1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
|
# mypy: allow-untyped-defs
import contextlib
import logging
import re
from typing import List, Optional
from unittest.mock import patch
import sympy
import torch
import torch.utils
from .. import ir
from ..ir import TensorBox
from ..select_algorithm import DataProcessorTemplateWrapper
from ..utils import parallel_num_threads
from ..virtualized import V
from .cpp_template import CppTemplate
log = logging.getLogger(__name__)
# TODO: reuse cpp codegen to generate below pointwise/reduction kernels
SOFTMAX_FUSIONS = r"""
// 1) out = exp(a - val)
// 2) val = sum(out)
template <typename T1, typename T2>
inline void {{kernel_name}}_exp_reduce_sum_fusion_kernel(
T1* a,
const int& size,
T2* out,
T1& val) {
auto vec_size = at::vec::Vectorized<T1>::size();
auto vec_max = at::vec::Vectorized<T1>(val);
T1 tmp_sum = 0;
auto vec_tmp_sum = at::vec::Vectorized<T1>(tmp_sum);
for (long i = 0; i < vec_size * (size / vec_size); i += vec_size) {
auto tmp0 = at::vec::Vectorized<T1>::loadu(a + i);
auto tmp1 = tmp0 - vec_max;
auto tmp2 = tmp1.exp_u20();
vec_tmp_sum += tmp2;
at::native::_store(out + i, tmp2);
}
tmp_sum = at::vec::vec_reduce_all<T1>(
[](at::vec::Vectorized<T1>& x, at::vec::Vectorized<T1>& y) {
return x + y;
},
vec_tmp_sum);
for (long i = vec_size * (size / vec_size); i < size; i++) {
auto tmp0 = a[i];
auto tmp1 = tmp0 - val;
auto tmp2 = exp(tmp1);
tmp_sum += tmp2;
out[i] = tmp2;
}
val = tmp_sum;
}
// 1) out = a * scale
// 2) max = max(out)
template <typename scalar_t>
inline void {{kernel_name}}_mul_reduce_max_fusion_kernel(
const scalar_t* a,
const scalar_t& scale,
const int& size,
scalar_t* out,
scalar_t& max) {
auto vec_size = at::vec::Vectorized<scalar_t>::size();
auto vec_scale = at::vec::Vectorized<scalar_t>(scale);
scalar_t tmp_max = -std::numeric_limits<scalar_t>::infinity();
auto vec_tmp_max = at::vec::Vectorized<scalar_t>(tmp_max);
for (long i = 0; i < vec_size * (size / vec_size); i += vec_size) {
auto tmp0 = at::vec::Vectorized<scalar_t>::loadu(a + i);
auto tmp1 = tmp0 * vec_scale;
vec_tmp_max = at::vec::maximum(vec_tmp_max, tmp1);
at::native::_store(out + i, tmp1);
}
for (long i = vec_size * (size / vec_size); i < size; i++) {
auto tmp0 = a[i];
auto tmp1 = tmp0 * scale;
tmp_max = std::max(tmp_max, tmp1);
out[i] = tmp1;
}
max = std::max(
tmp_max,
at::vec::vec_reduce_all<scalar_t>(
[](at::vec::Vectorized<scalar_t>& x, at::vec::Vectorized<scalar_t>& y) {
return at::vec::maximum(x, y);
},
vec_tmp_max));
}
template <typename scalar_t>
static inline scalar_t* {{kernel_name}}_conditional_data_ptr(scalar_t* ptr, scalar_t* ptr2) {
TORCH_CHECK(ptr2 == nullptr);
return ptr;
}
template <typename scalar_t,
typename std::enable_if_t<std::is_reduced_floating_point_v<scalar_t>, int> = 0>
static inline scalar_t* {{kernel_name}}_conditional_data_ptr(float* ptr, scalar_t* ptr2) {
return ptr2;
}
template <typename scalar_t>
inline void {{kernel_name}}_fill_stub(scalar_t* data, scalar_t val, int64_t size) {
using Vec = at::vec::Vectorized<scalar_t>;
Vec data_vec = Vec(val);
int64_t d = 0;
for (; d < size - (size % Vec::size()); d += Vec::size()) {
data_vec.store(data + d);
}
#if !defined(_MSC_VER) && !defined(COMPILING_FOR_MIN_SIZE)
# pragma unroll
#endif
for (; d < size; d++) {
data[d] = val;
}
}
// out = a * scale
template <typename scalar_t>
inline void {{kernel_name}}_mul_scale_kernel(
scalar_t* a,
scalar_t scale,
int64_t size) {
auto vec_size = at::vec::Vectorized<scalar_t>::size();
auto vec_scale = at::vec::Vectorized<scalar_t>(scale);
for (int64_t i = 0; i < vec_size * (size / vec_size); i += vec_size) {
auto tmp0 = at::vec::Vectorized<scalar_t>::loadu(a + i);
auto tmp1 = tmp0 * vec_scale;
at::native::_store(a + i, tmp1);
}
for (int64_t i = vec_size * (size / vec_size); i < size; i++) {
auto tmp0 = a[i];
auto tmp1 = tmp0 * scale;
a[i] = tmp1;
}
}
"""
BRGEMM_PACK_FUNCTIONS = r"""
template <typename scalar_t>
inline void {{kernel_name}}_copy_value_with_pad(
const scalar_t* value_ptr,
scalar_t* dst_ptr,
int64_t rows,
int64_t cols,
int64_t prows,
int64_t pcols,
int64_t ldi) {
auto vec_size = at::vec::Vectorized<scalar_t>::size();
int64_t i = 0;
for (; i < rows; i++) {
int64_t j = 0;
for (; j < cols - (cols % vec_size); j += vec_size) {
