1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
|
# mypy: allow-untyped-defs
import contextlib
import logging
import math
from functools import lru_cache
from typing import Any, Callable, cast, Dict, List, Optional, Set, Union
from unittest.mock import patch
import torch
import torch.utils
from ..._dynamo.utils import counters
from .. import config, ir, lowering as L
from ..kernel.mm_common import mm_args
from ..select_algorithm import DataProcessorTemplateWrapper
from ..utils import (
has_free_symbols,
is_same_mkldnn_tensor,
is_same_tensor,
parallel_num_threads,
)
from ..virtualized import ops, V
from .cpp import get_export_declaration
from .cpp_micro_gemm import (
CppMicroBrgemm,
CppMicroGemm,
CppMicroGemmAMX,
create_micro_gemm,
LayoutType,
)
from .cpp_template import CppTemplate
from .cpp_template_kernel import CppTemplateKernel
from .cpp_utils import (
create_epilogue_with_attr,
DTYPE_TO_CPP,
GemmBlocking,
get_gemm_template_output_and_compute_dtype,
)
log = logging.getLogger(__name__)
GEMM_TEMPLATE_INIT_BLOCKING = r"""
constexpr int64_t num_threads = {{num_threads}};
constexpr int64_t N = {{N}};
constexpr int64_t K = {{K}};
constexpr int64_t Mr = {{micro_gemm.register_blocking.block_m}};
constexpr int64_t Nr = {{micro_gemm.register_blocking.block_n}};
constexpr int64_t Kr = {{micro_gemm.register_blocking.block_k}};
constexpr int64_t Nr_blocks = (N + Nr - 1) / Nr;
constexpr int64_t Kr_blocks = (K + Kr - 1) / Kr;
{%- if is_dynamic_M %}
const int64_t M = {{kernel.size(GemmOut, 0)}};
const int64_t Mr_blocks = (M + Mr - 1) / Mr;
{%- if num_threads > 1 %}
int64_t Mt_blocks, Nt_blocks, Kt_blocks;
mm_get_thread_blocking(num_threads, {{config.cpp.gemm_max_k_slices}}, M, N, K, Mr, Nr, Kr, Mt_blocks, Nt_blocks, Kt_blocks);
{%- else %}
const auto Mt_blocks = Mr_blocks;
const auto Nt_blocks = Nr_blocks;
const auto Kt_blocks = Kr_blocks;
{%- endif %}
int64_t Mc_blocks, Nc_blocks, Kc_blocks;
uint32_t L1_cache_size = {{L1_cache_size}};
uint32_t L2_cache_size = {{L2_cache_size}};
mm_get_cache_blocking<{{kernel.dtype(X)}}, {{kernel.dtype(W)}}>(
num_threads,
M,
N,
K,
Mr,
Nr,
Kr,
Mt_blocks,
Nt_blocks,
Kt_blocks,
Mc_blocks,
Nc_blocks,
Kc_blocks,
L1_cache_size,
L2_cache_size
);
const int64_t num_Mc_blocks = (Mr_blocks + Mc_blocks - 1) / Mc_blocks;
const int64_t num_Nc_blocks = (Nr_blocks + Nc_blocks - 1) / Nc_blocks;
const int64_t num_Mt_blocks = (Mr_blocks + Mt_blocks - 1) / Mt_blocks;
const int64_t num_Nt_blocks = (Nr_blocks + Nt_blocks - 1) / Nt_blocks;
const int64_t num_Kt_blocks = (Kr_blocks + Kt_blocks - 1) / Kt_blocks;
{%- else %}
constexpr int64_t M = {{kernel.size(GemmOut, 0)}};
constexpr int64_t Mr_blocks = (M + Mr - 1) / Mr;
constexpr int64_t Mt_blocks = {{template.thread_blocking(num_threads).block_m}};
constexpr int64_t Nt_blocks = {{template.thread_blocking(num_threads).block_n}};
constexpr int64_t Kt_blocks = {{template.thread_blocking(num_threads).block_k}};
constexpr int64_t Mc_blocks = {{template.cache_blocking(num_threads).block_m}};
constexpr int64_t Nc_blocks = {{template.cache_blocking(num_threads).block_n}};
constexpr int64_t Kc_blocks = {{template.cache_blocking(num_threads).block_k}};
constexpr int64_t num_Mc_blocks = (Mr_blocks + Mc_blocks - 1) / Mc_blocks;
constexpr int64_t num_Nc_blocks = (Nr_blocks + Nc_blocks - 1) / Nc_blocks;
constexpr int64_t num_Mt_blocks = (Mr_blocks + Mt_blocks - 1) / Mt_blocks;
constexpr int64_t num_Nt_blocks = (Nr_blocks + Nt_blocks - 1) / Nt_blocks;
constexpr int64_t num_Kt_blocks = (Kr_blocks + Kt_blocks - 1) / Kt_blocks;
{%- endif %}
// make sure all partitions are assigned
{{kernel.assert_function}}(
Mt_blocks * Nt_blocks * Kt_blocks * {{num_threads}} >= Mr_blocks * Nr_blocks * Kr_blocks,
"Not all partitions are assigned."
);
"""
GEMM_TEMPLATE_MULTI_THREADS_PARAMS = r"""
const int tid = omp_get_thread_num();
const int64_t k_group_id = tid / num_Kt_blocks;
const int64_t k_slice_id = tid % num_Kt_blocks;
const int64_t n_group_id = k_group_id / num_Nt_blocks;
const int64_t n_slice_id = k_group_id % num_Nt_blocks;
const int64_t k_block_start = k_slice_id * Kt_blocks;
const int64_t k_block_end = std::min(k_block_start + Kt_blocks, Kr_blocks);
const int64_t n_block_start = n_slice_id * Nt_blocks;
const int64_t n_block_end = std::min(n_block_start + Nt_blocks, Nr_blocks);
const int64_t m_block_start = std::min(n_group_id * Mt_blocks, Mr_blocks);
const int64_t m_block_end = std::min(m_block_start + Mt_blocks, Mr_blocks);
const int64_t num_Mc_blocks_per_thread = (m_block_end - m_block_start + Mc_blocks - 1) / Mc_blocks;
"""
GEMM_TEMPLATE_SINGLE_THREAD_PARAMS = r"""
constexpr int tid = 0;
constexpr int64_t k_group_id = 0;
constexpr int64_t k_slice_id = 0;
constexpr int64_t n_group_id = 0;
constexpr int64_t n_slice_id = 0;
constexpr int64_t m_block_start = 0;
constexpr int64_t n_block_start = 0;
constexpr int64_t n_block_end = Nr_blocks;
constexpr int64_t k_block_start = 0;
constexpr int64_t k_block_end = Kr_blocks;
{%- if is_dynamic_M %}
const int64_t num_Mc_blocks_per_thread = num_Mc_blocks;
const int64_t m_block_end = Mr_blocks;
{%- else %}
constexpr int64_t num_Mc_blocks_per_thread = num_Mc_blocks;
constexpr int64_t m_block_end = Mr_blocks;
{%- endif %}
"""
GEMM_TEMPLATE_M_LOOP_PARAMS = r"""
const int64_t my_mc_block_id = (mc_block_id + n_slice_id) % num_Mc_blocks_per_thread;
const int64_t mc = m_block_start + my_mc_block_id * Mc_blocks;
const int64_t m_start = mc * Mr;
const int64_t m_end = std::min(std::min(mc + Mc_blocks, m_block_end) * Mr, M);
const int64_t m_size = m_end - m_start;
"""
GEMM_TEMPLATE_N_LOOP_PARAMS = r"""
const int64_t n_start = nc * Nr;
const int64_t n_end = std::min(std::min(nc + Nc_blocks, n_block_end) * Nr, N);
const int64_t n_size = n_end - n_start;
// NB: assume we pad N, nc_block_end won't exceed padded N here.
