1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
|
# mypy: allow-untyped-defs
import contextlib
import dataclasses
import enum
import functools
import itertools
import logging
import math
import operator
import re
from enum import auto, Enum
from itertools import chain
from typing import (
Any,
Callable,
ClassVar,
Dict,
List,
NamedTuple,
Optional,
Tuple,
Union,
)
import sympy
import torch
import torch.fx
from torch._inductor.dtype_propagation import DtypePropagationOpsHandler
from torch._prims_common import ELEMENTWISE_TYPE_PROMOTION_KIND
from torch.utils import _pytree as pytree
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.numbers import int_oo
from torch.utils._sympy.printers import PythonPrinter as _PythonPrinter
from torch.utils._sympy.symbol import free_symbol_is_type, symbol_is_type, SymT
from torch.utils._sympy.value_ranges import bound_sympy, ValueRangeAnalysis, ValueRanges
from .. import config, metrics
from ..utils import (
boolean_ops,
DeferredLineBase,
generate_assert,
IndentedBuffer,
ir_dataclass,
sympy_dot,
sympy_subs,
unique,
)
from ..virtualized import ops, OpsHandler, OpsValue, ReductionType, StoreMode, V
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
log = logging.getLogger(__name__)
def data_type_logger(msg):
if schedule_log.isEnabledFor(logging.DEBUG):
schedule_log.debug("Data type propagation: %s", msg)
class WorkspaceZeroMode(enum.Enum):
UNINITIALIZED = 0
ZERO_ON_CALL = 1 # kernel may leave workspace dirty
ZERO_PER_GRAPH = 2 # must be re-zeroed by kernel
@staticmethod
def combine(a, b):
if a == b or b == WorkspaceZeroMode.UNINITIALIZED:
return a
if a == WorkspaceZeroMode.UNINITIALIZED:
return b
raise NotImplementedError(f"WorkspaceZeroMode.combine({a!r}, {b!r})")
@staticmethod
def from_bool(zero_fill):
if zero_fill:
return WorkspaceZeroMode.ZERO_ON_CALL
return WorkspaceZeroMode.UNINITIALIZED
@ir_dataclass(frozen=True)
class WorkspaceArg:
"""A temporary buffer used for a single kernel, then discarded.
Not registered as a traditional buffer since there are no users,
so it would be dead code eliminated.
Args:
nbytes: The size of the buffer in bytes.
zero_fill: Whether the buffer should be initialized to zero.
"""
count: sympy.Expr
zero_mode: WorkspaceZeroMode
device: torch.device
outer_name: str
inner_name: str = "ws_ptr"
dtype: torch.dtype = torch.uint8
@staticmethod
def unique_name(prefix="workspace_"):
return f"{prefix}{next(V.graph.workspace_id)}"
@staticmethod
def can_join(a, b) -> bool:
return (
a.inner_name == b.inner_name and a.dtype == b.dtype and a.device == b.device
)
@staticmethod
def join(a, b):
return WorkspaceArg(
count=a.count + b.count,
zero_mode=WorkspaceZeroMode.combine(a.zero_mode, b.zero_mode),
dtype=a.dtype,
device=a.device,
inner_name=a.inner_name,
outer_name=a.outer_name,
)
@staticmethod
def maximum(a, b):
assert (
a.dtype == b.dtype and a.device == b.device and a.inner_name == b.inner_name
)
return WorkspaceArg(
count=sympy.Max(a.count, b.count),
zero_mode=WorkspaceZeroMode.combine(a.zero_mode, b.zero_mode),
dtype=a.dtype,
device=a.device,
inner_name=a.inner_name,
outer_name=a.outer_name,
)
# These methods let WorkspaceArg pretend it is a buffer to reuse allocation code
def get_device(self):
return self.device
get_device_or_error = get_device
def get_dtype(self):
return self.dtype
def get_layout(self):
from ..ir import FixedLayout
return FixedLayout(
device=self.device,
dtype=self.dtype,
size=[self.count],
stride=[1],
)
@property
def layout(self):
return self.get_layout()
get_output_spec = get_layout
maybe_get_output_spec = get_layout
maybe_get_layout = get_layout
def get_size(self):
return [self.count]
def get_stride(self):
return [1]
def get_name(self):
return self.outer_name
def get_inputs_that_alias_output(self):
return []
@dataclasses.dataclass
class TensorArg:
name: str
buffer: str
dtype: torch.dtype
offset: sympy.Expr = sympy.S.Zero # c++ only
alias_of: Optional[str] = None # halide only
@dataclasses.dataclass
class SizeArg:
name: str
expr: sympy.Expr
@property
def alias_of(self):
return None
@dataclasses.dataclass
class TMADescriptorArg:
name: str
@dataclasses.dataclass
class DeviceCodegen:
scheduling: Any
wrapper_codegen: type
cpp_wrapper_codegen: type = type(None)
KernelArgType = Union[WorkspaceArg, TensorArg, SizeArg, TMADescriptorArg]
device_codegens: Dict[str, DeviceCodegen] = {}
class DeviceOpOverrides:
def import_get_raw_stream_as(self, name):
raise NotImplementedError
def set_device(self, device_idx):
raise NotImplementedError
def synchronize(self):
raise NotImplementedError
def device_guard(self, device_idx):
raise NotImplementedError
def cpp_device_guard(self):
raise NotImplementedError
def cpp_aoti_device_guard(self):
raise NotImplementedError
def cpp_stream_guard(self):
raise NotImplementedError
def cpp_aoti_stream_guard(self):
raise NotImplementedError
def cpp_getStreamFromExternal(self):
raise NotImplementedError
def kernel_header(self):
raise NotImplementedError
def kernel_driver(self):
raise NotImplementedError
def abi_compatible_header(self):
raise NotImplementedError
def cpp_stream_type(self):
raise NotImplementedError
def aoti_get_stream(self):
raise NotImplementedError
def cpp_kernel_type(self):
raise NotImplementedError
def cpp_device_ptr(self):
raise NotImplementedError
def tma_descriptor_helpers(self):