auto vec_v =
at::vec::Vectorized<scalar_t>::loadu(value_ptr + i * ldi + j);
vec_v.store(dst_ptr + i * pcols + j);
}
if (j < cols) {
auto vec_v = at::vec::Vectorized<scalar_t>::loadu(
value_ptr + i * ldi + j, cols - j);
vec_v.store(dst_ptr + i * pcols + j, cols - j);
}
// col padding
auto psize = pcols - cols;
if (psize > 0) {
auto zero_vec = at::vec::Vectorized<scalar_t>(0);
int64_t pj = 0;
for (; pj < psize - (psize % vec_size); pj += vec_size) {
zero_vec.store(dst_ptr + i * pcols + cols + pj);
}
if (pj < psize) {
zero_vec.store(dst_ptr + i * pcols + cols + pj, psize - pj);
}
}
}
// row padding
for (; i < prows; i++) {
auto zero_vec = at::vec::Vectorized<scalar_t>(0);
int64_t j = 0;
for (; j < pcols - (pcols % vec_size); j += vec_size) {
zero_vec.store(dst_ptr + i * pcols + j);
}
if (j < pcols) {
zero_vec.store(dst_ptr + i * pcols + j, pcols - j);
}
}
}
// Transpose a [2, 32] matrix to [32, 2]
// Note: the output leading dimension should be 2,
// that is, the output must be contiguous
static inline void {{kernel_name}}_transpose_pad_2x32_block(
const uint16_t* src,
uint16_t* dst,
int64_t ld_src,
int krem = 2,
int nrem = 32) {
#if defined(CPU_CAPABILITY_AVX512)
__m512i r0, r1;
__m512i d0, d1;
// load
if (nrem < 32) {
__mmask32 mask_krem_v = (1LL << nrem) - 1;
r0 = _mm512_maskz_loadu_epi16(mask_krem_v, src);
// if krem is not 2, pad with zeros
if (krem == 2) {
r1 = _mm512_maskz_loadu_epi16(mask_krem_v, src + ld_src);
} else {
r1 = _mm512_setzero_si512();
}
} else {
r0 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(src));
if (krem == 2) {
r1 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(src + ld_src));
} else {
r1 = _mm512_setzero_si512();
}
}
// transpose
d0 = _mm512_unpacklo_epi16(r0, r1);
d1 = _mm512_unpackhi_epi16(r0, r1);
r0 = _mm512_shuffle_i32x4(d0, d1, 0x88);
r1 = _mm512_shuffle_i32x4(d0, d1, 0xdd);
d0 = _mm512_shuffle_i32x4(r0, r1, 0x88);
d1 = _mm512_shuffle_i32x4(r0, r1, 0xdd);
// store
if (nrem < 16) {
__mmask32 mask_rem_v = (1LL << (nrem * 2)) - 1;
_mm512_mask_storeu_epi16(dst, mask_rem_v, d0);
} else if (nrem == 16) {
_mm512_storeu_si512(reinterpret_cast<__m512i*>(dst), d0);
} else if (nrem < 32) {
__mmask32 mask_rem_v = (1LL << (nrem * 2 - 32)) - 1;
_mm512_storeu_si512(reinterpret_cast<__m512i*>(dst), d0);
_mm512_mask_storeu_epi16(
reinterpret_cast<__m512i*>(dst + 32), mask_rem_v, d1);
} else {
// normal store
_mm512_storeu_si512(reinterpret_cast<__m512i*>(dst), d0);
_mm512_storeu_si512(reinterpret_cast<__m512i*>(dst + 32), d1);
}
#else
TORCH_CHECK(false, "transpose_pad_2x32_block is only supported when avx512 is supported")
#endif
}
// To use AMX to accelerate GEMM,
// reorder the memory format [K, N] -> [K/2, N, 2]
// Note: If K % 2 != 0, pad K implicitly
static inline void {{kernel_name}}_pack_vnni2(
const uint16_t* src,
uint16_t* dst,
int64_t ld_src,
int64_t K,
int64_t N) {
#if defined(CPU_CAPABILITY_AVX512)
int64_t bk = 0;
int64_t _K = K / 2 * 2;
int64_t _N = N / 32 * 32;
for (; bk < _K; bk += 2) {
int64_t bn = 0;
for (; bn < _N; bn += 32) {
{{kernel_name}}_transpose_pad_2x32_block(src + bk * ld_src + bn, dst + bk * N + bn * 2, ld_src);
}
int64_t nrem = N - bn;
if (nrem > 0) {
{{kernel_name}}_transpose_pad_2x32_block(src + bk * ld_src + bn, dst + bk * N + bn * 2, ld_src, 2, nrem);
}
}
if (K % 2 == 1) {
int64_t bn = 0;
for (; bn < _N; bn += 32) {
{{kernel_name}}_transpose_pad_2x32_block(src + bk * ld_src + bn, dst + bk * N + bn * 2, ld_src, 1);
}
int64_t nrem = N - bn;
if (nrem > 0) {
{{kernel_name}}_transpose_pad_2x32_block(src + bk * ld_src + bn, dst + bk * N + bn * 2, ld_src, 1, nrem);
}
}
#else
TORCH_CHECK(false, "pack_vnni2 is only supported when avx512 is supported")
#endif
}
"""
ALLOCATE_BUFFER = r"""
int64_t {{buffer_name}}_dtype_itemsize = std::is_same_v<{{buffer_dtype}}, at::BFloat16> ? 2 : 4;
auto& {{buffer_name}}_allocator = *at::getCPUAllocator();
auto {{buffer_name}}_work_data = {{buffer_name}}_allocator.allocate({{buffer_size}}*{{buffer_name}}_dtype_itemsize);
void* {{buffer_name}}_data_ptr = {{buffer_name}}_work_data.get();
{{buffer_dtype}}* {{buffer_name}} = ({{buffer_dtype}}*){{buffer_name}}_data_ptr;
"""
FLEX_ATTENTION_TEMPLATE = r"""
{{template.header().getvalue()}}
#include <ATen/native/cpu/utils.h>