const int64_t nc_block_end = std::min(nc + Nc_blocks, n_block_end);
"""
GEMM_TEMPLATE_MICROKERNEL_DEF = r"""
{{template.header().getvalue()}}
{{micro_gemm.codegen_define(kernel)}}
"""
GEMM_TEMPLATE_STUB_DEF = r"""
{%- if x_scale is not none %}
{%- set kernel_args = {"X": X, "W": W, "inp": inp, "x_scale": x_scale, "x_zp": x_zp, "w_scale": w_scale, "w_zp": w_zp,} %}
{%- else %}
{%- set kernel_args = {"X": X, "W": W, "inp": inp} %}
{%- endif %}
extern "C" {{export_declaration}}
{{kernel.def_kernel(inputs=kernel_args, outputs={"Y": Y}, aliases=aliases)}}
"""
GEMM_TEMPLATE = r"""
{{ template.codegen_gemm_stub_def() }}
{
{{ kernel.maybe_codegen_profile() }}
{{ template.codegen_blocks(
num_threads, N, K, micro_gemm, is_dynamic_M, kernel, GemmOut, config, L1_cache_size, L2_cache_size, X, W
) }}
{%- if maybe_k_slicing %}
std::unique_ptr<std::unique_ptr<{{DTYPE_TO_CPP[acc_buf_dtype]}}[]>[]> local_buf_ptrs;
if (num_Kt_blocks > 1) {
local_buf_ptrs.reset(new std::unique_ptr<{{DTYPE_TO_CPP[acc_buf_dtype]}}[]>[num_Mc_blocks * num_Nc_blocks * num_Kt_blocks]);
}
{%- endif %}
{%- if num_threads > 1 %}
#pragma omp parallel num_threads({{num_threads}})
{
{{ template.codegen_multi_threads_params()|indent(8, false) }}
{%- else %}
{
{{ template.codegen_single_thread_params(is_dynamic_M)|indent(8, false) }}
{%- endif %}
{{ micro_gemm.codegen_init(kernel) }}
{%- if use_local_acc %}
{%- set acc_buf_name = "local_acc_buf" %}
{{ kernel.define_buffer(acc_buf_name, ["Mc_blocks*Mr", "Nc_blocks*Nr"], acc_buf_dtype) }}
{%- endif %}
for (int64_t mc_block_id = 0; mc_block_id < num_Mc_blocks_per_thread; mc_block_id++) {
{{ template.codegen_m_loop_params()|indent(12, false) }}
for (int64_t nc = n_block_start; nc < n_block_end; nc += Nc_blocks) {
{{ template.codegen_n_loop_params()|indent(16, false) }}
{%- if use_local_acc %}
{%- set acc = kernel.local_buffers[acc_buf_name] %}
{{ kernel.reinit_buffer_if_null(acc_buf_name) }}
{%- else %}
{%- set acc = kernel.slice_nd(GemmOut, [("m_start", "m_end"), ("n_start", "n_end")]) %}
{%- endif %}
for (int64_t kc = k_block_start; kc < k_block_end; kc += Kc_blocks) {
int64_t k_start = kc * Kr;
int64_t k_end = std::min(std::min(kc + Kc_blocks, k_block_end) * Kr, K);
{%- set tile_X = kernel.slice_nd(X, [("m_start", "m_end"), ("k_start", "k_end")]) %}
for (int64_t nci = nc; nci < nc_block_end; nci++) {
{%- set acc_slice = kernel.slice_nd(acc, [("0", "m_end - m_start"), ("(nci - nc)*Nr", "(nci - nc + 1)*Nr")]) %}
{%- if template.should_block_weights %}
{%- set tile_W_3d = kernel.slice_nd(W, [("nci", "nci + 1"), ("k_start", "k_end"), ()]) %}
{%- set tile_W = kernel.view(tile_W_3d, ["k_end - k_start", micro_gemm.register_blocking.block_n]) %}
{%- else %}
{%- set tile_W = kernel.slice_nd(W, [("k_start", "k_end"), ("n_start", "n_start + n_size")]) %}
{%- endif %}
if (kc == k_block_start) {
{{ micro_gemm.codegen_call(kernel, tile_X, tile_W, acc_slice, accum=False)|indent(28, false) }}
} else {
{{ micro_gemm.codegen_call(kernel, tile_X, tile_W, acc_slice, accum=True)|indent(28, false) }}
}
}
}
{%- if maybe_k_slicing %}
if (num_Kt_blocks > 1) {
const int64_t mxn_cache_block_id = (mc / Mc_blocks) * num_Nc_blocks + nc;
local_buf_ptrs[mxn_cache_block_id * num_Kt_blocks + k_slice_id].reset(
{{ kernel.release_buffer(acc_buf_name) }});
} else
{%- endif %}
{
{%- set tile_Y = kernel.slice_nd(Y_2d, [("m_start", "m_end"), ("n_start", "n_end")]) %}
{%- set tile_acc = kernel.slice_nd(acc, [("0", "m_end - m_start"), ("0", "n_end - n_start")]) %}
{{ kernel.store_output(
tile_Y, tile_acc, GemmOut, epilogue_nodes, offsets=("m_start", "n_start"), reindexers=reindexers
)|indent(20, false)
}}
}
}
}
{%- if maybe_k_slicing %}
if (num_Kt_blocks > 1) {
#pragma omp barrier
for (int64_t mc = m_block_start; mc < m_block_end; mc += Mc_blocks) {
// We slice M-dim and each thread in the k-slicing group works on a slice
const int64_t m_start_unsliced = mc * Mr;
const int64_t m_end_unsliced = std::min(std::min(mc + Mc_blocks, m_block_end) * Mr, M);
const int64_t m_size_unsliced = m_end_unsliced - m_start_unsliced;
const int64_t m_slice_size = (m_size_unsliced + num_Kt_blocks - 1) / num_Kt_blocks;
const int64_t m_start = std::min(m_start_unsliced + m_slice_size * k_slice_id, m_end_unsliced);
const int64_t m_end = std::min(m_start_unsliced + m_slice_size * (k_slice_id + 1), m_end_unsliced);
const int64_t m_size = m_end - m_start;
const int64_t m_offset = m_start - m_start_unsliced;
for (int64_t nc = n_block_start; nc < n_block_end; nc += Nc_blocks) {
const int64_t n_start = nc * Nr;
const int64_t n_end = std::min(std::min(nc + Nc_blocks, n_block_end) * Nr, N);
const int64_t n_size = n_end - n_start;
const int64_t mxn_cache_block_id = (mc / Mc_blocks) * num_Nc_blocks + nc;
auto {{acc_buf_name}} = local_buf_ptrs[mxn_cache_block_id * num_Kt_blocks].get();
for (int64_t other_slice = 1; other_slice < num_Kt_blocks; other_slice++) {
auto other_acc = local_buf_ptrs[mxn_cache_block_id * num_Kt_blocks + other_slice].get();
for (int64_t m = m_offset; m < m_offset + m_size; m++) {
#pragma omp simd
for (int64_t n = 0; n < n_size; n++) {
{{acc_buf_name}}[m*Nr + n] += other_acc[m*Nr + n];
}
}
}
{%- set tile_acc_m_slice = kernel.slice_nd(tile_acc, [("m_offset", "m_offset + m_end - m_start"), ()]) %}
{{ kernel.store_output(
tile_Y, tile_acc_m_slice, GemmOut, epilogue_nodes, offsets=("m_start", "n_start"), reindexers=reindexers
)|indent(20, false)
}}
}
}
}
{%- endif %}
{{ micro_gemm.codegen_finalize(kernel) }}
}
}
"""
def get_padded_n(n, block_n):
return (n + block_n - 1) // block_n * block_n
def transpose_w(
W: Union[ir.IRNode, torch.Tensor], trans_w: bool
) -> Union[ir.IRNode, torch.Tensor]:
"""
Transpose W based on the trans_w flag.