raise NotImplementedError
device_op_overrides_dict: Dict[str, DeviceOpOverrides] = {}
# The code generated by Inductor consists of two main parts: kernel code and wrapper code.
# For any new backend looking to integrate with Inductor, customization of these two main
# parts are necessary to generate its specific code.
#
# Kernel code generation is determined by different Scheduling. Consequently, a new
# backend needs to provide a custom Scheduling for its unique kernel code generation. Currently,
# CppScheduling and TritonScheduling serve the C++/OpenMP and Triton backends, respectively.
#
# For the Wrapper, Inductor provides a PythonWrapperCodegen class to generate the Python wrapper code
# that bridges kernels. This allows out-of-tree backends to inherit from PythonWrapperCodegen,
# and override specific member functions to create backend-specific Python wrapper code.
#
# Other classes, such as CppKernel and TritonKernel, used for code generation, typically form part
# of the logic for either Scheduling or PythonWrapperCodegen. So the Scheduling and PythonWrapperCodegen interfaces
# provide flexibility to the backend. A backend can choose to implement these classes from scratch,
# or reuse them by extending and overriding as necessary. And Inductor provides the registration API,
# register_backend_for_device, to equip a new backend at runtime.
#
# Intel has developed a new backend on top of Triton to support Intel GPUs, leveraging these interfaces.
# This backend can be used as a reference:
# https://github.com/intel/intel-extension-for-pytorch/blob/5dcc9d57e5422cf295e1a1ee97896d6b6a554a85/intel_extension_for_pytorch/_inductor/__init__.py#L9
def register_backend_for_device(
device: str,
device_scheduling: Any,
device_wrapper_codegen: type,
device_cpp_wrapper_codegen: type = type(None),
):
device_codegens[device] = DeviceCodegen(
device_scheduling, device_wrapper_codegen, device_cpp_wrapper_codegen
)
class BackendFeature(Enum):
FOREACH = auto()
BUCKETIZE = auto()
INPLACE_BUFFERS = auto()
MASKED_SCATTER_WITH_INDEX = auto()
SCAN = auto()
SORT = auto()
TUPLE_REDUCTION = auto()
PREFER_STORE_LOOP_ORDER = auto()
TRITON_TEMPLATES = auto()
REDUCE_TO_SINGLE_ELEMENT = auto()
def get_backend_features(device: Union[torch.device, str, None]):
if device is None:
return {}
init_backend_registration()
if isinstance(device, torch.device):
device_type = device.type
else:
assert isinstance(device, str)
device_type = device
device = torch.device(device_type)
scheduling = get_scheduling_for_device(device_type)
return scheduling(None).get_backend_features(device)
def has_backend_feature(device, feature):
"""See also V.graph.has_feature"""
assert isinstance(feature, BackendFeature)
return feature in get_backend_features(device)
def get_scheduling_for_device(device: str):
return device_codegens[device].scheduling if device in device_codegens else None
def get_wrapper_codegen_for_device(device: str, cpp_wrapper: bool = False):
if device in device_codegens:
wrapper_codegen_obj: DeviceCodegen = device_codegens[device]
return (
wrapper_codegen_obj.cpp_wrapper_codegen
if cpp_wrapper
else wrapper_codegen_obj.wrapper_codegen
)
return None
@functools.lru_cache(None)
def init_backend_registration():
from .cpp import CppScheduling
from .cpp_wrapper_cpu import CppWrapperCpu
from .cpp_wrapper_cpu_array_ref import CppWrapperCpuArrayRef
from .cpp_wrapper_gpu import CppWrapperGpu
from .cuda_combined_scheduling import CUDACombinedScheduling
from .halide import HalideScheduling
from .triton import TritonScheduling
from .wrapper import PythonWrapperCodegen
if get_scheduling_for_device("cpu") is None:
cpu_backends = {
"cpp": CppScheduling,
"halide": HalideScheduling,
"triton": TritonScheduling,
}
register_backend_for_device(
"cpu",
lambda *args, **kwargs: cpu_backends[config.cpu_backend](*args, **kwargs),
PythonWrapperCodegen,
CppWrapperCpuArrayRef
if config.aot_inductor.allow_stack_allocation
else CppWrapperCpu,
)
if get_scheduling_for_device("cuda") is None:
# CUDACombinedScheduling combines Triton and CUDA C++ scheduling for CUDA devices via delegation
cuda_backends = {"triton": CUDACombinedScheduling, "halide": HalideScheduling}
register_backend_for_device(
"cuda",
lambda *args, **kwargs: cuda_backends[config.cuda_backend](*args, **kwargs),
PythonWrapperCodegen,
CppWrapperGpu,
)
if get_scheduling_for_device("xpu") is None:
register_backend_for_device(
"xpu",
TritonScheduling,
PythonWrapperCodegen,
CppWrapperGpu,
)
private_backend = torch._C._get_privateuse1_backend_name()
if (
private_backend != "privateuseone"
and get_scheduling_for_device(private_backend) is None
):
from torch.utils.backend_registration import _get_custom_mod_func
try:
device_scheduling = _get_custom_mod_func("Scheduling")
wrapper_codegen = _get_custom_mod_func("PythonWrapperCodegen")
cpp_wrapper_codegen = _get_custom_mod_func("CppWrapperCodegen")
if device_scheduling and wrapper_codegen and cpp_wrapper_codegen:
register_backend_for_device(
private_backend,
device_scheduling,
wrapper_codegen,
cpp_wrapper_codegen,
)
except RuntimeError:
pass
def index_prevent_reordering(index: List[sympy.Expr], index_vars, sizes):
from ..ir import FlexibleLayout
# added contiguous index prevents reordering
return [*index, sympy_dot(index_vars, FlexibleLayout.contiguous_strides(sizes))]
def register_device_op_overrides(device: str, device_op_overrides: DeviceOpOverrides):
device_op_overrides_dict[device] = device_op_overrides
def get_device_op_overrides(device: str):
assert isinstance(device, str)
if not device_op_overrides_dict.keys():
from . import cpu_device_op_overrides # noqa: F401
from .cuda import device_op_overrides # noqa: F401
from .xpu import device_op_overrides as xpu_op_overrides # noqa: F401
if device in device_op_overrides_dict.keys():
return device_op_overrides_dict[device]
DTYPE_TO_COMPUTATION_DTYPE = {
torch.bfloat16: torch.float,
torch.float16: torch.float,
**{
dtype: dtype
for dtype in [
torch.bool,
torch.float32,
torch.float64,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.uint8,
torch.uint16,
torch.uint32,
torch.uint64,
]
},
}
def deduce_output_dtype_by_name(
op_name: str,
*args,
**kwargs,
) -> Optional[torch.dtype]:
"""
Given op name and a list of input dtypes, deduce the output dtype
"""
if op_name in boolean_ops():
return torch.bool
elif op_name in (
"to_dtype",
"index_expr",
):
return kwargs["dtype"] if "dtype" in kwargs else args[-1]
elif op_name in (
"rand",
"randn",
):
return torch.float
elif op_name in (
"get_index",
"randint64",
"load_seed",
):
return torch.int64
elif op_name == "reduction":
return kwargs["dtype"] if "dtype" in kwargs else args[1]
elif op_name == "constant":
dtype = kwargs["dtype"] if "dtype" in kwargs else args[-1]
return DTYPE_TO_COMPUTATION_DTYPE[dtype] # type: ignore[index]
elif op_name in (
"load",
"store",
"store_reduction",
):
buf_name = args[1]
return V.graph.get_dtype(buf_name) # type: ignore[arg-type]
elif op_name == "to_dtype_bitcast":
return kwargs["dtype"] if "dtype" in kwargs else args[-2]
return None
class DataTypePropagation:
def __init__(self, body) -> None:
self.body = body
self.graphs: Dict[Union[Callable[..., Any], str], Any] = {
"root": body.root_block.graph
}
for k, v in body.subblocks.items():
self.graphs[k] = v.graph
def deduce_node_dtype_by_inputs(self, node: torch.fx.Node):
inputs = node.all_input_nodes
input_nodes = [
n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder"
]
if len(input_nodes) == 0:
return None
all_input_nodes_propagated = all(
OptimizationContext.key in n.meta
and n.meta[OptimizationContext.key].dtype is not None
for n in input_nodes
)
if not all_input_nodes_propagated:
return None
return functools.reduce(
torch.promote_types,
[n.meta[OptimizationContext.key].dtype for n in input_nodes],
)
def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node):
sub_graph = self.graphs[node.target]
dtype = self.propagate_graph(sub_graph)
assert dtype
return dtype
def deduce_node_dtype(self, node: torch.fx.Node):
if node.op == "placeholder":
return None
if node.target == "output" and len(node.args) != 1:
# we can infer output node if it only have 1 arg
return None
if node.target == operator.getitem:
return self.deduce_node_dtype(node.args[0]) # type: ignore[arg-type]
