1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
#pragma once
#include <algorithm>
#include <atomic>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <memory>
#include <optional>
#include <map>
#include <omp.h>
// WARNING: be extra careful when including more ATen/c10 header files here!
// Because AOTInductor generated code will copy-paste this cpp_prefix.h for
// the CPU backend, we have to make sure the used headers are implemented
// in a header-only way, i.e. all the function and class definitions are
// in .h files instead of .cpp files, to avoid ABI backward-compatiblity breakage.
#include <ATen/NumericUtils.h>
#include <ATen/core/PhiloxRNGEngine.h>
#include <c10/util/Float8_e4m3fn.h>
#include <c10/util/Float8_e5m2.h>
#include <c10/util/BFloat16.h>
#include <c10/util/BFloat16-math.h>
#include <c10/util/generic_math.h>
#include <c10/util/Half.h>
#include <c10/util/TypeCast.h>
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR) || defined(CPU_CAPABILITY_NEON) || defined(CPU_CAPABILITY_VSX) || defined(CPU_CAPABILITY_SVE256)
#define INDUCTOR_USE_VECTOR_TYPES() 1
#else
#define INDUCTOR_USE_VECTOR_TYPES() 0
#endif
#if INDUCTOR_USE_VECTOR_TYPES()
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#else
// For calc_erfinv
#include <ATen/native/Math.h>
#endif
typedef at::Half half;
typedef at::BFloat16 bfloat16;
typedef at::Float8_e4m3fn float8_e4m3fn;
typedef at::Float8_e5m2 float8_e5m2;
template <typename T>
struct Welford {
T mean = T(0);
T m2 = T(0);
// Use weight for tail cases since the index of each element in the vec may be
// different. A single index can not express masked welford reduction.
T weight = T(0);
uint64_t index = 0;
};
template <typename T>
struct IsVecType: std::false_type {};
#if INDUCTOR_USE_VECTOR_TYPES()
template <typename T>
struct IsVecType<at::vec::Vectorized<T>>: std::true_type {};
#endif
template <typename T>
struct WeightRecp {
using scalar_t = typename T::value_type;
std::vector<scalar_t> weight_recps;
WeightRecp(uint64_t N) {
weight_recps.reserve(N);
for (const auto i : c10::irange(N)) {
weight_recps.push_back(
scalar_t(static_cast<double>(1) / static_cast<double>(i + 1)));
}
}
};
template <typename T>
Welford<T> welford_combine(const Welford<T>& a, const Welford<T>& b, bool use_index=false) {
if (a.index == 0) {
return b;
}
if (b.index == 0) {
return a;
}
auto delta = b.mean - a.mean;
auto a_weight = use_index ? T(a.index) : a.weight;
auto b_weight = use_index ? T(b.index) : b.weight;
auto new_weight = a_weight + b_weight;
auto new_index = a.index + b.index;
auto wb_over_w = b_weight / new_weight;
if constexpr (IsVecType<T>::value) {
// Guard against division by zero
wb_over_w = T::blendv(wb_over_w, T(0), new_weight == T(0));
}
auto result = Welford<T>{
a.mean + delta * wb_over_w,
a.m2 + b.m2 + delta * delta * a_weight * wb_over_w,
new_weight,
new_index
};
return result;
}
template <typename T>
Welford<T> welford_combine(const Welford<T>& acc, const T& data, const WeightRecp<T>* w=nullptr) {
// Add a single data point
uint64_t new_index = acc.index + 1;
auto new_weight = acc.weight + T(1);
auto delta = data - acc.mean;
T new_mean;
if constexpr (!IsVecType<T>::value) {
new_mean = acc.mean + delta / new_weight;
} else {
// use new_index to fecth 1 / new_weight to avoid divisions
new_mean = acc.mean +
((w == nullptr || acc.index >= w->weight_recps.size())
? delta / new_weight
: delta * T(w->weight_recps[acc.index]));
}
auto new_delta = data - new_mean;