"""
if isinstance(W, ir.IRNode):
if trans_w:
if not isinstance(W, ir.TensorBox):
W = ir.TensorBox(W)
W = L.permute(W, [1, 0])
else:
if trans_w:
assert isinstance(W, torch.Tensor)
W = W.transpose(0, 1)
return W
def expand_bias(
B: Union[ir.IRNode, torch.Tensor, None], X: Union[ir.IRNode, torch.Tensor]
) -> Optional[Union[ir.IRNode, torch.Tensor]]:
"""
Expand Bias to the same size of X.
"""
if B is not None:
if isinstance(B, ir.IRNode):
if not isinstance(B, ir.TensorBox):
B = ir.TensorBox(B)
assert hasattr(X, "get_size")
B = L.expand(B, (X.get_size()[0], B.get_size()[-1]))
else:
assert isinstance(B, torch.Tensor)
assert isinstance(X, torch.Tensor)
B = B.expand(X.shape[0], B.shape[-1])
return B
def prune_tensors(input_nodes: List[ir.TensorBox], new_input_nodes: List[ir.TensorBox]):
"""
Prune unused tensors from `V.graph` since the GEMM Template use new packed weight.
"""
def share_storage(base_tensor: torch.Tensor, comp_tensor: torch.Tensor):
return base_tensor.is_mkldnn == comp_tensor.is_mkldnn and (
is_same_tensor(base_tensor, comp_tensor)
or is_same_mkldnn_tensor(base_tensor, comp_tensor)
)
def get_candidates(input_nodes, new_input_nodes):
# Only Constant Buffer like weight and bias might be changed in GEMM Template.
# The Inductor IR Node may changed, but still share the storage. For example:
# bias in bfloat16 case which only do the expand
return [
node
for node in input_nodes
if (
node not in new_input_nodes
and isinstance(node, (ir.TensorBox, ir.StorageBox))
and node.get_name() in V.graph.constants
and not any(
(
isinstance(new_node, (ir.TensorBox, ir.StorageBox))
and new_node.get_name() in V.graph.constants
and share_storage(
V.graph.constants[node.get_name()],
V.graph.constants[new_node.get_name()],
)
)
for new_node in new_input_nodes
)
)
]
for candidate_node in get_candidates(input_nodes, new_input_nodes):
# By using the new packed weight for the GEMM template, we can prune the
# old weight if it has no other users. This saves memory but makes the FX graph
# non-retraceable. To support retracing, we can add a repack node to the
# FX graph. For example:
# mkldnn._linear_pointwise <- repack_linear_wgt <- packed_wgt_for_template
candidate_tensor_users = 0
candidate_tensor = V.graph.constants[candidate_node.get_name()]
for node in reversed(V.graph.graph.nodes):
# Case may happen when the candidate tensor is used by more than 1 get_attr node
# https://github.com/pytorch/pytorch/issues/134998
if node.op == "get_attr" and hasattr(
V.graph.module, node.name
): # candidate tensor might already be deleted
comp_tensor = getattr(V.graph.module, node.name)
if isinstance(comp_tensor, torch.Tensor) and share_storage(
candidate_tensor, comp_tensor
):
candidate_tensor_users += 1
for node in reversed(V.graph.graph.nodes):
# The get_attr node has only 1 user fx node
# The candidate tensor has been used by only 1 get_attr node
if (
node.name == candidate_node.get_name()
and len(node.users) == 1
and candidate_tensor_users == 1
):
del V.graph.constants[node.name]
delattr(V.graph.module, node.name)
delattr(V.graph.graph.owning_module, node.name)
def gen_2d_view_of_epilogue_buf(
Y: ir.Buffer,
template_buffer: ir.Buffer,
epilogue_nodes: List[ir.IRNode],
reindexers: List[Optional[Callable[[List[Any]], List[Any]]]],
default_reindexers: List[Optional[Callable[[List[Any]], List[Any]]]],
) -> tuple[
Union[ir.Buffer, ir.ReinterpretView],
List[Optional[Callable[[List[Any]], List[Any]]]],
]:
"""
The dimension and the indexing could be different between the GEMM output, i.e. `template_buffer`, which is
2D with MxN) and the output from the template after epilogues, i.e. `Y`. In the GEMM template code,
we are not aware of the dimension and the indexing of the epilogues and always work on 2D tiles according to
the indexing of the GEMM output.
In this function, we return a 2D buffer (`Y_2d`) according to GEMM output (reinterpreted from `Y` if needed) and
build a reindexer that converts the indexing of `Y` into `Y_2d`.