#include <ATen/native/CPUBlas.h>
#include <ATen/Context.h>
{{template.codegen_softmax_fusion(kernel.kernel_name)}}
{{template.codegen_brgemm_pack_function(kernel.kernel_name)}}
{%- set kernel_args = {"query": query, "key": key, "value": value,
"kv_num_blocks": kv_num_blocks, "kv_indices": kv_indices, "full_kv_num_blocks": full_kv_num_blocks} %}
{%- set kernel_args = template.update_kernel_args(kernel_args) %}
extern "C"
{{kernel.def_kernel(inputs=kernel_args, outputs={"output": output}, extra_sizevars=template.extra_sizevars)}}
{
int64_t kvBlockSize = {{kvBlockSize}};
kvBlockSize = kvBlockSize>{{kernel.size(key, 1)}} ? {{kernel.size(key, 1)}}
: kvBlockSize;
int64_t num_thread = {{num_thread}};
// dtypes of kernel and internal buffers
using scalar_t = {{kernel.dtype(query)}};
constexpr bool is_reduced_type = std::is_reduced_floating_point_v<scalar_t>;
using accum_t = at::opmath_type<{{kernel.dtype(query)}}>;
using Vec = at::vec::Vectorized<accum_t>;
accum_t scaling_factor = {{scale}};
int64_t batchSize = {{kernel.size(query, 0)}};
int64_t qSize = {{kernel.size(query, 1)}};
int64_t num_head = {{kernel.size(query, 2)}};
int64_t headSize = {{kernel.size(query, 3)}};
int64_t batchSize_k = {{kernel.size(key, 0)}};
int64_t num_head_k = {{kernel.size(key, 2)}};
int64_t headSize_v = {{kernel.size(value, 3)}};
bool is_broadcast_bs_kv = batchSize != batchSize_k;
bool is_broadcast_head_kv = num_head != num_head_k;
int64_t gqa_shards = num_head / num_head_k;
int64_t bs_shards = batchSize / batchSize_k;
int64_t batchSize_kvi = {{kernel.size(kv_indices, 0)}};
int64_t num_head_kvi = {{kernel.size(kv_indices, 1)}};
int64_t block_num_kvi = {{kernel.size(kv_indices, 3)}};
bool is_broadcast_bs_kvi = batchSize != batchSize_kvi;
bool is_broadcast_head_kvi = num_head != num_head_kvi;
int64_t gqa_shards_kvi = num_head / num_head_kvi;
int64_t bs_shards_kvi = batchSize / batchSize_kvi;
int64_t kviStrideB = {{kernel.stride(kv_indices, 0)}};
int64_t kviStrideH = {{kernel.stride(kv_indices, 1)}};
int64_t kviStrideQ = {{kernel.stride(kv_indices, 2)}};
auto kv_indices_data = kv_indices;
// Strides
int64_t qStrideB = {{kernel.stride(query, 0)}};
int64_t qStrideM = {{kernel.stride(query, 1)}};
int64_t qStrideH = {{kernel.stride(query, 2)}};
int64_t kStrideB = {{kernel.stride(key, 0)}};
int64_t kStrideN = {{kernel.stride(key, 1)}};
int64_t kStrideH = {{kernel.stride(key, 2)}};
int64_t vStrideB = {{kernel.stride(value, 0)}};
int64_t vStrideN = {{kernel.stride(value, 1)}};
int64_t vStrideH = {{kernel.stride(value, 2)}};
int64_t oStrideB = {{kernel.stride(output, 0)}};
int64_t oStrideM = {{kernel.stride(output, 2)}};
int64_t oStrideH = {{kernel.stride(output, 1)}};
// Check total kv block number for kv value.
int64_t block_num_kv_count = 0;
bool has_block_indice_zero = true;
for (int64_t kv_count = 0; kv_count < block_num_kvi; kv_count++) {
if (*(kv_indices + kv_count) > 0) {
block_num_kv_count++;
} else if (*(kv_indices + kv_count) == 0) {
if (has_block_indice_zero) {
has_block_indice_zero = false;
block_num_kv_count++;
} else {
break;
}
}
}
// Check to use kv_indice if total block size is bigger than kv length, e.g.,
// in PagedAttention case.
bool use_kv_indice = false;
if (block_num_kvi != block_num_kv_count && batchSize_k == 1) {
use_kv_indice = true;
}
int64_t kvSize = use_kv_indice ? block_num_kv_count * kvBlockSize
: {{kernel.size(key, 1)}};
// Split size heuristics tuned for q/k len
int64_t qSplitSize = 32;
int64_t kvSplitSize = 512;
if (qSize >= 768) {
qSplitSize = 256;
kvSplitSize = 512;
} else if (qSize >= 192) {
qSplitSize = 64;
kvSplitSize = 512;
}
if (kvBlockSize < kvSplitSize) {
kvSplitSize = kvBlockSize;
}
qSplitSize = qSplitSize > qSize ? qSize : qSplitSize;
kvSplitSize = kvSplitSize > kvSize ? kvSize : kvSplitSize;
int64_t qSlice = (qSize + qSplitSize - 1) / qSplitSize;
int64_t kvSlice = (kvSize + kvSplitSize - 1) / kvSplitSize;
int64_t kvTail = (kvSize - 1) % kvSplitSize + 1;
bool need_pack = false;
// Whether pack is needed for BFloat16
if (std::is_same_v<scalar_t, at::BFloat16>) {
// check platform ability
need_pack = at::native::cpublas::could_pack(at::kBFloat16);
}
if (need_pack) {
// When the number of gemm is greater than the number of pack,
// the pack overhead can be overlaped.