auto result = Welford<T>{
new_mean,
acc.m2 + delta * new_delta,
new_weight,
new_index
};
return result;
}
template <typename T>
struct IndexValue {
int64_t index;
T value;
IndexValue(int64_t idx, T val) :index(idx), value(val) {};
IndexValue() {};
};
#if INDUCTOR_USE_VECTOR_TYPES()
template <typename T>
Welford<T> welford_combine(const Welford<T>& acc, const T& data, const int64_t tail_size, const WeightRecp<T>* w=nullptr) {
auto out = welford_combine(acc, data, w);
return Welford<T>{
T::set(acc.mean, out.mean, tail_size),
T::set(acc.m2, out.m2, tail_size),
T::set(acc.weight, out.weight, tail_size),
out.index
};
}
template <typename T>
T max_masked_reduce(const T& a, const T& b, const int64_t tail_size) {
auto out = at::vec::maximum(a, b);
return T::set(a, out, tail_size);
}
template <typename T>
T min_masked_reduce(const T& a, const T& b, const int64_t tail_size) {
auto out = at::vec::minimum(a, b);
return T::set(a, out, tail_size);
}
template <typename T>
T sum_masked_reduce(const T& a, const T& b, const int64_t tail_size) {
auto out = a + b;
return T::set(a, out, tail_size);
}
template <typename T>
T prod_masked_reduce(const T& a, const T& b, const int64_t tail_size) {
auto out = a * b;
return T::set(a, out, tail_size);
}
template <typename T>
T xor_sum_masked_reduce(const T& a, const T& b, const int64_t tail_size) {
auto out = a ^ b;
return T::set(a, out, tail_size);
}
#endif
// Refer to https://github.com/pytorch/pytorch/blob/b5b36cf0c4e1958f1ff25120f5d4beeef3288187/
// aten/src/ATen/native/SharedReduceOps.h#L419-L445
template <typename scalar_t>
inline bool greater_or_nan(scalar_t a, scalar_t b, int64_t idx_a, int64_t idx_b) {
// If (a == b), then choose the one with lower idx, else max(a, b)
if (at::_isnan(a)) {
if (at::_isnan(b)) {
return idx_a < idx_b;
}
return true;
}
return (a == b) ? idx_a < idx_b : (a > b);
}
template <typename scalar_t>
inline bool less_or_nan(scalar_t a, scalar_t b, int64_t idx_a, int64_t idx_b) {
// If (a == b), then choose the one with lower idx, else min(a, b)
if (at::_isnan(a)) {
if (at::_isnan(b)) {
return idx_a < idx_b;
}
return true;
}
return (a == b) ? idx_a < idx_b : (a < b);
}
template <typename T>
inline IndexValue<T>& argmin_combine(IndexValue<T>& a, T next_value, int64_t next_index){
if(!(less_or_nan(a.value, next_value, a.index, next_index))){
a.value = next_value;
a.index = next_index;
}
return a;
}
template <typename T>
inline IndexValue<T>& argmax_combine(IndexValue<T>& a, T next_value, int64_t next_index){
if(!(greater_or_nan(a.value, next_value, a.index, next_index))){
a.value = next_value;
a.index = next_index;
}
return a;
}
template <typename T>
inline IndexValue<T>& argmin_combine(IndexValue<T>& a, const IndexValue<T>& next){
return argmin_combine(a, next.value, next.index);
}
template <typename T>
inline IndexValue<T>& argmax_combine(IndexValue<T>& a, const IndexValue<T>& next){
return argmax_combine(a, next.value, next.index);
}
#if INDUCTOR_USE_VECTOR_TYPES()
template <typename scalar_t>
inline at::vec::Vectorized<scalar_t> div_floor_floating_vec(
const at::vec::Vectorized<scalar_t>& a,
const at::vec::Vectorized<scalar_t>& b) {
using vec_t = at::vec::Vectorized<scalar_t>;
const auto basic_div = a / b;
vec_t inf(std::numeric_limits<scalar_t>::infinity());
auto mod = a.fmod(b);
// Fixup for a case that isn't properly handled by Sleef_fmod
auto floor = vec_t::blendv(a - mod, a, (basic_div.abs() == inf) & (a.abs() != inf));