assert isinstance(node.target, str)
if node.target.startswith("masked_subblock"):
return self.deduce_node_dtype_by_subgraph(node)
if (
output_dtype := deduce_output_dtype_by_name(
node.target,
*node.args,
**node.kwargs,
)
) is not None:
return output_dtype
return self.deduce_node_dtype_by_inputs(node)
def propagate_graph(self, graph: torch.fx.Graph):
assert graph.nodes
graph_dtype = None
# For masked_subblock, we use output's dtype to represent
# the dtype of this subgraph. For other cases, graph_dtype
# might be None
for node in graph.nodes:
if OptimizationContext.key in node.meta:
opt_ctx = node.meta[OptimizationContext.key]
else:
opt_ctx = OptimizationContext()
opt_ctx.dtype = self.deduce_node_dtype(node)
node.meta[OptimizationContext.key] = opt_ctx
if node.target == "output":
graph_dtype = opt_ctx.dtype
return graph_dtype
def propagate(self):
self.propagate_graph(self.graphs["root"])
@classmethod
def propagate_loopbody(cls, body):
return cls(body).propagate()
@classmethod
def propagate_scheduler_node(cls, node):
from ..loop_body import LoopBody
from ..scheduler import SchedulerNode
assert isinstance(node, SchedulerNode)
assert isinstance(node._body, LoopBody)
DataTypePropagation.propagate_loopbody(node._body)
class PythonPrinter(_PythonPrinter):
def doprint(self, expr, *, simplify: bool = True, p=True):
# TODO: why are people passing strings to the printer here :think:
if simplify and isinstance(expr, sympy.Expr) and hasattr(V.graph, "sizevars"):
expr = V.graph.sizevars.simplify(expr)
return super().doprint(expr)
class OpOverrides:
def __init__(self, parent):
super().__init__()
self._parent = parent
@staticmethod
def paren(string: str) -> str:
def all_in_parens(string: str) -> bool:
if string[0] != "(" or len(string) < 2:
return False
count = 1
for i, char in enumerate(string[1:]):
if char == "(":
count += 1
elif char == ")":
count -= 1
if count == 0 and i != len(string) - 2:
return False
assert count == 0
return True
if (
isinstance(string, CSEVariable)
or re.match(r"^[a-z0-9_.]+$", string, re.IGNORECASE)
or re.match(r"^\([^)]*\)$", string, re.IGNORECASE)
or string == ""
):
return string
# don't put extra parens for strings that are already wrapped in parens
if all_in_parens(string):
return string
return f"({string})"
def __getattr__(self, item):
return getattr(self._parent, item)
@staticmethod
def identity(value):
# used to trigger cse
return value
@staticmethod
def constant(value, dtype):
return repr(value)
@staticmethod
def reciprocal(x):
return ops.truediv(ops.constant(1, torch.int32), x)
@staticmethod
def square(x):
return ops.mul(x, x)
@staticmethod
def erfc(x):
return ops.sub(ops.constant(1, torch.float32), ops.erf(x))
@staticmethod
def erfcx(x):
return ops.mul(ops.exp(ops.square(x)), ops.erfc(x))
@staticmethod
def expm1(x):
return ops.sub(ops.exp(x), ops.constant(1, torch.float32))
@staticmethod
def log10(x):
return ops.mul(ops.log(x), ops.constant(1 / math.log(10), torch.float32))
@staticmethod
def log2(x):
return ops.mul(ops.log(x), ops.constant(1 / math.log(2), torch.float32))
@staticmethod
def exp2(x):
return ops.exp(ops.mul(x, ops.constant(math.log(2), torch.float32)))
@staticmethod
def log1p(x):
return ops.log(ops.add(x, ops.constant(1, torch.int32)))
@staticmethod
def sigmoid(x):
one = ops.constant(1, torch.int32)
return ops.truediv(one, ops.add(one, ops.exp(ops.neg(x))))
@staticmethod
def libdevice_sigmoid(x):
one = ops.constant(1, torch.int32)
return ops.truediv(one, ops.add(one, ops.libdevice_exp(ops.neg(x))))
@staticmethod
def relu(x):
return ops.maximum(x, ops.constant(0, torch.int32))
@staticmethod
def libdevice_abs(x):
return ops.abs(x)
@staticmethod
def libdevice_sqrt(x):
return ops.sqrt(x)
@staticmethod
def libdevice_cos(x):
return ops.cos(x)
@staticmethod
def libdevice_sin(x):
return ops.sin(x)
@staticmethod
def libdevice_log(x):
return ops.log(x)
@staticmethod
def libdevice_exp(x):
return ops.exp(x)
@staticmethod
def bitwise_not(x):
return f"~{OpOverrides.paren(x)}"
@staticmethod
def logical_not(a):
return f"{OpOverrides.paren(a)} == 0"
@staticmethod
def bitwise_and(x, y):
return f"{OpOverrides.paren(x)} & {OpOverrides.paren(y)}"
@staticmethod
def bitwise_or(x, y):
return f"{OpOverrides.paren(x)} | {OpOverrides.paren(y)}"
@staticmethod
def bitwise_xor(x, y):
return f"{OpOverrides.paren(x)} ^ {OpOverrides.paren(y)}"
@staticmethod
def bitwise_left_shift(x, y):
return f"{OpOverrides.paren(x)} << {OpOverrides.paren(y)}"
@staticmethod
def bitwise_right_shift(x, y):
return f"{OpOverrides.paren(x)} >> {OpOverrides.paren(y)}"
@staticmethod
def remainder(a, b):
r = ops.mod(a, b)
cond = ops.and_(
ops.ne(r, ops.constant(0, torch.int32)),
ops.ne(ops.signbit(r), ops.signbit(b)),
)
return ops.where(cond, ops.add(r, b), r)
@staticmethod
def fma(x, y, z):
# for backends that don't override this (halide)
return ops.add(ops.mul(x, y), z)
@staticmethod
def trunc_to_int(a, dtype):
return ops.to_dtype(ops.trunc(a), dtype)
@staticmethod
def floor_to_int(a, dtype):
return ops.to_dtype(ops.floor(a), dtype)
@staticmethod
def ceil_to_int(a, dtype):
return ops.to_dtype(ops.ceil(a), dtype)
@staticmethod
def round_to_int(a, dtype):
return ops.to_dtype(ops.round(a), dtype)
@staticmethod
def int_truediv(a, b):
# TODO: this is wrong
# TODO: an easy bandaid is to generate runtime asserts that it's
# <= 2**53, which is when this equation is correct
return ops.truediv(a, b)
@staticmethod
def load_seed(name, offset):
return ops.load(name, sympy.Integer(offset))
@classmethod
def _initialize_pointwise_overrides(cls, target):
assert target in {"triton", "cpp", "cppvec"}, target
for funcname, data in pointwise_overrides_data.items():
impl = getattr(data, target)
if impl is None:
continue
setattr(cls, funcname, staticmethod(impl))
@dataclasses.dataclass
class OverridesData:
name: str
cpp: Callable[..., str]
# None when not impl in libdevice/triton
triton: Optional[Callable[..., str]] = None
# None when not impl in aten/.../vec
cppvec: Optional[Callable[..., str]] = None
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND = (
ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
# NB: if you add a new special function, don't forget to update
# torch._inductor.ops_handler too
pointwise_overrides_data: Dict[str, OverridesData] = dict(
airy_ai=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"airy_ai_forward({x})",
name="special_airy_ai",
),
bessel_j0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_j0_forward({x})",
triton=lambda x: f"libdevice.j0({x})",
name="special_bessel_j0",
),
bessel_j1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_j1_forward({x})",
triton=lambda x: f"libdevice.j1({x})",
name="special_bessel_j1",
),
bessel_y0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_y0_forward({x})",
triton=lambda x: f"libdevice.y0({x})",
name="special_bessel_y0",
),
bessel_y1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_y1_forward({x})",
triton=lambda x: f"libdevice.y1({x})",
name="special_bessel_y1",
),
digamma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_digamma({x})",
cppvec=lambda x: f"{x}.digamma()",
name="digamma",
),
# no cpp nor triton implementation for entr, it is defined as decomposition
# erf, erfc
erfcx=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_erfcx({x})",
triton=lambda x: f"libdevice.erfcx({x})",
name="special_erfcx",
),
fma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y, z: f"std::fma({x}, {y}, {z})",
cppvec=lambda x, y, z: f"fmadd({x}, {y}, {z})",
triton=lambda x, y, z: f"libdevice.fma({x}, {y}, {z})",
name="fma",
),
# erfinv, exp2, expit, gammaln
igamma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igamma({x}, {y})",
name="igamma",
),
igammac=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igammac({x}, {y})",
name="igammac",
),
gammainc=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igamma({x}, {y})",
name="special_gammainc",
),
gammaincc=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igammac({x}, {y})",
name="special_gammaincc",
),
i0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i0({x})",
triton=lambda x: f"libdevice.cyl_bessel_i0({x})",
cppvec=lambda x: f"{x}.i0()",
name="i0",
),
i0e=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i0e({x})",