int64_t thresh_size = 64 ;
need_pack = kvSize >= thresh_size && qSize >= thresh_size;
if (need_pack) {
double pack_size = batchSize * num_head * kvSize * headSize;
double qs_per_thread = (batchSize * num_head * qSlice + num_thread - 1) / num_thread;
double gemm_size_per_thread = qs_per_thread * qSplitSize * kvSize * headSize;
need_pack = gemm_size_per_thread / pack_size >= 4;
}
}
// Pad is needed for packing when K is not even
bool headSize_even = headSize % 2 == 0;
int64_t eheadSize = need_pack && !headSize_even ? headSize + 1: headSize;
int64_t ekvSplitSize = need_pack && (kvSplitSize % 2 != 0) ? kvSplitSize + 1 : kvSplitSize;
int64_t ekvTail = need_pack && (kvTail % 2 != 0) ? kvTail + 1 : kvTail;
int64_t kv_padding_size = (kvSize - 1) / kvSplitSize * ekvSplitSize + ekvTail;
// Allocate per thread temp buf (accumulate type)
int64_t _size_per_thread =
/* qk */ qSplitSize * kvSplitSize +
/* qk_max */ qSplitSize +
/* qk_sum */ qSplitSize +
/* dst */ qSplitSize * headSize_v;
// Inputs/outputs buffers
const scalar_t* q_data = query;
const scalar_t* k_data = key;
const scalar_t* v_data = value;
scalar_t* out_data = output;
// Buffers to store accum results, padding query and transpose/packing key/value
{{template.codegen_allocate_buffer("buf_data", "accum_t", "num_thread*_size_per_thread")}}
{{template.codegen_allocate_buffer("buf_reduced_data", "scalar_t", "num_thread*qSplitSize*ekvSplitSize")}}
{{template.codegen_allocate_buffer("key_reorder_ptr", "scalar_t", "batchSize*num_head*eheadSize*kvSize")}}
{{template.codegen_allocate_buffer("value_reorder_ptr", "scalar_t", "batchSize*num_head*kv_padding_size*headSize_v")}}
{{template.codegen_allocate_buffer("transpose_buffer_ptr", "scalar_t", "num_thread*kvSplitSize*headSize")}}
{{template.codegen_allocate_buffer("query_padding_ptr", "scalar_t", "num_thread*qSplitSize*eheadSize")}}
// Reorder K, V and transpose K
at::parallel_for(0, batchSize * num_head * kvSlice, 1, [&](int64_t begin, int64_t end) {
int ompIdx = at::get_thread_num();
int64_t i = 0, j = 0, l = 0, n = 0;
scalar_t* transpose_ptr = need_pack? transpose_buffer_ptr + ompIdx * kvSplitSize * headSize : nullptr;
at::native::data_index_init(begin, i, batchSize, j, num_head, l, kvSlice);
for ([[maybe_unused]] auto z : c10::irange(begin, end)) {
n = l * kvSplitSize;
int64_t cur_kvSplitSize = std::min(kvSplitSize, kvSize - n);
auto i_kv = is_broadcast_bs_kv ? i/bs_shards : i;
auto j_kv = is_broadcast_head_kv ? j/gqa_shards : j;
auto kv_block_num = n / cur_kvSplitSize;
auto kv_block_offset = n - kv_block_num * cur_kvSplitSize;
// getting kv indices by [BS, Head, 1, kv_block_num]
auto i_kvi = is_broadcast_bs_kvi ? i/bs_shards_kvi : i;
auto j_kvi = is_broadcast_head_kvi ? j/gqa_shards_kvi : j;
auto kv_logical_data = kv_indices_data + i_kvi * kviStrideB +
j_kvi * kviStrideH + kv_block_num;
auto k_addr =
k_data + i_kv * kStrideB + j_kv * kStrideH + n * kStrideN;
auto v_addr =
v_data + i_kv * vStrideB + j_kv * vStrideH + n * vStrideN;
if (use_kv_indice) {
k_addr =
k_data + i_kv * kStrideB + j_kv * kStrideH +
(*kv_logical_data * cur_kvSplitSize + kv_block_offset) * kStrideN;
v_addr =
v_data + i_kv * vStrideB + j_kv * vStrideH +
(*kv_logical_data * cur_kvSplitSize + kv_block_offset) * vStrideN;
}
if (need_pack) {
// transpose [cur_kvSplitSize, headSize] -> [headSize, cur_kvSplitSize]
at::native::utils::transpose<uint16_t>(
cur_kvSplitSize,
headSize,
/* src_ptr */
reinterpret_cast<const uint16_t*>(k_addr),
/* ld_src */ kStrideN,
/* dst */ reinterpret_cast<uint16_t*>(transpose_ptr),
/* ld_dst */ cur_kvSplitSize);
// Pack [headSize, cur_kvSplitSize]
{{kernel.kernel_name}}_pack_vnni2(
/* src */ reinterpret_cast<const uint16_t*>(transpose_ptr),
/* dst */ reinterpret_cast<uint16_t*>(key_reorder_ptr + i * num_head * eheadSize * kvSize +
j * eheadSize * kvSize + n * eheadSize),
/* ld_src */ cur_kvSplitSize,
/* K */ headSize,
/* N */ cur_kvSplitSize);
// Pack [cur_kvSplitSize, headSize_v]
{{kernel.kernel_name}}_pack_vnni2(
/* src */ reinterpret_cast<const uint16_t*>(v_addr),
/* dst */ reinterpret_cast<uint16_t*>(value_reorder_ptr +
i * num_head * kv_padding_size * headSize_v +
j * kv_padding_size * headSize_v + n * headSize_v),
/* ld_src */ vStrideN,
/* K */ cur_kvSplitSize,
