs(node2.min_order - node1.max_order),
)
return (
node1.is_template() == config.epilogue_fusion_first and memory_score > 0,
node1.is_reduction() == node2.is_reduction() and memory_score > 0,
memory_score,
proximity_score,
)
|