cppvec=lambda x: f"{x}.i0e()",
name="special_i0e",
),
i1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i1({x})",
triton=lambda x: f"libdevice.cyl_bessel_i1({x})",
name="special_i1",
),
i1e=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i1e({x})",
name="special_i1e",
),
log_ndtr=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_log_ndtr({x})",
name="special_log_ndtr",
),
# logit
modified_bessel_i0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_i0_forward({x})",
triton=lambda x: f"libdevice.cyl_bessel_i0({x})",
name="special_modified_bessel_i0",
),
modified_bessel_i1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_i1_forward({x})",
triton=lambda x: f"libdevice.cyl_bessel_i1({x})",
name="special_modified_bessel_i1",
),
modified_bessel_k0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_k0_forward({x})",
name="special_modified_bessel_k0",
),
modified_bessel_k1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_k1_forward({x})",
name="special_modified_bessel_k1",
),
# multigamma
ndtr=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_ndtr({x})",
name="special_ndtr",
),
ndtri=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_ndtri({x})",
name="special_ndtri",
),
polygamma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_polygamma({y}, {x})",
name="polygamma",
),
# psi - alias to digamma
# round
scaled_modified_bessel_k0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"scaled_modified_bessel_k0_forward({x})",
name="special_scaled_modified_bessel_k0",
),
scaled_modified_bessel_k1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"scaled_modified_bessel_k1_forward({x})",
name="special_scaled_modified_bessel_k1",
),
# sinc
spherical_bessel_j0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"spherical_bessel_j0_forward({x})",
name="special_spherical_bessel_j0",
),
zeta=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"zeta({x}, {y})",
name="special_zeta",
),
chebyshev_polynomial_t=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_t_forward({x}, {y})",
name="special_chebyshev_polynomial_t",
),
chebyshev_polynomial_u=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_u_forward({x}, {y})",
name="special_chebyshev_polynomial_u",
),
chebyshev_polynomial_v=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_v_forward({x}, {y})",
name="special_chebyshev_polynomial_v",
),
chebyshev_polynomial_w=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_w_forward({x}, {y})",
name="special_chebyshev_polynomial_w",
),
legendre_polynomial_p=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"legendre_polynomial_p_forward({x}, {y})",
name="special_legendre_polynomial_p",
),
shifted_chebyshev_polynomial_t=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_t_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_t",
),
shifted_chebyshev_polynomial_u=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_u_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_u",
),
shifted_chebyshev_polynomial_v=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_v_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_v",
),
shifted_chebyshev_polynomial_w=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_w_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_w",
),
hermite_polynomial_h=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"hermite_polynomial_h_forward({x}, {y})",
name="special_hermite_polynomial_h",
),
hermite_polynomial_he=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"hermite_polynomial_he_forward({x}, {y})",
name="special_hermite_polynomial_he",
),
laguerre_polynomial_l=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"laguerre_polynomial_l_forward({x}, {y})",
name="special_laguerre_polynomial_l",
),
)
# Use mypy to check protocol implemented correctly
def _typecheck_OpOverrides(h: OpOverrides) -> OpsHandler[str]:
return h
class DeferredLine(DeferredLineBase):
"""A line that can be 'unwritten' by adding name to V.graph.removed_buffers"""
def __init__(self, name, line):
super().__init__(line)
self.name = name
assert not isinstance(line, DeferredLineBase)
def __call__(self):
if all(
self.name not in x
for x in (
V.graph.removed_buffers,
V.kernel.removed_buffers,
V.graph.inplaced_to_remove,
V.kernel.inplaced_to_remove,
)
):
return self.line
return None
def _new_line(self, line):
return DeferredLine(self.name, line)
class BracesBuffer(IndentedBuffer):
def indent(self, offset=1):
@contextlib.contextmanager
def ctx():
for _ in range(offset):
self.writeline("{")
self._indent += 1
for _ in range(-offset):
self._indent -= 1
self.writeline("}")
yield
for _ in range(-offset):
self.writeline("{")
self._indent += 1
for _ in range(offset):
self._indent -= 1
self.writeline("}")
return ctx()
class InplacedBuffer(NamedTuple):
inner_name: str
other_names: List[str]
class KernelArgs:
@staticmethod
def _lookup(prefix, odict, name):
assert isinstance(name, (str, sympy.Symbol))
if name not in odict:
odict[name] = f"{prefix}{len(odict)}"
return odict[name]
def __init__(self, sizevars=None):
self.input_buffers = {}
self.output_buffers = {}
self.inplace_buffers = {}
self.sizevars = sizevars or {}
self.workspace_args = []
def __repr__(self):
return "KernelArgs({})".format(
", ".join(
map(
repr,
[
self.input_buffers,
self.output_buffers,
self.inplace_buffers,
self.sizevars,
],
)
)
)
def _buffer_is_marked_removed(self, name):
return isinstance(name, str) and name.startswith("REMOVED")
def input(self, name):
if V.graph.scheduler:
name = V.graph.scheduler.mutation_real_name.get(name, name)
assert name not in V.graph.removed_buffers, name
if name in self.output_buffers:
return self.output_buffers[name]
if name in self.inplace_buffers:
return self.inplace_buffers[name].inner_name
if name.startswith("seed"):
return self._lookup("seed", self.input_buffers, name)
return self._lookup("in_ptr", self.input_buffers, name)
def output(self, name):
if V.graph.scheduler:
name = V.graph.scheduler.mutation_real_name.get(name, name)
assert name not in V.graph.removed_buffers, name
if name in self.inplace_buffers:
return self.inplace_buffers[name].inner_name
return self._lookup("out_ptr", self.output_buffers, name)
def make_inplace(self, input_name, output_name):
assert output_name not in self.inplace_buffers
if input_name in self.inplace_buffers:
buf = self.inplace_buffers[input_name]
buf.other_names.append(output_name)
self.inplace_buffers[output_name] = buf
else:
buf = InplacedBuffer(
f"in_out_ptr{len(unique(self.inplace_buffers.values()))}",
[input_name, output_name],
)
self.inplace_buffers[input_name] = buf
self.inplace_buffers[output_name] = buf
def workspace(self, nbytes: sympy.Expr, zero_fill: bool):
"""
Allocate or extend a workspace buffer of nbytes bytes.
This function manages the allocation of a workspace buffer. It either creates
a new WorkspaceArg or extends an existing one.
Note:
- Calling this function will in-place mutate the args by adding or updating
a WorkspaceArg.
- The codegen for generating the Python argdefs and call_defs will check
this field and allocate the buffer accordingly.
- A new argument "ws_ptr" will be present in the generated code.
Args:
nbytes (sympy.Expr): The number of bytes to allocate.
zero_fill (bool): Whether to initialize the buffer to zero.
Returns:
Tuple[str, int]: A tuple containing:
- "ws_ptr": A string identifier for the workspace pointer.
- offset: An integer representing the byte offset in the workspace.
"""
arg = WorkspaceArg(
count=nbytes,
zero_mode=WorkspaceZeroMode.from_bool(zero_fill),
device=V.graph.get_current_device_or_throw(),
outer_name=WorkspaceArg.unique_name(),
)
for i, existing_arg in enumerate(self.workspace_args):
if WorkspaceArg.can_join(existing_arg, arg):
offset = existing_arg.count
self.workspace_args[i] = WorkspaceArg.join(existing_arg, arg)
return existing_arg.inner_name, offset
assert (
existing_arg.inner_name != arg.inner_name
and existing_arg.outer_name != arg.outer_name
)
self.workspace_args.append(arg)
return arg.inner_name, 0
def semaphores(self, min_size: sympy.Expr):
"""
Lazily allocate a graph-wide semaphores buffer with at least min_size. This is a single buffer shared by
all kernels and zero initialized once at graph start. Each kernel must leave the buffer zeroed on exit.