"""
Y_2d: Union[ir.Buffer, ir.ReinterpretView] = Y
if (
Y.get_size() == template_buffer.get_size()
and Y.get_stride() == template_buffer.get_stride()
):
reindexers.extend(default_reindexers)
Y_2d = Y
else:
def get_reindexer(epilogue_node, default_reindexer=None):
# From template_buffer to epilogue_node_ordered (ordered by stride decreasingly, in dense format), for example:
# template_buffer:
# size (324, 512), stride (512, 1)
# epilogue_node_ordered (ordered by stride decreasingly, in dense format):
# size (1, 18, 18, 512), stride (165888, 9216, 512, 1)
stride_order = list(
ir.get_stride_order(
V.graph.sizevars.size_hints(epilogue_node.get_stride())
)
)
fill_order = ir.stride_order2fill_order(stride_order)
reversed_fill_order = list(reversed(fill_order))
size_with_stride_ordered_decreasingly = [
epilogue_node.get_size()[i] for i in reversed_fill_order
]
reshape_reindex = ir.View.dynamic_reshape_indexer(
size_with_stride_ordered_decreasingly,
template_buffer.get_size(),
)
if default_reindexer:
reshape_reindex = ir.fuse_reindexing(reshape_reindex, default_reindexer)
# From epilogue_node_ordered (ordered by stride decreasingly, in dense format) to epilogue_node, for example:
# epilogue_node_ordered (ordered by stride decreasingly, in dense format):
# size (1, 18, 18, 512), stride (165888, 9216, 512, 1)
# epilogue_node:
# size (1, 18, 18, 512), stride (165888, 1, 9216, 512)
from_stride_ordered_decreasingly_to_epilogue_node_order = [
(len(stride_order) - 1) - stride_order[i]
for i in range(len(stride_order))
]
stride_reindex = ir.same_reorder(
from_stride_ordered_decreasingly_to_epilogue_node_order
)
reindexer = ir.fuse_reindexing(stride_reindex, reshape_reindex)
return reindexer
if default_reindexers is None:
default_reindexers = [None] * len(epilogue_nodes)
new_reindexers = [
get_reindexer(epilogue_node, default_reindexer)
for epilogue_node, default_reindexer in zip(
epilogue_nodes, default_reindexers
)
]
reindexers.extend(new_reindexers)
if isinstance(Y, ir.BaseView):
storage = ir.StorageBox(Y.unwrap_view())
else:
assert isinstance(Y, ir.Buffer)
storage = ir.StorageBox(Y)
Y_2d = ir.ReinterpretView(data=storage, layout=template_buffer.get_layout())
return Y_2d, reindexers
class CppGemmTemplate(CppTemplate):
def __init__(
self,
input_nodes,
layout: ir.Layout,
num_threads: int,
register_blocking: GemmBlocking,
beta=1,
alpha=1,
has_bias=False,
epilogue_creator: Optional[Callable[[ir.Buffer], ir.Pointwise]] = None,
should_block_weights: bool = True,
name="packed_gemm",
) -> None:
assert layout.dtype in [torch.float, torch.bfloat16, torch.half, torch.uint8]
super().__init__(
name,
input_nodes,
layout,
num_threads,
epilogue_creator=epilogue_creator,
)
self.beta = beta
self.alpha = alpha
self.has_bias = has_bias
self.register_blocking = register_blocking
m, n = layout.size[-2:]
k = input_nodes[0].get_size()[-1]
self.m, self.n, self.k = m, n, k
self.padded_n = get_padded_n(n, self.register_blocking.block_n)
self.is_dynamic_M = has_free_symbols((m,))
self.should_block_weights = should_block_weights
self.thread_blocking = self.make_thread_blocking_cache()
self.cache_blocking = self.make_cache_blocking_cache()
def make_thread_blocking_cache(self):
cache = lru_cache()(self._thread_blocking)
def thread_blocking(num_threads: int) -> GemmBlocking:
return cache(num_threads)
return thread_blocking
def _thread_blocking(self, num_threads: int) -> GemmBlocking:
"""
NOTE [Thread blocking in Cpp GEMM]
We use simple heuristics to decide the thread blocking:
1. Make sure all threads are occupied as much as possible.
2. For (m, n) blocks, favor more square-sized thread blocks for better data reuse.
3. If (m, n) blocks cannot occupy all the threads, we consider k-slicing.
TODO(jgong5): allow tuning various blocking options
"""
def get_factors(number):
factors = []
for i in range(int(number**0.5), 0, -1):
if number % i == 0:
factors.append(number // i)
factors.append(i)
return factors
def get_blocking(m_factor, n_factor, k_factor, m_blocks, n_blocks, k_blocks):
thread_block_k = math.ceil(k_blocks / k_factor)
thread_block_n = math.ceil(n_blocks / n_factor)
thread_block_m = math.ceil(m_blocks / m_factor)
return GemmBlocking(thread_block_m, thread_block_n, thread_block_k)
assert (
not self.is_dynamic_M
), "Unable to determine thread blocking for dynamic M."
register_blocking = self.register_blocking
m_blocks = math.ceil(self.m / register_blocking.block_m)
n_blocks = math.ceil(self.n / register_blocking.block_n)
k_blocks = math.ceil(self.k / register_blocking.block_k)
factors = get_factors(num_threads)
assert len(factors) > 0
if config.cpp.gemm_thread_factors is not None:
factors = [int(i) for i in config.cpp.gemm_thread_factors.split(",")]
assert len(factors) == 3
assert math.prod(factors) == self.num_threads
return get_blocking(
factors[0], factors[1], factors[2], m_blocks, n_blocks, k_blocks
)
# we favor square-sized thread blocks for good data reuse
def get_better_blocking(blocking, best_blocking):
if best_blocking is None:
best_blocking = blocking
else:
block_m_size = blocking.block_m * register_blocking.block_m
block_n_size = blocking.block_n * register_blocking.block_n
best_block_m_size = best_blocking.block_m * register_blocking.block_m
best_block_n_size = best_blocking.block_n * register_blocking.block_n
if blocking.block_k > best_blocking.block_k:
best_blocking = blocking
elif (
blocking.block_k == best_blocking.block_k
and block_m_size + block_n_size
< best_block_m_size + best_block_n_size
):
best_blocking = blocking
return best_blocking
best_blocking = None
# check if we can have a thread-blocking to occupy all threads without k-slicing
for n_factor in factors:
m_factor = num_threads // n_factor
if n_blocks >= n_factor and m_blocks >= m_factor:
blocking = get_blocking(
m_factor, n_factor, 1, m_blocks, n_blocks, k_blocks
)
best_blocking = get_better_blocking(blocking, best_blocking)
if best_blocking is None:
for k_factor in factors:
if k_blocks >= k_factor and (
config.cpp.gemm_max_k_slices == 0
or k_factor <= config.cpp.gemm_max_k_slices
):
n_factors = get_factors(num_threads // k_factor)
for n_factor in n_factors:
m_factor = (num_threads // k_factor) // n_factor
if n_blocks >= n_factor and m_blocks >= m_factor:
blocking = get_blocking(
m_factor,
n_factor,
k_factor,
m_blocks,
n_blocks,
k_blocks,
)
best_blocking = get_better_blocking(blocking, best_blocking)
if best_blocking is None:
for n_factor in factors:
m_factor = num_threads // n_factor
if n_blocks >= n_factor or m_blocks >= m_factor:
blocking = get_blocking(
m_factor, n_factor, 1, m_blocks, n_blocks, k_blocks
)
best_blocking = get_better_blocking(blocking, best_blocking)
assert best_blocking is not None
return best_blocking
def make_cache_blocking_cache(self):
cache = lru_cache()(self._cache_blocking)
def cache_blocking(num_threads: int) -> GemmBlocking:
return cache(num_threads)
return cache_blocking
def _cache_blocking(self, num_threads: int) -> GemmBlocking:
def get_cache_blocking(register_blocking, thread_blocking):
Mr = register_blocking.block_m
Nr = register_blocking.block_n
Kr = register_blocking.block_k
Mt_blocks = thread_blocking.block_m
Nt_blocks = thread_blocking.block_n
Kt_blocks = thread_blocking.block_k
if config.cpp.gemm_cache_blocking is not None:
blockings = [int(i) for i in config.cpp.gemm_cache_blocking.split(",")]
assert len(blockings) == 3
Mc_blocks, Nc_blocks, Kc_blocks = blockings
return (
min(Mc_blocks, Mt_blocks),
min(Nc_blocks, Nt_blocks),
min(Kc_blocks, Kt_blocks),
)