/* N */ headSize_v);
} else {
using trans_t = std::conditional_t<std::is_same_v<scalar_t, at::BFloat16>, uint16_t, float>;
at::native::utils::transpose<trans_t>(
cur_kvSplitSize,
headSize,
/* src_ptr */
reinterpret_cast<const trans_t*>(k_addr),
/* ld_src */ kStrideN,
/* dst */ reinterpret_cast<trans_t*>(key_reorder_ptr + i * num_head * eheadSize * kvSize +
j * eheadSize * kvSize + n * eheadSize),
/* ld_dst */ cur_kvSplitSize);
}
// Move to the next query
at::native::data_index_step(i, batchSize, j, num_head, l, kvSlice);
}
});
// Attention loop below
at::parallel_for(0, batchSize * num_head * qSlice, 1, [&](int64_t begin, int64_t end) {
int64_t i = 0, j = 0, k = 0;
at::native::data_index_init(begin, i, batchSize, j, num_head, k, qSlice);
int ompIdx = at::get_thread_num();
accum_t* buf_ptr = buf_data + ompIdx * _size_per_thread;
accum_t* qk_data = buf_ptr;
accum_t* qk_max_data = qk_data + qSplitSize * kvSplitSize;
accum_t* qk_sum_data = qk_max_data + qSplitSize;
accum_t* dst_data = qk_sum_data + qSplitSize;
scalar_t *qk_reduced_data =
is_reduced_type
? buf_reduced_data + ompIdx * qSplitSize * ekvSplitSize
: nullptr;
scalar_t* query_t_padding_ptr = (!headSize_even && need_pack)
? query_padding_ptr + ompIdx * qSplitSize * eheadSize
: nullptr;
for ([[maybe_unused]] auto z : c10::irange(begin, end)) {
int64_t m = k * qSplitSize;
int64_t cur_qSplitSize = std::min(qSplitSize, qSize - m);
// Initialize max and sum
{{kernel.kernel_name}}_fill_stub(qk_max_data,
-std::numeric_limits<accum_t>::infinity(), cur_qSplitSize);
{{kernel.kernel_name}}_fill_stub(qk_sum_data,
static_cast<accum_t>(0), cur_qSplitSize);
if (!headSize_even && need_pack) {
// Pad query if headSize is not even
{{kernel.kernel_name}}_copy_value_with_pad<scalar_t>(
q_data + i * qStrideB + j * qStrideH + m * qStrideM,
query_t_padding_ptr,
cur_qSplitSize,
headSize,
cur_qSplitSize,
eheadSize,
qStrideM
);
}
for (int64_t n = 0; n < kvSize; n += kvSplitSize) {
int64_t cur_kvSplitSize = std::min(kvSplitSize, kvSize - n);
int64_t cur_ekvSplitSize = (need_pack && cur_kvSplitSize % 2 != 0) ? cur_kvSplitSize + 1 : cur_kvSplitSize;
// Calculate scale * q @ k.T
auto i_kv = is_broadcast_bs_kv ? i/bs_shards : i;
auto j_kv = is_broadcast_head_kv ? j/gqa_shards : j;
auto kv_block_num = n / kvBlockSize;
auto kv_block_offset = n - kv_block_num * kvBlockSize;
// getting kv indices by [BS, Head, 1, kv_block_num]
auto i_kvi = is_broadcast_bs_kvi ? i/bs_shards_kvi : i;
auto j_kvi = is_broadcast_head_kvi ? j/gqa_shards_kvi : j;
auto kv_logical_data = kv_indices_data + i_kvi * kviStrideB +
j_kvi * kviStrideH + kv_block_num;
if (!need_pack) {
auto k_addr_t = key_reorder_ptr + i * num_head * eheadSize * kvSize +
j * eheadSize * kvSize + n * eheadSize;
// TODO: use the micro-gemm template instead of brgemm API
at::native::cpublas::brgemm(
cur_qSplitSize,
cur_kvSplitSize,
eheadSize,
qStrideM,
cur_kvSplitSize,
cur_kvSplitSize,
false,
q_data + i * qStrideB + j * qStrideH +
m * qStrideM,
k_addr_t,
qk_data,
need_pack);
} else {
at::native::cpublas::brgemm(
cur_qSplitSize,
cur_kvSplitSize,
eheadSize,
headSize_even ? qStrideM : eheadSize,
cur_kvSplitSize,
cur_kvSplitSize,
false,
!headSize_even
? query_t_padding_ptr
: q_data + i * qStrideB + j * qStrideH + m * qStrideM,
key_reorder_ptr + i * num_head * eheadSize * kvSize +
j * eheadSize * kvSize + n * eheadSize,
qk_data,
need_pack);
}
{{kernel.kernel_name}}_mul_scale_kernel<accum_t>(qk_data, scaling_factor, cur_qSplitSize*cur_kvSplitSize);
{%- if score_mod and mask_mod %}
// TODO: vectorization optimization for below score and mask codegen functions
// apply score mod function
for (int64_t row = 0; row < cur_qSplitSize; ++row) {
for (int64_t col = 0; col < cur_kvSplitSize; col++) {
std::vector<int64_t> b_idx = {i};
std::vector<int64_t> h_idx = {j};
std::vector<int64_t> q_idx = {m+row};
int64_t phisical_kv_idx = n+col;
if (use_kv_indice) {
phisical_kv_idx= *kv_logical_data * kvBlockSize + col;
}
std::vector<int64_t> kv_idx = {phisical_kv_idx};
accum_t* in_ptr0 = qk_data + row * cur_kvSplitSize + col;
auto in_ptr1 = b_idx.data();
auto in_ptr2 = h_idx.data();
auto in_ptr3 = q_idx.data();
auto in_ptr4 = kv_idx.data();
{{ template.generate_other_buffer("score_others", 0, "len_score_other", kernel.args) }}