Warning: multiple calls to this function will return the same buffer.
Args:
min_size: the number of int32 semaphores required
Returns:
name of the semaphores buffer
"""
current_device = V.graph.get_current_device_or_throw()
arg = WorkspaceArg(
count=min_size,
zero_mode=WorkspaceZeroMode.ZERO_PER_GRAPH,
dtype=torch.uint32,
inner_name="sem_ptr",
outer_name=f"semaphores_{current_device.type}_{current_device.index}",
device=current_device,
)
for existing_arg in self.workspace_args:
if existing_arg.inner_name == arg.inner_name:
assert arg == existing_arg
self.workspace_args.append(arg)
return arg.inner_name
def seed_offset(self, name, value):
if value in self.sizevars:
return self.sizevars[value]
if name in self.sizevars.values():
name = (
f"{name}{sum(1 for v in self.sizevars.values() if v.startswith(name))}"
)
self.sizevars[value] = name
return name
def size(self, name):
if str(name) == "seed":
self.sizevars["seed"] = "seed"
return "seed"
return self._lookup("ks", self.sizevars, name)
def call_names(self):
return chain(
self.input_buffers.keys(), self.output_buffers.keys(), self.sizevars.keys()
)
def wrap_ptr_arg(self, buf, dtype):
return buf
def wrap_size_arg(self, size):
return str(size)
def cpp_argdefs(self):
from .cpp_utils import DTYPE_TO_CPP, INDEX_TYPE
call_args = []
arg_defs = []
arg_types = []
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
outer = inplaced.other_names[-1]
inner = inplaced.inner_name
dtype = V.graph.get_dtype(outer)
cpp_dtype = DTYPE_TO_CPP[dtype]
arg_defs.append(f"{cpp_dtype}* {inner}")
call_args.append(self.wrap_ptr_arg(outer, dtype))
arg_types.append(f"{cpp_dtype}*")
for outer, inner in self.input_buffers.items():
if outer in self.inplace_buffers:
continue
dtype = V.graph.get_dtype(outer)
cpp_dtype = DTYPE_TO_CPP[dtype]
arg_defs.append(f"const {cpp_dtype}* {inner}")
call_args.append(self.wrap_ptr_arg(outer, dtype))
arg_types.append(f"const {cpp_dtype}*")
for outer, inner in self.output_buffers.items():
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
continue
dtype = V.graph.get_dtype(outer)
cpp_dtype = DTYPE_TO_CPP[dtype]
arg_defs.append(f"{cpp_dtype}* {inner}")
call_args.append(self.wrap_ptr_arg(outer, dtype))
arg_types.append(f"{cpp_dtype}*")
for outer, inner in self.sizevars.items():
arg_defs.append(f"const {INDEX_TYPE} {inner}")
call_args.append(self.wrap_size_arg(outer))
arg_types.append(f"const {INDEX_TYPE}")
if V.graph.wrapper_code:
V.graph.wrapper_code.ensure_size_computed(outer)
assert not self.workspace_args, "Workspace not supported on CPU "
return arg_defs, call_args, arg_types
def python_argdefs(self):
arg_defs: List[str] = []
call_args: List[str] = []
arg_types: List[torch.dtype] = []
precompile_args: List[Union[TensorArg, SizeArg, WorkspaceArg]] = []
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
arg_defs.append(inplaced.inner_name)
call_args.append(inplaced.other_names[-1])
arg_types.append(V.graph.get_dtype(inplaced.other_names[-1]))
precompile_args.append(
TensorArg(
name=inplaced.inner_name,
buffer=inplaced.other_names[-1],
dtype=V.graph.get_dtype(inplaced.other_names[-1]),
)
)
for outer, inner in chain(
self.input_buffers.items(), self.output_buffers.items()
):
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
continue
arg_defs.append(inner)
call_args.append(outer)
arg_types.append(V.graph.get_dtype(outer))
precompile_args.append(
TensorArg(
name=inner,
buffer=outer,
dtype=V.graph.get_dtype(outer),
)
)
for outer, inner in self.sizevars.items():
arg_defs.append(inner)
call_args.append(outer)
arg_types.append(type(outer)) # type: ignore[arg-type]
precompile_args.append(SizeArg(inner, outer))
if V.graph.wrapper_code:
V.graph.wrapper_code.ensure_size_computed(outer)
for arg in self.workspace_args:
arg_defs.append(arg.inner_name)
call_args.append(arg.outer_name)
precompile_args.append(arg)
arg_types.append(arg.dtype)
return arg_defs, call_args, precompile_args, arg_types
def aliases(self):
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
for other in inplaced.other_names:
if (
other in V.graph.inplaced_to_remove
or other in V.kernel.inplaced_to_remove
):
continue
if other in self.input_buffers:
yield self.input_buffers[other], inplaced.inner_name
if other in self.output_buffers:
yield self.output_buffers[other], inplaced.inner_name
def is_removed(self, name):
def _is_removed(name, buffers):
return name not in buffers or self._buffer_is_marked_removed(buffers[name])
return _is_removed(name, self.output_buffers) and _is_removed(
name, self.inplace_buffers
)
# Includes inplace buffers, excludes removed buffers. Essentially,
# after you do a call into this kernel, which buffers actually contain
# updated data? Modeled off of python_argdefs.
def live_output_buffers(self):
live_outs = OrderedSet() # type: ignore[var-annotated]
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
live_outs.add(inplaced.other_names[-1])
for outer, inner in self.output_buffers.items():
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
continue
live_outs.add(outer)
return live_outs
class CSEVariable:
"""A CSEVariable is just a name for an expression but it is useful to be able to annotate them on a backend dependent basis.