auto div = floor / b;
const auto zero = vec_t(0);
auto mask = (mod != zero) & ((b < zero) ^ (mod < zero));
const auto one = vec_t(1);
div = vec_t::blendv(div, div - one, mask);
auto floordiv = div.floor();
mask = (div - floordiv) > vec_t(0.5);
floordiv = vec_t::blendv(floordiv, floordiv + one, mask);
floordiv = vec_t::blendv(floordiv, zero.copysign(basic_div), div == zero);
floordiv = vec_t::blendv(floordiv, basic_div, b == zero);
return floordiv;
};
template <typename scalar_t, int N>
inline at::vec::VectorizedN<scalar_t, N> div_floor_floating_vec(
const at::vec::VectorizedN<scalar_t, N>& a,
const at::vec::VectorizedN<scalar_t, N>& b) {
at::vec::VectorizedN<scalar_t, N> result;
#ifndef _MSC_VER
#pragma unroll
#endif
for (int i = 0; i < N; ++i) {
result[i] = div_floor_floating_vec(a[i], b[i]);
}
return result;
}
template <typename T, int NV, int NI>
struct IndexValueVec {
at::vec::VectorizedN<T, NV> value;
at::vec::VectorizedN<int64_t, NI> index;
IndexValueVec(const T _value) {
value = at::vec::VectorizedN<T, NV>(_value);
index = at::vec::VectorizedN<int64_t, NI>(0);
};
IndexValueVec() {};
};
template <typename T, int NV, int NI,
typename std::enable_if_t<at::vec::is_floating_point_v<T>, int> = 0>
at::vec::VecMask<int64_t, NI> inline get_mask_for_argmin_argmax(
const at::vec::VecMask<T, NV>& vmask,
const IndexValueVec<T, NV, NI>& a,
const at::vec::VectorizedN<T, NV>& value,
const at::vec::VectorizedN<int64_t, NI>& index
){
/*
vec impl for less_or_nan and greater_or_nan
example for argmin:
a.value = [NaN, NaN, 0, 2, 1, 0]
value = [NaN, 0, 0, 1, 2, NaN]
vmask = [false, false, false, false, true, false]
all_nan_or_equal = [true, false, true, false, false, false]
imask = [a.index[0] < index[0], ..., a.index[-1] < index[-1]]
iv_mask = blendv (vmask, imask, all_nan_or_equal)
[a.index[0] < index[0], false, a.index[2] < index[2], false, true, false]
a_nan_b_not: [false, false, false, false, false, true]
mask = iv_mask | a_nan_b_not
[a.index[0] < index[0], false, a.index[2] < index[2], false, true, true]
*/
using v_t = at::vec::VecMask<T, NV>;
using i_t = at::vec::VecMask<int64_t, NI>;
i_t vmask_itype = vmask.template cast<int64_t, NI>();
// use itype here since there is vec impl for operator~ for itype
// while there may not vec impl for vtype
v_t isnan_a = a.value.isnan();
i_t isnan_a_itype = isnan_a.template cast<int64_t, NI>();
v_t isnan_b = value.isnan();
i_t isnan_b_type = isnan_b.template cast<int64_t, NI>();
i_t all_nan_mask = isnan_a_itype & isnan_b_type;
v_t equal_mask = (a.value == value);
i_t equal_mask_itype = equal_mask.template cast<int64_t, NI>();
i_t all_nan_or_equal = all_nan_mask | equal_mask_itype;
i_t imask(a.index < index);
i_t iv_mask = i_t::blendv(vmask_itype, imask, all_nan_or_equal);
i_t isnan_a_notnan_b = isnan_a_itype & (~isnan_b_type);
return iv_mask | isnan_a_notnan_b;
}
template <typename T, int NV, int NI,
typename std::enable_if_t<!at::vec::is_floating_point_v<T>, int> = 0>
at::vec::VecMask<int64_t, NI> inline get_mask_for_argmin_argmax(
const at::vec::VecMask<T, NV>& vmask,
const IndexValueVec<T, NV, NI>& a,
const at::vec::VectorizedN<T, NV>& value,
const at::vec::VectorizedN<int64_t, NI>& index
){
using v_t = at::vec::VecMask<T, NV>;
using i_t = at::vec::VecMask<int64_t, NI>;
i_t vmask_itype = vmask.template cast<int64_t, NI>();
v_t equal_mask = (a.value == value);
i_t equal_mask_itype = equal_mask.template cast<int64_t, NI>();
i_t imask(a.index < index);