accum_t* out_ptr{{score_buf_idx}} = in_ptr0;
{{ template.modification(score_mod, score_buf_name, score_buf_idx) }}
}
}
// Apply block mask, fill unused with -inf
for (int64_t row = 0; row < cur_qSplitSize; ++row) {
for (int64_t col = 0; col < cur_kvSplitSize; col++) {
std::vector<int64_t> b_idx = {i};
std::vector<int64_t> h_idx = {j};
std::vector<int64_t> q_idx = {m+row};
int64_t phisical_kv_idx = n+col;
if (use_kv_indice) {
phisical_kv_idx= *kv_logical_data * kvBlockSize + col;
}
std::vector<int64_t> kv_idx = {phisical_kv_idx};
accum_t* qk_block = qk_data + row * cur_kvSplitSize + col;
auto in_ptr1 = b_idx.data();
auto in_ptr2 = h_idx.data();
auto in_ptr3 = q_idx.data();
auto in_ptr4 = kv_idx.data();
{{ template.generate_other_buffer("mask_others", -1, "len_mask_other", kernel.args) }}
std::vector<int64_t> temp = {0};
int64_t* out_ptr{{mask_buf_idx}} = temp.data();
{{ template.modification(mask_mod, mask_buf_name, mask_buf_idx) }}
*qk_block = *out_ptr{{mask_buf_idx}} != 0
? *qk_block
: -std::numeric_limits<accum_t>::infinity();
}
}
{%- endif %}
// Update coefficients with Softmax
accum_t tmp_max = 0, tmp_sum = 0, exp_tmp = 0;
for (int64_t row = 0; row < cur_qSplitSize; ++row) {
// apply scaling factor and max per row in fusion
{{kernel.kernel_name}}_mul_reduce_max_fusion_kernel(
qk_data + row * cur_kvSplitSize,
static_cast<accum_t>(1),
cur_kvSplitSize,
qk_data + row * cur_kvSplitSize,
tmp_max);
tmp_max = qk_max_data[row] > tmp_max ? qk_max_data[row] : tmp_max;
if (tmp_max == -std::numeric_limits<accum_t>::infinity()) {
// to avoid `nan = exp2f(-inf - (-inf))`
{{kernel.kernel_name}}_fill_stub(
{{kernel.kernel_name}}_conditional_data_ptr(qk_data, qk_reduced_data) + row * cur_ekvSplitSize,
static_cast<scalar_t>(0), cur_kvSplitSize);
} else {
tmp_sum = tmp_max;
// qk <- exp(qk - max) and sum per row
{{kernel.kernel_name}}_exp_reduce_sum_fusion_kernel(
qk_data + row * cur_kvSplitSize, cur_kvSplitSize,
{{kernel.kernel_name}}_conditional_data_ptr(qk_data, qk_reduced_data) + row * cur_ekvSplitSize,
tmp_sum);
// exp_tmp <- exp(max[row] - max)
exp_tmp = std::exp(qk_max_data[row] - tmp_max);
// sum[row] <- sum + exp_tmp * sum[row]
qk_sum_data[row] = tmp_sum + exp_tmp * qk_sum_data[row];
// max[row] <- max
qk_max_data[row] = tmp_max;
// dst <- dst * exp_tmp
if (n > 0) {
at::vec::map<accum_t>(
[exp_tmp](Vec x) { return x * Vec(exp_tmp); },
dst_data + row * headSize_v,
dst_data + row * headSize_v,
headSize_v);
}
}
if (need_pack && cur_kvSplitSize % 2 != 0) {
// Pad: [qSplitSize, cur_kvSplitSize] -> [qSplitSize, cur_kvSplitSize + 1]
*(qk_reduced_data + row * (1 + cur_kvSplitSize) + cur_kvSplitSize) = scalar_t(0);
}
}
// Calculate Softmax(q @ k.T) @ v
if (!need_pack) {
auto v_addr =
v_data + i_kv * vStrideB + j_kv * vStrideH + n * vStrideN;
if (use_kv_indice) {
v_addr =
v_data + i_kv * vStrideB + j_kv * vStrideH +
(*kv_logical_data * kvBlockSize + kv_block_offset) * vStrideN;
}
at::native::cpublas::brgemm(
cur_qSplitSize,
headSize_v,
cur_ekvSplitSize,
cur_ekvSplitSize,
vStrideN,
headSize_v,
n > 0,
{{kernel.kernel_name}}_conditional_data_ptr(qk_data, qk_reduced_data),
v_addr,
dst_data,
need_pack);
} else {
int64_t psize = n / kvSplitSize * ekvSplitSize;
at::native::cpublas::brgemm(
cur_qSplitSize,
headSize_v,
cur_ekvSplitSize,
cur_ekvSplitSize,
headSize_v,
headSize_v,
n > 0,
qk_reduced_data,
value_reorder_ptr +
i * num_head * kv_padding_size * headSize_v +
j * kv_padding_size * headSize_v + psize * headSize_v,
dst_data,
need_pack);
}
}
// dst <- dst / sum[row]
// reorder MHA output with strides
for (int64_t row = 0; row < cur_qSplitSize; ++row) {
// Row sums for full masked out rows are 0, we set them to 1
// in order to avoid NaNs in the output and instead set fully
// masked out rows to 0
qk_max_data[row] = qk_max_data[row] == -std::numeric_limits<accum_t>::infinity() ? 0 : qk_max_data[row];
qk_sum_data[row] = qk_sum_data[row] == 0 ? 1 : qk_sum_data[row];
accum_t sum_reciprocal = 1 / qk_sum_data[row];
at::vec::map<scalar_t>(
[sum_reciprocal](Vec x) { return x * Vec(sum_reciprocal); },
out_data + i * oStrideB + j * oStrideH + m * oStrideM + row * oStrideM,
dst_data + row * headSize_v,
headSize_v);
}
// Move to the next query
at::native::data_index_step(i, batchSize, j, num_head, k, qSlice);