To do so, the backends can simply overload `Kernel.create_cse_var`
The "CSEVariable.update_on_args" method gives you a hook for annotations
See example of TritonCSEVariable in triton.py
"""
def __init__(
self,
name,
bounds: ValueRanges[Any],
dtype: Optional[torch.dtype] = None,
):
assert isinstance(bounds, ValueRanges)
self.name = name
self.bounds = bounds
self.use_count = 1 # track how many times this expression is used
self.dtype = dtype
def __str__(self):
return self.name
def __hash__(self) -> int:
return hash(self.name)
def __eq__(self, other) -> bool:
return type(other) == type(self) and other.name == self.name
def update_on_args(self, name, args, kwargs):
pass
def __repr__(self):
return f"{self.__class__.__name__}({self.name!r})"
class CppWrapperKernelArgs(KernelArgs):
def wrap_size_arg(self, size):
return f"{size}"
class CSE:
"""Common subexpression elimination"""
def __init__(
self,
prefix="",
suffix="",
name_prefix="tmp",
iter_buffers=None,
store_cache=None,
reduction_cache=None,
varname_map=None,
):
self.prefix = prefix
self.suffix = suffix
self._cache = {}
self.name_prefix = name_prefix
self.store_cache = store_cache or {}
self.reduction_cache = reduction_cache or {}
self.iter_buffer_ids = iter_buffers or itertools.count()
self.invalidated_stores = OrderedSet() # type: ignore[var-annotated]
self.varname_map = varname_map or {}
def invalidate(self, keep_vars: OrderedSet[str]):
for name, tmp in list(self.store_cache.items()):
if tmp not in keep_vars:
del self.store_cache[name]
self.invalidated_stores.add(name)
self._cache = {k: v for k, v in self._cache.items() if v in keep_vars}
def clone(self):
# Note(fdrocha): reduction_cache is not being cloned, not sure if this is intentional
return type(self)(
prefix=self.prefix,
suffix=self.suffix,
name_prefix=self.name_prefix,
iter_buffers=self.iter_buffer_ids,
store_cache=self.store_cache,
varname_map=self.varname_map,
)
def augment_key(self, cache_key: object) -> object:
"Override this method to augment cache key with backend specifics"
return cache_key
def put(self, cache_key: object, val: CSEVariable) -> None:
self._cache[self.augment_key(cache_key)] = val
def contains(self, cache_key) -> bool:
return self.augment_key(cache_key) in self._cache
def try_get(self, cache_key: object) -> Optional[CSEVariable]:
return self._cache.get(self.augment_key(cache_key), None)
def get(self, cache_key: object) -> CSEVariable:
return self._cache[self.augment_key(cache_key)]
def generate(
self,
buffer: IndentedBuffer,
expr: Union[str, CSEVariable, OpsValue, IndentedBuffer, DeferredLineBase],
*,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
write=True,
assignment=True,
dtype: Optional[torch.dtype] = None,
) -> CSEVariable:
if isinstance(expr, OpsValue):
expr = expr.value
assert write or assignment
if isinstance(expr, CSEVariable):
# If the expressions were always created with all the information, we could
# assert expr.bounds == bounds, but sometimes the expression is created
# with the loose ValueRanges.unknown(), so we need to tighten the bounds
expr.bounds = expr.bounds.tighten(bounds)
expr.use_count += 1
return expr
elif isinstance(expr, IndentedBuffer):
cache_key = expr.getvalue()
elif isinstance(expr, DeferredLineBase):
cache_key = expr.line
else:
assert isinstance(expr, str)
cache_key = expr
var = self.try_get(cache_key)
if not var:
var = self.newvar(bounds, dtype)
self.put(cache_key, var)
if write:
if V.kernel.current_node:
V.kernel.current_node.codegen_originating_info(
buffer, only_once=True
)
if isinstance(expr, IndentedBuffer):
if assignment:
buffer.writeline(f"{self.prefix}{var} =")
buffer.splice(expr)
buffer.writeline(self.suffix)
elif isinstance(expr, DeferredLineBase):
assert assignment
buffer.writeline(
expr._new_line(f"{self.prefix}{var} = {expr.line}{self.suffix}")
)
else:
if assignment:
line = f"{self.prefix}{var} = {expr}{self.suffix}"
else:
line = f"{expr}{self.suffix}"
buffer.writeline(line)
else:
var.bounds = var.bounds.tighten(bounds)
var.use_count += 1
return var
def newvar(
self,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
dtype: Optional[torch.dtype] = None,
) -> CSEVariable:
var_name = f"{self.name_prefix}{next(self.iter_buffer_ids)}"
var = V.kernel.create_cse_var(var_name, bounds, dtype)
self.varname_map[var_name] = var
return var
def namedvar(
self,
name: str,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
dtype: Optional[torch.dtype] = None,
) -> CSEVariable:
torch._check_value(
name not in self.varname_map, lambda: f"duplicate name: {name}"
)
var = V.kernel.create_cse_var(name, bounds, dtype)
self.varname_map[name] = var
return var
class CodeGen:
def __init__(self) -> None:
super().__init__()
self.exit_stack = contextlib.ExitStack()
def __enter__(self):
self.exit_stack.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
class ScopedDict:
def __init__(self, original_dict):
self.original_dict = original_dict
self.new_items = {}
def __getitem__(self, key):
if key in self.new_items:
return self.new_items[key]
return self.original_dict[key]
def __setitem__(self, key, value):
self.new_items[key] = value
def __contains__(self, key):
return key in self.new_items or key in self.original_dict
def get(self, key, default=None):
if key in self.new_items:
return self.new_items[key]
return self.original_dict.get(key, default)
class Kernel(CodeGen):
newvar_prefix = ""
suffix = ""
overrides: Optional[Callable[[OpsHandler[Any]], OpsHandler[Any]]] = None
# TODO: these look dead, but with all the getattr it's hard to tell...
load_format: None = None
store_format: None = None
def __init__(self, args=None, increase_kernel_count=True):
super().__init__()
if increase_kernel_count:
metrics.generated_kernel_count += 1
self.args = args or KernelArgs()
self.loads = IndentedBuffer()
self.compute = IndentedBuffer()
self.stores = IndentedBuffer()
self.num_load = 0
self.num_reduction = 0
self.cse: CSE = CSE(self.newvar_prefix, self.suffix)
self.must_keep_buffers = OrderedSet() # type: ignore[var-annotated]
self.store_buffer_names = OrderedSet() # type: ignore[var-annotated]
self._load_mask = None
self._load_other = None
# OrderedSet in set_current_node
self.current_node = None
self.node_to_bounds: Optional[Dict[torch.fx.Node, ValueRanges[Any]]] = None
self.removed_buffers = OrderedSet() # type: ignore[var-annotated]
self.inplaced_to_remove = OrderedSet() # type: ignore[var-annotated]
# key: the buffer to write
# value: the buffer to read and whose memory can be reused for
# the buffer specified by key
self.inplace_update_buffers = {}
# Set minimum number of elements processed per thread.
self.min_elem_per_thread = 1
self.kernel_name = None
@contextlib.contextmanager
def set_current_node(self, node):
prior = self.current_node
self.current_node = node
self.node_to_bounds = node._body.bounds().get_bounds()
try:
yield
finally:
self.current_node = prior
@contextlib.contextmanager
def swap_buffers(self, lb, cb=None, sb=None):
def scope_cse(cse):
new_cse = cse.clone()
new_cse._cache = ScopedDict(cse._cache)
new_cse.reduction_cache = ScopedDict(cse.reduction_cache)
new_cse.store_cache = ScopedDict(cse.store_cache)
return new_cse
if cb is None:
cb = lb
loads = self.loads
compute = self.compute
stores = self.stores
cse = self.cse
self.loads = lb
self.compute = cb
self.stores = sb
self.cse = scope_cse(cse)
try:
yield
finally:
self.loads = loads
self.compute = compute
self.stores = stores
self.cse = cse
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
raise NotImplementedError
def indirect_load(self, name: str, index: sympy.Expr):
"""A load the depends on an index we have read"""
prior = self.loads
try:
# put the load in the compute section as it might have deps
self.loads = self.compute
return self.load(name, index)
finally:
self.loads = prior
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
raise NotImplementedError
def store(
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
raise NotImplementedError
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
raise NotImplementedError
def scan(
self,
dtypes: Tuple[torch.dtype, ...],
combine_fn: Callable[
[Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]], Tuple[CSEVariable, ...]
],
values: Tuple[CSEVariable, ...],
) -> Tuple[CSEVariable, ...]:
raise NotImplementedError
def sort(
self,
dtypes: Tuple[torch.dtype, ...],
values: Tuple[CSEVariable, ...],
stable: bool,
descending: bool,
) -> Tuple[CSEVariable, ...]:
raise NotImplementedError
def var_ranges(self):
raise NotImplementedError
def bucketize(
self,
values: CSEVariable,
boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: CSEVariable,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[Tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[CSEVariable] = None,
) -> CSEVariable:
"""
See [Note: Inductor bucketize op]
"""
raise NotImplementedError
@property
def assert_function(self) -> str:
raise NotImplementedError
def indirect_assert(
self,
var: Union[CSEVariable, str],
lower: Optional[str],
upper: Optional[str],
mask: Optional[Union[CSEVariable, str]] = None,
) -> str:
if isinstance(var, CSEVariable):
var = str(var)
assert isinstance(var, str)
assert lower is None or isinstance(lower, str)
assert upper is None or isinstance(upper, str)
if lower and upper:
# The conditions need to be in parens because of Python's operator precedence.
# It'd be less error-prone to use and/or/not, which is suported by triton
cond = f"({lower} <= {var}) & ({var} < {upper})"
cond_print = f"{lower} <= {var} < {upper}"
elif lower:
cond = f"{lower} <= {var}"
cond_print = cond
else:
assert upper
cond = f"{var} < {upper}"
cond_print = cond
if mask:
cond = f"({cond}) | ~({mask})"
return f'{self.assert_function}({cond}, "index out of bounds: {cond_print}")'
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
):
raise NotImplementedError
def index_to_str(self, index: sympy.Expr) -> str:
raise NotImplementedError
def __enter__(self):
# TODO: hoist this to top level
class CSEProxy:
self.name = "CSEProxy"
vr_analysis = ValueRangeAnalysis()
@staticmethod
def __getattr__(name: str) -> Callable[..., CSEVariable]: # type: ignore[misc]
def inner(*args, **kwargs):
bounds = CSEProxy._bound_variable(name, *args, **kwargs)
value = getattr(parent_handler, name)(*args, **kwargs) # type: ignore[has-type]
dtype_handler = DtypePropagationOpsHandler()
output_idx = 0
def do_cse(v):
# cpp backend doesnt set current device - TODO: fix
if V.graph.current_device is not None:
device_str = V.graph.get_current_device_or_throw().type
triton_backend = (
config.cpu_backend == "triton"
if device_str == "cpu"
else config.cuda_backend == "triton"
)
else:
triton_backend = False
# only triton backend tracks dtype currently
if triton_backend:
if name == "masked":
output_dtype = value.dtype
else:
output_dtype = getattr(
dtype_handler,
name,
)(*args, **kwargs)
else:
# cpp backend doesnt track dtype yet
output_dtype = None
csevar = V.kernel.cse.generate(
V.kernel.compute,
v,
bounds=bounds,
dtype=output_dtype,
)
nonlocal output_idx
if (
config.test_configs.runtime_triton_dtype_assert
and triton_backend
):
from torch._inductor.codegen.triton import triton_type
# we tree_map over the output, so we need to fetch corresponding dtype
if isinstance(output_dtype, (list, tuple)):
output_dtype = output_dtype[output_idx]
V.kernel.compute.writeline(
f"tl.static_assert({csevar}.dtype == {triton_type(output_dtype)})"
)
output_idx += 1
csevar.update_on_args(name, args, kwargs)
return csevar
return pytree.tree_map(do_cse, value)
return inner
@staticmethod
def _bound_variable(name, *args, **kwargs):
"""
If the variable comes from an FX node, we forward the bound we have already computed
Else, if the variable when codegen'ing another op, we try to compute its bounds
"""
from ..select_algorithm import TritonTemplateKernel
if isinstance(V.kernel, TritonTemplateKernel):
return ValueRanges.unknown()
fx_node = V.interpreter.current_node
if fx_node.target == name and self.node_to_bounds is not None:
assert isinstance(self.node_to_bounds, dict)
return self.node_to_bounds.get(fx_node, ValueRanges.unknown())
elif config.compute_all_bounds and hasattr(ValueRangeAnalysis, name):
# These create lots of inner strings. We would need to compute the bounds at the ops
# We will also likely not get much from computing VRs on these nodes
if any(
s in fx_node.target
for s in ("set_indirect", "reduction", "scan")
):
return ValueRanges.unknown()
# We assume that the inputs come from `ops.` and are not strings. If you want to generate
# intermediary strings, wrap them in CSE variables with properly initialised bounds.
# If there is no FX bound but we know how to compute one we do so
assert not kwargs
def arg_to_bound(x):
if isinstance(x, CSEVariable):
return x.bounds
elif isinstance(x, sympy.Expr):
return bound_sympy(x)
else:
return x
arg_bounds = list(map(arg_to_bound, args))
return getattr(CSEProxy.vr_analysis, name)(*arg_bounds)
return ValueRanges.unknown()
@staticmethod
def indirect_indexing(
var: CSEVariable,
size: Union[sympy.Expr, int],
check: bool = True,
wrap_neg=True,
):
if isinstance(size, int):
size = sympy.Integer(size)
assert isinstance(size, sympy.Expr), size
# Skip CSE since this doesn't return an expression
if var.bounds.lower < 0: # type: ignore[operator]
if wrap_neg:
stm = ops.add(var, ops.index_expr(size, torch.long))
# Mixed negative and non-negative
if var.bounds.upper >= 0: # type: ignore[operator]
lt = ops.lt(var, 0)
stm = ops.where(lt, stm, var)
else:
stm = var
# Propagate bounds as we know how to compute them properly
new_bounds = ValueRanges.unknown()
if var.bounds != ValueRanges.unknown() and isinstance(
size, sympy.Number
):
# Take the negative part of the bound and add size to it
# Then take union of that and the positive part
# This is a tighter bound than that of a generic ops.where, as we have info on the cond
neg_bounds = var.bounds & ValueRanges(-int_oo, -1)
new_bounds = ValueRanges(
neg_bounds.lower + size, neg_bounds.upper + size
)
# We don't have a good way of representing the empty range
if var.bounds.upper >= 0: # type: ignore[operator]
pos = var.bounds & ValueRanges(0, int_oo)
new_bounds = new_bounds | pos
var = self.cse.generate(self.compute, stm, bounds=new_bounds)
sympy_var = parent_handler.indirect_indexing(var, size, check)
if generate_assert(check):
assert_lower = not (var.bounds.lower >= 0)
# value ranges cannot x < s when x and s are symbols
assert_upper = not isinstance(size, sympy.Number) or not (
var.bounds.upper < size
)
self.check_bounds(sympy_var, size, assert_lower, assert_upper)
return sympy_var
@staticmethod
def check_bounds(
expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
):
return self.check_bounds(expr, size, lower, upper)
@staticmethod
def load(name: str, index: sympy.Expr) -> CSEVariable:
if name in self.cse.invalidated_stores:
# A load from an invalidated store requires us to
# keep the actual buffer around
V.kernel.must_keep_buffers.add(name)
if free_symbol_is_type(index, SymT.TMP):
return self.indirect_load(name, index)
store_cache = self.cse.store_cache
if name in store_cache:
return store_cache[name]
out = self.load(name, index)
# count load that is not in the store_cache, and also not in the
# cse cache.
if out.use_count == 1:
self.num_load += 1
return out
@staticmethod
def _update_store_cache(name: str, value: CSEVariable):
self.cse.store_cache[name] = value
if self.current_node and name in V.graph.name_to_buffer:
buf = self.current_node.get_output(name)
for other_name in buf.get_mutations():
self.cse.store_cache[other_name] = value
@staticmethod
def store(
name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
self.store_buffer_names.add(name)
if mode is None:
CSEProxy._update_store_cache(name, value)
if name not in V.graph.removed_buffers:
return self.store(name, index, value, mode=mode)
return None # type: ignore[return-value]
@staticmethod
def store_reduction(name: str, index: sympy.Expr, value: CSEVariable):
self.store_buffer_names.add(name)
CSEProxy._update_store_cache(name, value)
if name not in V.graph.removed_buffers:
return self.store_reduction(name, index, value)
@staticmethod
def reduction(
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
self.num_reduction += 1
return self.reduction(dtype, src_dtype, reduction_type, value)
@staticmethod
def scan(
dtypes: Tuple[torch.dtype, ...],
combine_fn: Callable[
[Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]],
Tuple[CSEVariable, ...],
],
values: Tuple[CSEVariable, ...],
) -> Tuple[CSEVariable, ...]:
return self.scan(dtypes, combine_fn, values)
@staticmethod
def sort(
dtypes: Tuple[torch.dtype, ...],
values: Tuple[CSEVariable, ...],
stable: bool,
descending: bool,
) -> Tuple[CSEVariable, ...]:
return self.sort(dtypes, values, stable, descending)
@staticmethod
def bucketize(
values: CSEVariable,
boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: CSEVariable,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[Tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[CSEVariable] = None,
) -> CSEVariable:
"""
[Note: Inductor bucketize op]
Inputs:
-------
values: the values to be bucketized.
boundaries: a tuple containing
(a) the name of the boundaries tensor (which must be sorted, unless
the sorting tensor is present),
(b) the length of the tensor in the last dimension (i.e. the length of
one set of boundaries),
(c) the number of elements in the underlying storage (i.e. the length
of the flattened tensor, ignoring striding), and
(d) the stride of the tensor in the last dimension.
boundary_indices: indices into a flattened version of the boundaries
tensor, of the same size and shape as "values". Each index points to
the first element in the set of boundaries to be used for the
corresponding value.
indexing_dtype: the dtype to use when indexing into the boundaries
tensor. This must be int64 or int32. This additionally specifies the
dtype of the return value.
right: see "Details" below.
sorter: an optional tuple containing
(a) the name of an optional sorting tensor, used to access unsorted
boundaries without reordering the boundaries tensor, and
(b) the stride of the tensor in the last dimension.