return i_t::blendv(vmask_itype, imask, equal_mask_itype);
}
template <typename T, int NV, int NI>
inline IndexValueVec<T, NV, NI>& argmin_vec_impl(IndexValueVec<T, NV, NI>& a, at::vec::VectorizedN<T, NV> value, at::vec::VectorizedN<int64_t, NI> index, std::optional<int64_t> tail_size){
at::vec::VecMask<T, NV> vmask(a.value < value);
at::vec::VecMask<int64_t, NI> final_mask = get_mask_for_argmin_argmax<T, NV, NI>(vmask, a, value, index);
if (tail_size.has_value()) {
a.value = at::vec::VectorizedN<T, NV>::set(a.value, at::vec::minimum(a.value, value), tail_size.value());
a.index = at::vec::VectorizedN<int64_t, NI>::set(a.index, at::vec::VecMask<int64_t, NI>::blendv(index, a.index, final_mask), tail_size.value());
} else {
a.value = at::vec::minimum(a.value, value);
a.index = at::vec::VecMask<int64_t, NI>::blendv(index, a.index, final_mask);
}
return a;
}
template <typename T, int NV, int NI>
inline IndexValueVec<T, NV, NI>& argmax_vec_impl(IndexValueVec<T, NV, NI>& a, at::vec::VectorizedN<T, NV> value, at::vec::VectorizedN<int64_t, NI> index, std::optional<int64_t> tail_size){
at::vec::VecMask<T, NV> vmask(a.value > value);
at::vec::VecMask<int64_t, NI> final_mask = get_mask_for_argmin_argmax<T, NV, NI>(vmask, a, value, index);
if (tail_size.has_value()) {
a.value = at::vec::VectorizedN<T, NV>::set(a.value, at::vec::maximum(a.value, value), tail_size.value());
a.index = at::vec::VectorizedN<int64_t, NI>::set(a.index, at::vec::VecMask<int64_t, NI>::blendv(index, a.index, final_mask), tail_size.value());
} else {
a.value = at::vec::maximum(a.value, value);
a.index = at::vec::VecMask<int64_t, NI>::blendv(index, a.index, final_mask);
}
return a;
}
template <typename T, int NI, bool horizontal>
inline at::vec::VectorizedN<int64_t, NI> create_index(int64_t next_index){
at::vec::VectorizedN<int64_t, NI> next_idx;
if constexpr (horizontal) {
next_idx = at::vec::VectorizedN<int64_t, NI>::arange(next_index, 1);
} else {
next_idx = at::vec::VectorizedN<int64_t, NI>(next_index);
}
return next_idx;
}
template <typename T, int NV, int NI, bool horizontal>
inline IndexValueVec<T, NV, NI>& argmin_combine_vec(IndexValueVec<T, NV, NI>& a, at::vec::VectorizedN<T, NV> next_value, int64_t next_index, std::optional<int64_t> tail_size = std::nullopt){
auto next_idx = create_index<T, NI, horizontal>(next_index);
return argmin_vec_impl(a, next_value, next_idx, tail_size);
}
template <typename T, int NV, int NI, bool horizontal>
inline IndexValueVec<T, NV, NI>& argmax_combine_vec(IndexValueVec<T, NV, NI>& a, at::vec::VectorizedN<T, NV> next_value, int64_t next_index, std::optional<int64_t> tail_size = std::nullopt){
auto next_idx = create_index<T, NI, horizontal>(next_index);
return argmax_vec_impl(a, next_value, next_idx, tail_size);
}
template <typename T, int NV, int NI>
inline IndexValue<T> argmin_vec_reduce_all(const IndexValueVec<T, NV, NI>& vec){
constexpr int len = at::vec::VectorizedN<T, NV>::size();
__at_align__ T tmpval[len];
__at_align__ int64_t tmpidx[len];
vec.value.store(tmpval);
vec.index.store(tmpidx);
IndexValue res = IndexValue<T>(tmpidx[0], tmpval[0]);
for (int i = 1; i < len; i++){
res = argmin_combine(res, tmpval[i], tmpidx[i]);
}
return res;
}
template <typename T, int NV, int NI>
inline IndexValue<T> argmax_vec_reduce_all(const IndexValueVec<T, NV, NI>& vec){
constexpr int len = at::vec::VectorizedN<T, NV>::size();
__at_align__ T tmpval[len];
__at_align__ int64_t tmpidx[len];
vec.value.store(tmpval);