}
at::native::cpublas::brgemm_release(need_pack);
});
}
"""
class CppFlexAttentionTemplate(CppTemplate):
def __init__(
self,
input_nodes,
layout: ir.Layout,
scale,
score_mod,
mask_mod,
kv_block_size,
has_other_buffer,
no_full_kv_block,
fake_buffers,
len_score_other,
len_mask_other,
kernel_input_name_to_buffer,
) -> None:
assert layout.dtype in [torch.float, torch.bfloat16]
super().__init__("flex_attention", input_nodes, layout, parallel_num_threads())
self.scale = scale
self.score_mod = score_mod
self.mask_mod = mask_mod
self.score_buf_name = (
V.graph.register_buffer(self.score_mod) if self.score_mod else None
)
self.mask_buf_name = (
V.graph.register_buffer(self.mask_mod) if self.mask_mod else None
)
def get_idx(buf_name):
match = re.search(r"\d+", buf_name)
assert match, f"incorrect score buf name: {buf_name}"
return match.group()
self.score_buf_idx = (
get_idx(self.score_buf_name) if self.score_buf_name else None
)
self.mask_buf_idx = get_idx(self.mask_buf_name) if self.mask_buf_name else None
self.kv_block_size = kv_block_size
self.has_other_buffer = has_other_buffer
self.no_full_kv_block = no_full_kv_block
self.other_buffer_input_offset = 1
if self.no_full_kv_block:
self.other_buffer_input_offset = 0
self.fake_buffers = fake_buffers
self.len_score_other = len_score_other
self.len_mask_other = len_mask_other
self.kernel_input_name_to_buffer = kernel_input_name_to_buffer
self.extra_sizevars = list(
{
val
for val in self.kernel_input_name_to_buffer.values()
if isinstance(val, sympy.Symbol)
}
)
self.other_buf_start_idx = 5
self.score_mod_other_buffers = (
self.input_nodes[
self.other_buf_start_idx
+ self.other_buffer_input_offset : self.other_buf_start_idx
+ self.other_buffer_input_offset
+ self.len_score_other
]
if self.has_other_buffer
else None
)
self.mask_mod_other_buffers = (
self.input_nodes[
self.other_buf_start_idx
+ self.other_buffer_input_offset
+ self.len_score_other :
]
if self.has_other_buffer
else None
)
self.other_ptr_data = {} # type: ignore[var-annotated]
def update_kernel_args(self, kernel_args):
kernel_args.update(
{
key: value
for key, value in self.kernel_input_name_to_buffer.items()
if not isinstance(value, sympy.Symbol)
}
)
return kernel_args
def generate_other_buffer(self, buf_list, start_offset, len_attr, kernel_args):
kernel_input_name_to_buffer_name = {
key: value if isinstance(value, sympy.Symbol) else value.get_name()
for key, value in self.kernel_input_name_to_buffer.items()
}
def get_arg(name):
return kernel_input_name_to_buffer_name.get(name)
def get_arg_name(name):
if isinstance(get_arg(name), sympy.Symbol):
return kernel_args.sizevars.get(get_arg(name))
return kernel_args.input_buffers.get(get_arg(name))
if not self.has_other_buffer:
return ""
if start_offset == -1:
start_offset = getattr(self, len_attr)
length = getattr(self, len_attr)
for i in range(length):
pointer = f"in_ptr{self.other_buf_start_idx + start_offset + i}"
buffer_key = f"{buf_list}_{i}"
if pointer not in self.other_ptr_data:
self.other_ptr_data[pointer] = (
get_arg_name(buffer_key),
get_arg(buffer_key),
)
return "\n".join(
f"auto {ptr} = {name};" for ptr, (name, _) in self.other_ptr_data.items()
)
def modification(self, subgraph_buffer, output_name, output_idx):
assert isinstance(subgraph_buffer, ir.ComputedBuffer)
subgraph_buffer_data = subgraph_buffer.data
from ..loop_body import LoopBody
from ..utils import sympy_index_symbol_with_prefix, SymT
from ..virtualized import V
from .cpp import CppKernelProxy, KernelGroup
kernel_group = KernelGroup()
kernel_input_args = {
"score": "in_ptr0",
"b": "in_ptr1",
"h": "in_ptr2",
"q_idx": "in_ptr3",
"kv_idx": "in_ptr4",
}
if self.has_other_buffer:
kernel_input_args.update(
{arg: ptr for ptr, (_, arg) in self.other_ptr_data.items()}
)
kernel_output_args = {output_name: f"out_ptr{output_idx}"}
args = kernel_group.args
for name, inp in kernel_input_args.items():
args.input_buffers[name] = inp
for name, inp in kernel_output_args.items():
args.output_buffers[name] = inp
for name in self.extra_sizevars:
args.sizevars[name] = f"k{name}"
kernel_group.args = args
cpp_kernel_proxy = CppKernelProxy(kernel_group)
bodies = []
var_sizes_list = []
var_sizes = tuple([]) # type: ignore[var-annotated] # noqa: C409