# The ratios below are empirically determined to decide
# the effective sizes of L1 and L2.
# TODO: tune the factor here
L1_limit_factor = 0.8
L2_limit_factor = 0.5
L1_cache_size = (
torch._C._cpu._L1d_cache_size()
) # per core cache size in Bytes
assert (
L1_cache_size > 0
), f"Expect L1_cache_size > 0 but got {L1_cache_size}"
L1 = L1_cache_size * L1_limit_factor
L2_cache_size = (
torch._C._cpu._L2_cache_size()
) # per core cache size in Bytes
assert (
L2_cache_size > 0
), f"Expect L2_cache_size > 0 but got {L2_cache_size}"
L2 = L2_cache_size * L2_limit_factor
def get_num_byte(dtype):
return torch.tensor([], dtype=dtype).element_size()
dtype_A = self.input_nodes[0].get_dtype()
dtype_B = self.input_nodes[1].get_dtype()
num_byte_A = get_num_byte(dtype_A)
num_byte_B = get_num_byte(dtype_B)
if dtype_A is torch.bfloat16 and dtype_B is torch.int8 and Kr != 1:
# We will cache dequantized weights (BF16) in L1D for AMX micro-kernel.
# In this case, the choice of the micro-kernel being used can't be decoupled from
# the cache blocking.
# TODO: Decouple the choice of micro-kernel from cache blocking
num_byte_B *= num_byte_A
# NOTE [CPP GEMM Cache Blocking Algorithm]
# Our overall strategy is to
# 1) Make cache blocks of B L1-reside and reused by multiple rows of A, i.e. Mc.
# Here, B is Kc x Nr where Nr is a single register block. We use L1 size to
# decide Kc. We want to make Mc large enough to better reuse B.
# 2) Make cache blocks of A L2-reside, which would limit Mc. We want to reuse A
# along N, where we have two sub-strategies (see notes below) to decide Mc and Nc.
# Step 1: Decide Kc assuming B block is L1-reside.
size_cache_B = Kr * Kt_blocks * Nr * num_byte_B
Kc_blocks = Kt_blocks
if size_cache_B > L1:
Kc_blocks = math.floor(L1 / (Kr * Nr * num_byte_B))
# Step 2: Decide Mc assuming A block is L2-reside.
min_Mc_ratio = 2 # TODO(jgong5): something to tune?
min_Mc_blocks = math.ceil(min_Mc_ratio * Mr / Nr)
assert min_Mc_blocks >= 1
Kt_bytes = Kt_blocks * Kr * num_byte_A
if min_Mc_blocks * Mr * Kt_bytes < L2:
# Strategy 1: A (Mc x Kt) resides in L2 and reused by all Nt
# when Nc_blocks is kept 1. Mc should be large enough (>= min_Mc_blocks)
# to reuse B (Kc x Nr) in L1. This makes C (Mc x Nr) small enough to reside
# in L1.
Mc_blocks = min(Mt_blocks, math.floor(L2 / (Mr * Kt_bytes)))
Nc_blocks = 1
else:
# Strategy 2: Kt is too large to hold A (Mc x Kt) in L2, we reuse
# A (Mc x Kc) in L2 by B (Kc x Nc). C (Mc x Nc) resides in L2.
Mc_blocks = Mt_blocks
Nc_blocks = min(math.ceil(Mc_blocks * Mr / Nr), Nt_blocks)
Nc_bytes = Nc_blocks * Nr * 4 # assume C or acc is float32/int32
Kc_bytes = Kc_blocks * Kr * num_byte_A
if Mc_blocks * Mr * (Kc_bytes + Nc_bytes) > L2:
# The following is the solution for 4*Mc*Nc + Mc*Kc_bytes = L2,
# assuming Mc == Nc for good data reuse.
M_max = (math.sqrt(Kc_bytes * Kc_bytes + 16 * L2) - Kc_bytes) / 8
if M_max < Mc_blocks * Mr:
Mc_blocks = math.floor(M_max / Mr)
Nc_blocks = min(math.ceil(Mc_blocks * Mr / Nr), Nt_blocks)
return Mc_blocks, Nc_blocks, Kc_blocks
assert (
not self.is_dynamic_M
), "Unable to determine cache blocking for dynamic M."
register_blocking = self.register_blocking
thread_blocking = self.thread_blocking(num_threads)
return GemmBlocking(*get_cache_blocking(register_blocking, thread_blocking))
def log_blockings(self):
log.debug(f"Register blocking: {self.register_blocking}") # noqa: G004
if self.is_dynamic_M:
# thread and cache blockings are determined at runtime for dynamic shapes
return
log.debug(
f"Cache blocking: {self.cache_blocking(self.num_threads)}" # noqa: G004
)
thread_blocking = self.thread_blocking(self.num_threads)
log.debug(f"Thread blocking: {thread_blocking}") # noqa: G004
def get_occupancy():
m_blocks = math.ceil(self.m / self.register_blocking.block_m)
n_blocks = math.ceil(self.n / self.register_blocking.block_n)
k_blocks = math.ceil(self.k / self.register_blocking.block_k)
m = math.ceil(m_blocks / thread_blocking.block_m)
n = math.ceil(n_blocks / thread_blocking.block_n)
k = math.ceil(k_blocks / thread_blocking.block_k)
return (m, n, k)
log.debug(
f"Number of threads: {self.num_threads}, occupancy: {get_occupancy()}" # noqa: G004
)
def maybe_k_slicing(self):
if self.num_threads == 1:
return False
if self.is_dynamic_M:
# TODO(jgong5): perhaps use size hint to decide?
return True
register_blocking = self.register_blocking
k_blocks = math.ceil(self.k / register_blocking.block_k)
thread_blocking = self.thread_blocking(self.num_threads)
return k_blocks > thread_blocking.block_k
@classmethod
def add_choices(
cls,
choices,
layout,
input_nodes,
beta=1,
alpha=1,
has_bias=False,
trans_w=False,
input_indices=None,
epilogue_creator: Optional[Callable[[ir.Buffer], ir.Pointwise]] = None,
):
if input_indices is None:
input_indices = list(range(len(input_nodes)))
only_one_input = (
input_nodes[0] == input_nodes[1] if len(input_nodes) > 1 else False
)
def reorder_and_filter(inputs, layout_or_out):
if has_bias:
assert len(input_indices) >= 3
# Assume the input order is [inp, x, w] and we reorder it to [x, w, inp]
inp_idx = input_indices[0]
x_idx = input_indices[1]
w_idx = input_indices[2]
return [
inputs[x_idx],
inputs[w_idx],
inputs[inp_idx],
*[inputs[idx] for idx in input_indices[3:]],
], layout_or_out
elif len(inputs) >= len(input_indices):
assert len(input_indices) >= 2
return [inputs[idx] for idx in input_indices], layout_or_out
else:
# For when input is used for x and w, i.e. X@X.T or similar
# Assumes the first input is the only input
assert len(inputs) == 1
return [inputs[0]] * len(input_indices), layout_or_out
new_inputs, new_layout = reorder_and_filter(input_nodes, layout)
is_mkldnn_wgt = (
new_inputs[1].get_name() in V.graph.constants
and V.graph.constants[new_inputs[1].get_name()].is_mkldnn
)
if is_mkldnn_wgt:
# It shouldn't happen as viewing an mkldnn tensor, we can extend the
# implementation if it does.
assert not isinstance(new_inputs[1], ir.BaseView)
# Note that the layout of MKLDNN Tensor is with the wrong stride
view_size = new_inputs[1].layout.size
view_stride = new_inputs[1].layout.stride
view_offset = new_inputs[1].layout.offset
def maybe_to_dense(inputs, layout_or_out):
new_inputs = list(inputs)
if isinstance(inputs[1], torch.Tensor):
W = inputs[1]
new_inputs[1] = W.to_dense() if W.is_mkldnn else W
return new_inputs, layout_or_out
def normalize_shapes(inputs, layout_or_out):
new_inputs = list(inputs)
if not is_mkldnn_wgt and isinstance(new_inputs[1], torch.Tensor):
if has_free_symbols(view_size):
# If batch size B is dynamic, we need to set the batch size and possibly stride
assert not has_free_symbols(view_size[1:])
view_size[:] = V.graph.sizevars.size_hints(view_size)
view_stride[:] = V.graph.sizevars.size_hints(view_stride)
# With the assumptation that W is the storage of unwrap view
# thus view it back here
new_inputs[1] = new_inputs[1].as_strided(
view_size, view_stride, view_offset
)
if not trans_w:
return new_inputs, layout_or_out
X = new_inputs[0]
W = new_inputs[1]
B = new_inputs[2] if has_bias else None
W = transpose_w(W, trans_w)
B = expand_bias(B, X) # type:ignore[arg-type]
new_inputs[1] = W
if B is not None:
new_inputs[2] = B
return new_inputs, layout_or_out
# TODO(jgong5): decide proper number of threads per problem size
num_threads = parallel_num_threads()
new_inputs, _ = normalize_shapes(*maybe_to_dense(new_inputs, new_layout))
m, n, k, *_ = mm_args(new_inputs[0], new_inputs[1])
output_dtype, compute_dtype = get_gemm_template_output_and_compute_dtype(
new_inputs[0].get_dtype()
)
micro_gemm = create_micro_gemm(
"micro_gemm",
m,
n,
k,
input_dtype=new_inputs[0].get_dtype(),
input2_dtype=new_inputs[1].get_dtype(),
output_dtype=output_dtype,
compute_dtype=compute_dtype,
alpha=alpha,
num_threads=num_threads,
)
assert micro_gemm is not None
block_weights = cls.check_if_block_weight(new_inputs[1], micro_gemm)
def preprocessor(inputs, layout):
new_inputs, new_layout = normalize_shapes(
*maybe_to_dense(*reorder_and_filter(inputs, layout))
)
if only_one_input and isinstance(new_inputs[0], torch.Tensor):
return new_inputs[1:], new_layout
return cls.prep_weight(new_inputs, new_layout, micro_gemm, block_weights)
def postprocessor(output):
if isinstance(output, ir.TensorBox):
# prepack the weight as input to the template buffer
template_buffer = ir.InputsKernel.unwrap_storage_for_input(output)
assert isinstance(template_buffer, ir.CppTemplateBuffer)
new_input_nodes, _ = reorder_and_filter(input_nodes, layout)
W_node = new_input_nodes[1]
if W_node.get_name() not in V.graph.constants:
return output
W = V.graph.constants[W_node.get_name()]
new_input_nodes[1] = W
new_input_nodes, new_layout = normalize_shapes(
*maybe_to_dense(new_input_nodes, layout)
)
new_input_nodes, _ = cls.prep_weight(
new_input_nodes, new_layout, micro_gemm, block_weights
)
W_packed = new_input_nodes[1]
W_packed_constant = V.graph.add_tensor_constant(W_packed)
new_input_nodes[1] = W_packed_constant
# Prune unused tensors
prune_tensors(input_nodes, new_input_nodes)
template_buffer.inputs[1] = ir.InputsKernel.unwrap_storage_for_input(
W_packed_constant
)
return output
template = DataProcessorTemplateWrapper(
cls,
preprocessor,
postprocessor,
input_nodes=input_nodes,
layout=layout,
num_threads=num_threads,
register_blocking=micro_gemm.register_blocking,
beta=beta,
alpha=alpha,
has_bias=has_bias,
epilogue_creator=epilogue_creator,
should_block_weights=block_weights,
)
template.maybe_append_choice(choices)
return template
@staticmethod
def get_padded_size(n, block_n, k, should_block_weight):
padded_n = get_padded_n(n, block_n)
# We assume that all GEMM weight tensors should be blocked and padded
new_size = [padded_n // block_n, k, block_n]
return new_size, padded_n
@classmethod
def prep_weight(
cls,
inputs,
layout: ir.Layout,
micro_gemm: CppMicroGemm,
should_block_weight: bool,
):
"""
NOTE Weight prep consists of 2 separate steps:
1. Blocking the weight tensor into a 3D shape: [n//block_n, k, block_n]
This is always done if the weight tensor is contant, i.e. for all GEMM and some BMM.
For BMM, we also block non-contiguous weight tensors, since they would be reshaped anyway.
This assumes that blocked, contiguous weights will be more efficient for the GEMM kernel,
and is worth the overhead of reshape and blocking.
This blocking includes additional padding, when n is not a multiple of block_n.
This padding allows a more efficient microkernel implementation. For BMM, this is only done
if reshape would happen anyway, i.e. if the weight tensor is constant, is not contiguous,
or is using AMX VNNI layout.
2. Packing the weight tensor into a VNNI-friendly shape. For constant input,
this is done at the same time as the weight blocking.
At compile time, the constant weight tensors are blocked and packed. For non-constant tensors (e.g. BMM)
which will be blocked (non-contiguous or VNNI-layout tensors), the weight tensor is blocked and packed at runtime.
CppBmmTemplate overrides the methods get_padded_size, and block_weight in order to accommodate
an additional dimension for the batch size and to determine if the weight tensor should be blocked.