vec.index.store(tmpidx);
IndexValue res = IndexValue<T>(tmpidx[0], tmpval[0]);
for (int i = 1; i < len; i++){
res = argmax_combine(res, tmpval[i], tmpidx[i]);
}
return res;
}
template <typename T, int NV, int NI>
inline IndexValueVec<T, NV, NI>& argmin_combine_vec(IndexValueVec<T, NV, NI>& vec_a, const IndexValueVec<T, NV, NI>& vec_b, std::optional<int64_t> tail_size = std::nullopt){
return argmin_vec_impl(vec_a, vec_b.value, vec_b.index, tail_size);
}
template <typename T, int NV, int NI>
inline IndexValueVec<T, NV, NI>& argmax_combine_vec(IndexValueVec<T, NV, NI>& vec_a, const IndexValueVec<T, NV, NI>& vec_b, std::optional<int64_t> tail_size = std::nullopt){
return argmax_vec_impl(vec_a, vec_b.value, vec_b.index, tail_size);
}
template <typename scalar_t>
inline at::vec::Vectorized<scalar_t> vec_shuffle_down(at::vec::Vectorized<scalar_t> x, size_t n) {
using Vec = at::vec::Vectorized<scalar_t>;
alignas(alignof(Vec)) scalar_t array[Vec::size()];
x.store(array);
for (size_t i = 0; i + n < Vec::size(); i += 2 * n) {
array[i] = array[i + n];
}
return Vec::loadu(array);
}
#ifdef CPU_CAPABILITY_AVX2
inline at::vec::Vectorized<float> vec_shuffle_down(at::vec::Vectorized<float> x, size_t n) {
using vec_t = at::vec::Vectorized<float>;
#define SHUFFLE_MASK(z, y, x, w) ((z << 6) | (y << 4) | (x << 2) | w)
switch (n) {
case 1:
return vec_t(_mm256_permute_ps(x, SHUFFLE_MASK(1, 1, 3, 3)));
case 2:
return vec_t(_mm256_permute_ps(x, SHUFFLE_MASK(2, 2, 2, 2)));
case 4:
return vec_t(_mm256_permute2f128_ps(x, x, SHUFFLE_MASK(1, 1, 1, 1)));
}
throw std::runtime_error("Unhandled vec_shuffle_down value " + std::to_string(n));
}
#endif
#ifdef CPU_CAPABILITY_AVX512
inline at::vec::Vectorized<float> vec_shuffle_down(at::vec::Vectorized<float> x, size_t n) {
using vec_t = at::vec::Vectorized<float>;
#define SHUFFLE_MASK(z, y, x, w) ((z << 6) | (y << 4) | (x << 2) | w)
switch (n) {
case 1:
return vec_t(_mm512_permute_ps(x, SHUFFLE_MASK(1, 1, 3, 3)));
case 2:
return vec_t(_mm512_permute_ps(x, SHUFFLE_MASK(2, 2, 2, 2)));
case 4:
return vec_t(_mm512_permutexvar_ps(
_mm512_set_epi32(
12, 12, 12, 12, 12, 12, 12, 12, 4, 4, 4, 4, 4, 4, 4, 4),
x));
case 8:
return vec_t(_mm512_permutexvar_ps(
_mm512_set_epi32(8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8), x));
}
throw std::runtime_error("Unhandled vec_shuffle_down value " + std::to_string(n));
}
#endif
template <typename scalar_t>
Welford<scalar_t> welford_vec_reduce_all(Welford<at::vec::Vectorized<scalar_t>> acc) {
using Vec = at::vec::Vectorized<scalar_t>;
Welford<scalar_t> result;
if (acc.index == 0) {
return result;
}
// if all values of acc.weight are same as index,
// use index to reduce to save the overhead of vec_shuffle_down for acc.weight
bool use_index = (acc.weight - Vec(acc.index)).zero_mask() == static_cast<int>((1 << Vec::size()) - 1);
for (size_t n = 1; n < Vec::size(); n *= 2) {
auto shuffled = Welford<Vec>{
vec_shuffle_down(acc.mean, n),
vec_shuffle_down(acc.m2, n),
use_index ? Vec(0) : vec_shuffle_down(acc.weight, n),
acc.index};
acc = welford_combine(acc, shuffled, use_index);
}
alignas(alignof(Vec)) scalar_t array[Vec::size()];
acc.mean.store(array);
result.mean = array[0];
acc.m2.store(array);
result.m2 = array[0];
acc.weight.store(array);
result.weight = array[0];
result.index = result.weight;
return result;
}
template <typename scalar_t>
Welford<scalar_t> welford_vec_reduce_all(Welford<at::vec::VectorizedN<scalar_t, 2>> acc) {