The values in the sorting tensor are used as indices into the *last*
dimension of the boundaries tensor, with all other indices matching.
The size of the sorting and boundaries tensors must be equivalent.
sorter_indices: must be present if the sorting array is present; see
"boundary_indices" for the equivalent definition for the boundaries
tensor.
Output:
-------
The buckets each value belongs in, within a given set of boundaries. 0
indicates a position before the first boundary, and len(boundaries_set)
represents a position after the last boundary.
Details:
--------
Given a value and a set of boundaries, calculate the bucket that each
value belongs to. This works differently in 1-D and N-D cases.
for values [[-1, 0, 1, 2], [3, 4, 5, 9]], boundaries [0, 4, 4, 8], right=True
return = [[ 0, 1, 1, 1], [1, 3, 3, 4]].
for values [[-1, 0, 1, 2], [3, 4, 5, 9]], boundaries [[0, 4], [4, 8]], right=True
return = [[ 0, 1, 1, 1], [0, 1, 1, 2]]
Note that in the N-D boundaries case, the shape of "values" and
"boundaries" must match in every dimension _except_ the last.
When right == False, bucket i refers to range (boundaries[i], boundaries[i+1]].
When right == True, bucket i refers to range [boundaries[i], boundaries[i+1]).
Boundaries must be non-decreasing, or a sorter must be provided which
would re-index offsets in a non-decreasing order (e.g. the second output
of torch.sort(offsets)). Otherwise, the result is undefined.
"""
return self.bucketize(
values,
boundaries,
boundary_indices,
indexing_dtype,
right,
sorter,
sorter_indices,
)
# Use mypy to check protocol implemented correctly
def _typecheck_CSEProxy(h: CSEProxy) -> OpsHandler[CSEVariable]:
return h
super().__enter__()
assert self.overrides
parent_handler = self.overrides(V.get_ops_handler())
self.exit_stack.enter_context(V.set_ops_handler(CSEProxy()))
self.exit_stack.enter_context(V.set_kernel_handler(self))
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.remove_kernel_local_buffers()
super().__exit__(exc_type, exc_val, exc_tb)
def remove_kernel_local_buffers(self) -> None:
"""
Any buffers that are both created and have a last use in the
same kernel can be removed.
Note that V.graph.scheduler can be None when codegening triton template
kernels.
"""
scheduler = V.graph.scheduler
if not scheduler:
return
fused_node_names = OrderedSet(
scheduler.name_to_buf[buf].defining_op.get_name()
for buf in self.store_buffer_names
if buf in scheduler.name_to_buf
)
names_to_remove: OrderedSet[str] = OrderedSet()
for name in self.store_buffer_names:
if (
name not in self.must_keep_buffers
and name not in self.args.input_buffers
and scheduler.can_buffer_be_removed_through_fusion(
name, fused_node_names
)
):
names_to_remove.add(name)
for name in names_to_remove:
if name in self.args.inplace_buffers:
buf = self.args.inplace_buffers[name]
if isinstance(buf, str) and buf.startswith("REMOVED"):
continue
remove = all(n in names_to_remove for n in buf.other_names)
if remove:
self.remove_inplace_buffer(name)
self.inplaced_to_remove.add(name)
else:
self.remove_buffer(name)
def remove_buffer(self, name: str) -> None:
# Assign a special value instead of deleting the entry
# because we still rely on output_buffers's length to
# generate unique arg name.
log.debug("remove_buffer(%r)", name)
self.args.output_buffers[name] = "REMOVED"
self.removed_buffers.add(name)
def remove_inplace_buffer(self, name: str) -> None:
log.debug("removing_inplace_buffer(%r)", name)
inner_name = self.args.inplace_buffers[name].inner_name
self.args.inplace_buffers[name] = inner_name.replace("in_out_ptr", "REMOVED")
self.removed_buffers.add(name)
def rename_indexing(self, index) -> sympy.Expr:
# adds the necessary kernel args for index expressions
# and renames variables in index expressions to kernel arg names
if isinstance(index, (list, tuple)):
return [self.rename_indexing(x) for x in index] # type: ignore[return-value]
index = V.graph.sizevars.simplify(index)
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name)
replacements = {
x: self.args.size(x)
for x in sorted_symbols
if symbol_is_type(
x,
(
SymT.UNBACKED_INT,
SymT.SIZE,
SymT.PRECOMPUTED_SIZE,
),
)
}
return sympy_subs(index, replacements)
def create_cse_var(self, *args, **kwargs):
return CSEVariable(*args, **kwargs)
@dataclasses.dataclass
class OptimizationContext:
key: ClassVar[str] = "opt_ctx"
dtype: Optional[torch.dtype] = None
ops_name: str = ""
@functools.lru_cache(None)
def jinja2_env():
try:
import jinja2
return jinja2.Environment(
undefined=jinja2.StrictUndefined,
)
except ImportError:
return None
class KernelTemplate:
"""
Base class for defining kernel templates.
Children classes: TritonTemplate, CUDATemplate
"""
@staticmethod
def indent_except_first(source: str, num_indents: int, indents_spacing=4):
lines = source.splitlines(True)
if len(lines) > 1:
lines[1:] = [
(" " * indents_spacing * num_indents) + line for line in lines[1:]
]
return "".join(lines)
@staticmethod
def _template_from_string(source):
env = jinja2_env()
if env is None:
return None
env.filters["indent_except_first"] = KernelTemplate.indent_except_first
from jinja2 import TemplateSyntaxError
class DetailedTemplateSyntaxError(TemplateSyntaxError):
def __init__(self, original_error):
super().__init__(
original_error.message,
original_error.lineno,
original_error.name,
original_error.filename,
)
self.original_error = original_error
def __str__(self):
error_info = f"Error in template at line {self.lineno}\n"
error_info += f"Error message: {self.message}\n"
if hasattr(self.original_error, "source"):
lines = self.original_error.source.split("\n")
error_info += "Context:\n"
start = max(0, self.lineno - 2)
end = min(len(lines), self.lineno + 2)
for i in range(start, end):
if i == self.lineno - 1:
error_info += f"{i + 1}: --> {lines[i]}\n"
if hasattr(self.original_error, "column"):
error_info += (
" "
+ " " * (self.original_error.column - 1)
+ "^\n"
)
else:
error_info += f"{i + 1}: {lines[i]}\n"
return error_info
try:
return env.from_string(source)
except TemplateSyntaxError as e:
raise DetailedTemplateSyntaxError(e) from e
@staticmethod
def _fake_get_dtype(fake_out):
_get_dtype_real = V.graph.get_dtype
def get_dtype(name):
if name == fake_out.get_name():
return fake_out.get_dtype()
return _get_dtype_real(name)
return get_dtype
def __init__(self, name: str):
self.name = name
def maybe_append_choice(self, choices, **kwargs):
"""
Maybe generates a new ChoiceCaller and appends it into existing choices.
Returns None if success, otherwise returns the error.
choices: A list of ChoiceCallers.
kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller.
"""
try:
choices.append(self.generate(**kwargs))
return None
except NotImplementedError as e:
return e
def generate(self, **kwargs) -> "torch._inductor.ir.ChoiceCaller":
"""
Generates a ChoiceCaller instance from the given arguments.
"""
raise NotImplementedError
|