output_index = 0
var_ranges = {
sympy_index_symbol_with_prefix(SymT.INDEX, i): sz
for i, sz in enumerate(var_sizes)
}
def fn(*args):
V.ops.store(
output_name,
output_index,
subgraph_buffer_data.make_loader()(args).value,
)
body = LoopBody(
fn,
(list(var_ranges.keys())),
var_ranges,
list(var_ranges.keys()),
tuple(),
)
from ..loop_body import MemoryUsageType
assert all(
mem.buffer_name in kernel_group.args.input_buffers
for mem in body.memory_usage[MemoryUsageType.LOAD]
), "All the buffers in the score and mask subgraph should be in kernel_group.args.input_buffers"
bodies.append(body)
var_sizes_list.append((var_sizes, ()))
cpp_kernel_proxy.codegen_loop_bodies(bodies, var_sizes_list)
kernel_group.finalize_kernel(cpp_kernel_proxy, [])
return kernel_group.loops_code.getvalue()
@staticmethod
def add_choices(
choices,
input_nodes,
layout,
scale,
score_mod,
mask_mod,
kv_block_size,
has_other_buffer,
no_full_kv_block,
fake_buffers,
len_score_other,
len_mask_other,
kernel_input_name_to_buffer,
):
def preprocessor(input_nodes, layout):
return input_nodes, layout
def postprocessor(output):
return output
template = DataProcessorTemplateWrapper(
CppFlexAttentionTemplate,
preprocessor,
postprocessor,
input_nodes=input_nodes,
layout=layout,
scale=scale,
score_mod=score_mod,
mask_mod=mask_mod,
kv_block_size=kv_block_size,
has_other_buffer=has_other_buffer,
no_full_kv_block=no_full_kv_block,
fake_buffers=fake_buffers,
len_score_other=len_score_other,
len_mask_other=len_mask_other,
kernel_input_name_to_buffer=kernel_input_name_to_buffer,
)
template.maybe_append_choice(choices)
return template
def apply_score_mod(self, score, b, h, q_idx, kv_idx):
return self.score_mod.graph_module(score, b, h, q_idx, kv_idx).item()
def render( # type: ignore[override,return]
self,
kernel,
template_buffer_node: Optional[ir.CppTemplateBuffer] = None,
epilogue_nodes: Optional[List[ir.IRNode]] = None,
**kwargs,
) -> str:
if epilogue_nodes is not None and epilogue_nodes != []:
raise NotImplementedError(
"Unsupported for `epilogue_nodes` in CppFlexAttentionTemplate."
)
# Query (Batch x Num_heads x Q_seq_len x Dim_per_head)
# -> (Batch x Q_seq_len x Num_heads x Dim_per_head)
# Key (Batch x Num_heads x KV_seq_len x Dim_per_head)
# -> (Batch x KV_seq_len x Num_heads x Dim_per_head)
# Value (Batch x Num_heads x KV_seq_len x Dim_per_head)
# -> (Batch x KV_seq_len x Num_heads x Dim_per_head)
query = kernel.permute(self.input_nodes[0], [0, 2, 1, 3])
key = kernel.permute(self.input_nodes[1], [0, 2, 1, 3])
value = kernel.permute(self.input_nodes[2], [0, 2, 1, 3])
num_threads = parallel_num_threads()
buf_out = TensorBox.create(self.output_node)
if template_buffer_node is not None:
buf_out = template_buffer_node
options = dict(
query=query,
key=key,
value=value,
kv_num_blocks=self.input_nodes[3],
kv_indices=self.input_nodes[4],
full_kv_num_blocks=self.input_nodes[5]
if not self.no_full_kv_block
else None,
score_mod_other_buffers=self.score_mod_other_buffers,
mask_mod_other_buffers=self.mask_mod_other_buffers,
scale=self.scale,
accumulate_dtype=torch.float,
query_dtype=query.layout.dtype,
kvBlockSize=self.kv_block_size,
template=self,
output=buf_out,
kernel=kernel,
num_thread=num_threads,
score_mod=self.score_mod,
mask_mod=self.mask_mod,
score_buf_name=self.score_buf_name,
mask_buf_name=self.mask_buf_name,
score_buf_idx=self.score_buf_idx,
mask_buf_idx=self.mask_buf_idx,
)
with contextlib.ExitStack() as stack:
for buf in self.fake_buffers:
stack.enter_context(
patch.object(V.graph, "get_dtype", self._fake_get_dtype(buf))
)
return self._template_from_string(FLEX_ATTENTION_TEMPLATE).render(**options)
def codegen_softmax_fusion(self, kernel_name: str):
# TODO: use inductor IR to rewrite those fusions
return self._template_from_string(SOFTMAX_FUSIONS).render(
dict(kernel_name=kernel_name)
)
def codegen_brgemm_pack_function(self, kernel_name: str):
# TODO: make them general for common bmm templates
return self._template_from_string(BRGEMM_PACK_FUNCTIONS).render(
dict(kernel_name=kernel_name)
)
def codegen_allocate_buffer(self, buffer_name: str, buffer_dtype, buffer_size):
return self._template_from_string(ALLOCATE_BUFFER).render(
dict(
buffer_name=buffer_name,
buffer_dtype=buffer_dtype,
buffer_size=buffer_size,
)
)
|