auto Welford0 = Welford<at::vec::Vectorized<scalar_t>>{
acc.mean[0],
acc.m2[0],
acc.weight[0],
acc.index
};
auto Welford1 = Welford<at::vec::Vectorized<scalar_t>>{
acc.mean[1],
acc.m2[1],
acc.weight[1],
acc.index
};
return welford_vec_reduce_all(welford_combine(Welford0, Welford1));
}
#endif
template <typename T, typename U> inline typename std::common_type_t<T, U> mod(T a, U b) { return a % b; }
template <> inline float mod(float a, float b) { return std::fmod(a, b); }
template <> inline double mod(double a, double b) { return std::fmod(a, b); }
template <typename scalar_t>
inline scalar_t max_propagate_nan(scalar_t a, scalar_t b) {
if (at::_isnan(a)) {
return a;
}
return a > b ? a : b;
}
template <typename scalar_t>
inline scalar_t min_propagate_nan(scalar_t a, scalar_t b) {
if (at::_isnan(a)) {
return a;
}
return a < b ? a : b;
}
constexpr float uint32_to_uniform_float(uint32_t value) {
// maximum value such that `MAX_INT * scale < 1.0` (with float rounding)
constexpr float scale = 4.6566127342e-10;
return static_cast<float>(value & 0x7FFFFFFF) * scale;
}
float normalized_rand_cpu(uint32_t seed, uint32_t offset) {
return uint32_to_uniform_float(at::Philox4_32(seed, 0, offset)());
}
float randn_cpu(uint32_t seed, uint32_t offset) {
at::Philox4_32 engine(seed, 0, offset);
return engine.randn(10);
}
int64_t randint64_cpu(uint32_t seed, uint32_t offset, int64_t low, int64_t high) {
auto gen = at::Philox4_32(seed, 0, offset);
uint64_t r0 = gen();
uint64_t r1 = gen();
uint64_t result = r0 | (r1 << 32);
return static_cast<int64_t>(result % (high - low)) + low;
}
template <typename T> struct AsIntegerType { typedef T type; };
template <> struct AsIntegerType<float> { typedef uint32_t type; };
template <> struct AsIntegerType<double> { typedef uint64_t type; };
template <> struct AsIntegerType<bfloat16> { typedef uint16_t type; };
template <typename T>
typename std::enable_if_t<!std::is_reduced_floating_point_v<T>, T>
inline fetch_value(volatile T *addr) {
return *addr;
}
template <typename T>
typename std::enable_if_t<std::is_reduced_floating_point_v<T>, T>
inline fetch_value(volatile T *addr) {
return T(addr->x, T::from_bits());
}
template <typename T>
typename std::enable_if_t<!std::is_integral_v<T>>
atomic_add(volatile T *addr, T offset) {
typedef typename AsIntegerType<T>::type alt_type;
static_assert(sizeof(std::atomic<alt_type>) == sizeof(T),
"std::atomic issue");
alt_type expected;
alt_type desired;
std::atomic<alt_type> *atomic_addr = (std::atomic<alt_type> *)addr;
do {
T val = fetch_value(addr);
reinterpret_cast<T *>(&expected)[0] = val;
reinterpret_cast<T *>(&desired)[0] = val + offset;
} while (!atomic_addr->compare_exchange_weak(expected, desired,
std::memory_order_relaxed));
}
// Since C++20 float is supported by fetch_add, but the performance may not
// better than compare_exchange_weak, which can be checked by microbenchmark
// inductor_cpu_atomic.py
template <typename T>
typename std::enable_if_t<std::is_integral_v<T>>
atomic_add(volatile T *addr, T offset) {
static_assert(sizeof(std::atomic<T>) == sizeof(T),
"std::atomic issue");
std::atomic<T> *atomic_addr = (std::atomic<T> *)addr;
atomic_addr->fetch_add(offset, std::memory_order_relaxed);
}
#if INDUCTOR_USE_VECTOR_TYPES()
template <typename T, int NI, int NV>
void atomic_add_vec(T *addr, at::vec::VectorizedN<int64_t, NI> index, at::vec::VectorizedN<T, NV> offset) {
constexpr int len = at::vec::VectorizedN<int64_t, NI>::size();