"""
W = inputs[1]
new_inputs = list(inputs)
if isinstance(W, ir.IRNode):
k, n = W.get_size()[-2:]
else:
k, n = W.shape[-2:]
_, block_n, _ = micro_gemm.register_blocking
new_size, padded_n = cls.get_padded_size(n, block_n, k, should_block_weight)
padding = padded_n - n
if should_block_weight:
blocked_w = cls.block_weight(W, new_size, padding)
else:
blocked_w = W
new_inputs[1] = cls.pack_vnni_weight(blocked_w, micro_gemm, new_size)
def _is_int8_gemm(inputs):
return (
isinstance(inputs[0], ir.IRNode)
and inputs[0].get_dtype() == torch.uint8
) or (
isinstance(inputs[0], torch.Tensor) and inputs[0].dtype == torch.uint8
)
if _is_int8_gemm(new_inputs):
BCompensate = None
if isinstance(W, ir.IRNode):
BCompensate = V.graph.add_tensor_constant(
V.graph.constants[W.get_name() + "_BMatrixCompens"],
W.get_name() + "_BMatrixCompens",
)
else:
# Use the original W, not the blocked_w in new_inputs[1] to calculate BCompensate
BCompensate = torch.sum(W.to_dense().to(torch.float), dim=0) # type: ignore[assignment]
new_inputs.append(BCompensate)
return new_inputs, layout
@staticmethod
def check_if_block_weight(W, micro_gemm):
return True
@classmethod
def block_weight(cls, W, new_size, padding):
# These are separated into two methods to allow subclasses to override them separately
if isinstance(W, ir.IRNode):
if W.get_name() in V.graph.constants:
# Create a new buffer, representing the constant blocked tensor
blocked_w = ir.Buffer(
name=W.get_name(), # Borrow the registered buffer name
layout=ir.FixedLayout(
W.get_device_or_error(),
W.get_dtype(),
new_size,
ir.FlexibleLayout.contiguous_strides(new_size),
0,
),
)
else:
if not isinstance(W, ir.TensorBox):
W = ir.TensorBox(W)
permute_dims = list(range(len(new_size)))
permute_dims[-2], permute_dims[-3] = permute_dims[-3], permute_dims[-2]
permute_size = list(new_size)
permute_size[-2], permute_size[-3] = permute_size[-3], permute_size[-2]
blocked_w = L.constant_pad_nd(W, (0, padding))
blocked_w = L.permute(
L.view(blocked_w, permute_size),
permute_dims,
)
else:
assert isinstance(W, torch.Tensor)
# Pad the weight tensor and reshape it into a 3D blocked shape
blocked_size = list(new_size)
blocked_size[-2], blocked_size[-3] = blocked_size[-3], blocked_size[-2]
blocked_w = (
torch.nn.functional.pad(W, (0, padding)) # type: ignore[assignment]
.reshape(*blocked_size)
.transpose(-3, -2)
.contiguous()
)
return blocked_w
@classmethod
def pack_vnni_weight(cls, W, micro_gemm, new_size):
# These are separated into two methods to allow subclasses to override them separately
if isinstance(W, ir.IRNode):
if isinstance(W, ir.Buffer) and W.get_name() in V.graph.constants:
return W
k = new_size[-2]
if not isinstance(W, ir.TensorBox):
W = ir.TensorBox(W)
if micro_gemm.get_b_layout() != LayoutType.NORMAL:
permute_dims = list(range(len(new_size) + 1))
permute_dims[-1], permute_dims[-2] = permute_dims[-2], permute_dims[-1]
vnni_size = 4 if micro_gemm.get_b_layout() == LayoutType.VNNI4 else 2
vnni_view_size = list(new_size)
vnni_view_size[-2] = k // vnni_size
vnni_view_size.insert(-1, vnni_size)
W = L.view(
L.permute(L.view(W, vnni_view_size), permute_dims),
new_size,
)
W = ir.ExternKernel.realize_input(W)
W = ir.ExternKernel.require_contiguous(W)
return W
else:
k = new_size[-2]
# Apply VNNI packing to the weight tensor
if micro_gemm.get_b_layout() != LayoutType.NORMAL:
# TODO: Move VNNI weight packing for non-constant tensors into the template,
# to improve cache locality and avoid full-tensor copy.
layout_str = (
"VNNI4"
if micro_gemm.get_b_layout() == LayoutType.VNNI4
else "VNNI2"
)
assert micro_gemm.get_b_layout() in [
LayoutType.VNNI2,
LayoutType.VNNI4,
], f"We only support {layout_str} for now"
vnni_size = 4 if micro_gemm.get_b_layout() == LayoutType.VNNI4 else 2
assert (
k % vnni_size == 0
), f"k should be divisible by vnni_size for {layout_str} layout"
vnni_view_size = list(new_size)
vnni_view_size[-2] = k // vnni_size
vnni_view_size.insert(-1, vnni_size)
W = W.view(vnni_view_size).transpose(-1, -2).contiguous().view(new_size)
# normalize stride to be "contiguous_strides" per size
# this avoids the problems in L.view during template codegen
new_stride = [1]
for sz in reversed(W.shape[1:]):
new_stride.insert(0, new_stride[0] * sz)
W = W.as_strided(W.shape, new_stride)
return W
def get_default_reindexers(self, epilogue_nodes):
return [None] * len(epilogue_nodes)
def get_options(
self,
kernel: CppTemplateKernel,
template_buffer_node: Optional[ir.CppTemplateBuffer] = None,
flag_template_buffer_has_other_users: Optional[bool] = None,
epilogue_nodes: Optional[List[ir.IRNode]] = None,
) -> Dict[str, Any]:
assert len(self.input_nodes) >= 2
int8_gemm = self.input_nodes[0].get_dtype() == torch.uint8
x_scale = None
x_zp = None
w_scale = None
w_zp = None
if int8_gemm:
X, W = self.input_nodes[0], self.input_nodes[1]
bias_idx = 2 if self.has_bias else 1
inp = self.input_nodes[bias_idx] if self.has_bias else None
x_scale = self.input_nodes[bias_idx + 1]
x_zp = self.input_nodes[bias_idx + 2]
w_scale = self.input_nodes[bias_idx + 3]
w_zp = self.input_nodes[bias_idx + 4]
Y = self.output_node
else:
X, W = self.input_nodes[0], self.input_nodes[1]
Y = self.output_node
inp = self.input_nodes[2] if self.has_bias else None
template_buffer_has_other_users = None
if template_buffer_node is not None:
# Use the updated prepacked weight buffer
W = template_buffer_node.inputs[1]
Y = template_buffer_node
assert flag_template_buffer_has_other_users is not None
template_buffer_has_other_users = flag_template_buffer_has_other_users
template_buffer = Y
gemm_output_buffer = template_buffer
epilogues: List[ir.IRNode] = []
reindexers: List[Optional[Callable[[List[Any]], List[Any]]]] = []
epilogue_creators: List[Callable[[ir.Buffer], ir.Pointwise]] = []
fake_buffers: List[ir.Buffer] = []
Y_aliases: Set[str] = set()
use_local_acc = (
self.layout.dtype != torch.float
or template_buffer_has_other_users
or int8_gemm
or self.padded_n != self.n
or self.maybe_k_slicing()
)
# TODO(jgong5): for int8 gemm, bias-add is handled outside of gemm template,
# but we'd better move it here to align with fp.
if inp is not None and self.beta != 0 and not int8_gemm:
# add an epilogue for bias add
def _bias_add_epilogue(buf):
return create_epilogue_with_attr(
buf, "bias_add", other=inp, beta=self.beta, dtype=self.layout.dtype
)
epilogue_creators.append(_bias_add_epilogue)
if self.epilogue_creator is not None:
epilogue_creators.append(self.epilogue_creator)
# When the GEMM output buffer is localized but it has users other than the epilogue nodes,
# we need to copy the value in the GEMM output local buffer to a global buffer.
def need_copy_from_local_to_global_buffer_epilogue(
use_local_acc, template_buffer_has_other_users, epilogue_creators
):
# The GEMM output buffer is a global buffer, thus copy is not needed.
if not use_local_acc:
return False
# The possible value of template_buffer_has_other_users is (None, False, True)
# It is None when generating the gemm template during autotune and it will have value during scheduler codegen.
# extra copy_from_local_to_global_buffer_epilogue is not needed in either of the below two cases:
# 1. template_buffer_has_other_users is None (i.e. when doing the codegen during autotune)
# 2. template_buffer_has_other_users is False, which means it's safe to keep the value in the
# GEMM output buffer in local buffer only (no users outside of the epilogues will use its value).
if not template_buffer_has_other_users:
return False
# When bias is not None or self.epilogue_creator is not None,
# there will be epilogue_creators after the GEMM.
# The GEMM output buffer is localized while
# the output buffer of the epilogue_creators is a global buffer.
if epilogue_creators:
return False
return True
if need_copy_from_local_to_global_buffer_epilogue(
use_local_acc, template_buffer_has_other_users, epilogue_creators
):
def copy_from_local_to_global_buffer_epilogue(input_buffer: ir.Buffer):
dtype = self.layout.dtype
input_loader = input_buffer.make_loader()
def copy_inner(index):
input = input_loader(index)
result = ops.to_dtype(input, dtype)
return result
return ir.Pointwise(
device=input_buffer.get_device_or_error(),
dtype=self.layout.dtype,
inner_fn=copy_inner,
ranges=input_buffer.get_size(),
)
epilogue_creators.append(copy_from_local_to_global_buffer_epilogue)
# NOTE [How CPP GEMM template epilogues are organized]
# gemm_output_buffer
# --> zero or more in-template epilogues (created by `epilogue_creators`) -->
# template_buffer
# --> zero or more out-of-template epilogues (`epilogue_nodes`) -->
# Y
if epilogue_creators:
gemm_output_name = f"{template_buffer.get_name()}_GemmOut"
gemm_output_buffer = ir.Buffer(
name=gemm_output_name, layout=template_buffer.layout
)
current_input_buffer = gemm_output_buffer
for i, creator in enumerate(epilogue_creators):
if i == len(epilogue_creators) - 1:
buffer_name = template_buffer.get_name()
else:
buffer_name = f"{gemm_output_name}_epilogue_{i}"
epilogues.append(
ir.ComputedBuffer(
name=buffer_name,
layout=template_buffer.layout,
data=creator(current_input_buffer),
)
)
fake_buffers.append(current_input_buffer)
Y_aliases.add(current_input_buffer.get_name())
reindexers.append(None)
if i < len(epilogue_creators) - 1:
current_input_buffer = ir.Buffer(
name=buffer_name, layout=template_buffer.layout
)
Y_2d: Union[ir.Buffer, ir.ReinterpretView] = Y
if epilogue_nodes:
if not template_buffer_has_other_users:
Y_aliases.add(template_buffer.get_name())
epilogues.extend(epilogue_nodes)
assert Y.get_numel() == epilogues[-1].get_numel()
Y = cast(ir.Buffer, epilogues[-1])
Y_2d, reindexers = gen_2d_view_of_epilogue_buf(
Y,
template_buffer,
epilogue_nodes,
reindexers,
default_reindexers=self.get_default_reindexers(epilogue_nodes),
)
output_dtype, compute_dtype = get_gemm_template_output_and_compute_dtype(
X.get_dtype()
)
micro_gemm = create_micro_gemm(
f"{kernel.kernel_name}_micro_gemm",
self.m,
self.n,
self.k,
input_dtype=X.get_dtype(),
input2_dtype=W.get_dtype(),
output_dtype=output_dtype,
compute_dtype=compute_dtype,
alpha=self.alpha,
num_threads=self.num_threads,
)
assert micro_gemm is not None
assert self.register_blocking == micro_gemm.register_blocking
self.log_blockings()
if isinstance(micro_gemm, CppMicroGemmAMX):
counters["inductor"]["cpp_micro_gemm_amx_counter"] += 1
if isinstance(micro_gemm, CppMicroBrgemm):
counters["inductor"]["cpp_micro_brgemm_counter"] += 1
L1_cache_size = torch._C._cpu._L1d_cache_size() # per core cache size in Bytes
assert L1_cache_size > 0, f"Expect L1_cache_size > 0 but got {L1_cache_size}"
L2_cache_size = torch._C._cpu._L2_cache_size() # per core cache size in Bytes
assert L2_cache_size > 0, f"Expect L2_cache_size > 0 but got {L2_cache_size}"
options = dict(
X=X,
W=W,
inp=inp,
Y=Y,
N=self.n,
K=self.k,
PADDED_N=self.padded_n,
GemmOut=gemm_output_buffer,
aliases={alias: Y.get_name() for alias in Y_aliases},
beta=self.beta,
alpha=self.alpha,
num_threads=self.num_threads,
micro_gemm=micro_gemm,
is_dynamic_M=self.is_dynamic_M,
template=self,
kernel=kernel,
export_declaration=get_export_declaration(),
epilogue_nodes=epilogues,
reindexers=reindexers,
Y_2d=Y_2d,
use_local_acc=use_local_acc,
maybe_k_slicing=self.maybe_k_slicing(),
x_scale=x_scale,
x_zp=x_zp,
w_scale=w_scale,
w_zp=w_zp,
acc_buf_dtype=torch.int32 if int8_gemm else torch.float,
DTYPE_TO_CPP=DTYPE_TO_CPP,
L1_cache_size=L1_cache_size,
L2_cache_size=L2_cache_size,
config=config,
fake_buffers=fake_buffers,
)
return options
def render( # type: ignore[override, return]
self,
kernel: CppTemplateKernel,
template_buffer_node: Optional[ir.CppTemplateBuffer] = None,
flag_template_buffer_has_other_users: Optional[bool] = None,
epilogue_nodes: Optional[List[ir.IRNode]] = None,
**kwargs,
) -> str:
options = self.get_options(
kernel=kernel,
template_buffer_node=template_buffer_node,
flag_template_buffer_has_other_users=flag_template_buffer_has_other_users,
epilogue_nodes=epilogue_nodes,
)
self.render_options = options
with contextlib.ExitStack() as stack:
for buf in options["fake_buffers"]:
stack.enter_context(
patch.object(V.graph, "get_dtype", self._fake_get_dtype(buf))
)
return self._template_from_string(GEMM_TEMPLATE).render(**options)
def codegen_blocks(
self,
num_threads,
N,
K,
micro_gemm,
is_dynamic_M,
kernel,
GemmOut,
config,
L1_cache_size,
L2_cache_size,
X,
W,
):
options = dict(
num_threads=num_threads,
N=N,
K=K,
micro_gemm=micro_gemm,
is_dynamic_M=is_dynamic_M,
kernel=kernel,
GemmOut=GemmOut,
config=config,
L1_cache_size=L1_cache_size,
L2_cache_size=L2_cache_size,
template=self,
X=X,
W=W,
)
return self._template_from_string(GEMM_TEMPLATE_INIT_BLOCKING).render(options)
def codegen_microkernel_def(self):
return self._template_from_string(GEMM_TEMPLATE_MICROKERNEL_DEF).render(
self.render_options
)
def codegen_gemm_stub_def(self):
microkernel = self.codegen_microkernel_def()
return microkernel + self._template_from_string(GEMM_TEMPLATE_STUB_DEF).render(
self.render_options
)
def codegen_multi_threads_params(self):
return self._template_from_string(GEMM_TEMPLATE_MULTI_THREADS_PARAMS).render()
def codegen_single_thread_params(self, is_dynamic_M):
options = dict(
is_dynamic_M=is_dynamic_M,
)
return self._template_from_string(GEMM_TEMPLATE_SINGLE_THREAD_PARAMS).render(
options
)
def codegen_m_loop_params(self):
return self._template_from_string(GEMM_TEMPLATE_M_LOOP_PARAMS).render()
def codegen_n_loop_params(self):
return self._template_from_string(GEMM_TEMPLATE_N_LOOP_PARAMS).render()
|