static_assert(len <= at::vec::VectorizedN<T, NV>::size());
__at_align__ std::array<T, len> tmpbuf;
__at_align__ std::array<int64_t, len> tmpidx;
offset.store(tmpbuf.data(), len);
index.store(tmpidx.data(), len);
for (int i = 0; i < len; i++){
atomic_add(addr + tmpidx[i], tmpbuf[i]);
}
}
#endif
std::tuple<std::shared_ptr<int64_t[]>, int> _get_factors(int64_t number) {
int count = 0;
for (int64_t i = std::sqrt(number); i > 0; --i) {
if (number % i == 0) {
count += 2;
}
}
auto factors = std::shared_ptr<int64_t[]>(new int64_t[count]);
int index = 0;
for (int64_t i = std::sqrt(number); i > 0; --i) {
if (number % i == 0) {
factors[index++] = number / i;
factors[index++] = i;
}
}
return std::make_tuple(factors, count);
}
std::tuple<std::shared_ptr<int64_t[]>, int> get_factors(int64_t number) {
thread_local std::map<int64_t, std::tuple<std::shared_ptr<int64_t[]>, int>> cache;
auto it = cache.find(number);
if (it != cache.end()) {
return it->second;
} else {
auto factors = _get_factors(number);
cache[number] = factors;
return factors;
}
}
void _mm_get_thread_blocking(
int num_threads,
int max_k_slices,
int64_t M,
int64_t N,
int64_t K,
int64_t Mr,
int64_t Nr,
int64_t Kr,
int64_t& Mt,
int64_t& Nt,
int64_t& Kt) {
// see NOTE [Thread blocking in Cpp GEMM] for heuristics
Mt = Nt = Kt = 0;
auto get_blocking = [](int64_t m_factor,
int64_t n_factor,
int64_t k_factor,
int64_t m_blocks,
int64_t n_blocks,
int64_t k_blocks) {
int64_t thread_block_k = (k_blocks + k_factor - 1) / k_factor;
int64_t thread_block_n = (n_blocks + n_factor - 1) / n_factor;
int64_t thread_block_m = (m_blocks + m_factor - 1) / m_factor;
return std::make_tuple(thread_block_m, thread_block_n, thread_block_k);
};
auto is_better_blocking = [=](int64_t Mt_,
int64_t Nt_,
int64_t Kt_,
int64_t Mt,
int64_t Nt,
int64_t Kt) {
return Mt == 0 || Kt_ < Kt || Mt_ * Mr + Nt_ * Nr < Mt * Mr + Nt * Nr;
};
int64_t m_blocks = (M + Mr - 1) / Mr;
int64_t n_blocks = (N + Nr - 1) / Nr;
int64_t k_blocks = (K + Kr - 1) / Kr;
auto [factors, count] = get_factors(num_threads);
assert(count > 0);
for (int i = 0; i < count; ++i) {
int64_t n_factor = factors[i];
int64_t m_factor = num_threads / n_factor;
if (n_blocks >= n_factor && m_blocks >= m_factor) {
auto [Mt_, Nt_, Kt_] = get_blocking(
m_factor, n_factor, 1, m_blocks, n_blocks, k_blocks);
if (is_better_blocking(Mt_, Nt_, Kt_, Mt, Nt, Kt)) {
std::tie(Mt, Nt, Kt) = std::make_tuple(Mt_, Nt_, Kt_);
}
}
}
if (Mt != 0) {
return;
}
for (int i = 0; i < count; ++i) {
int64_t k_factor = factors[i];
if (k_blocks >= k_factor && (max_k_slices == 0 || k_factor <= max_k_slices)) {
auto [mxn_factors, mxn_count] = get_factors(num_threads / k_factor);
for (int j = 0; j < mxn_count; ++j) {
int64_t n_factor = mxn_factors[j];
int64_t m_factor = num_threads / (k_factor * n_factor);
if (n_blocks >= n_factor && m_blocks >= m_factor) {
auto [Mt_, Nt_, Kt_] = get_blocking(
m_factor, n_factor, k_factor, m_blocks, n_blocks, k_blocks);
if (is_better_blocking(Mt_, Nt_, Kt_, Mt, Nt, Kt)) {
std::tie(Mt, Nt, Kt) = std::make_tuple(Mt_, Nt_, Kt_);
}
}
}
}
}
if (Mt != 0) {
return;
}
for (int i = 0; i < count; ++i) {
int64_t n_factor = factors[i];
int64_t m_factor = num_threads / n_factor;
if (n_blocks >= n_factor || m_blocks >= m_factor) {
auto [Mt_, Nt_, Kt_] = get_blocking(
m_factor, n_factor, 1, m_blocks, n_blocks, k_blocks);
if (is_better_blocking(Mt_, Nt_, Kt_, Mt, Nt, Kt)) {
std::tie(Mt, Nt, Kt) = std::make_tuple(Mt_, Nt_, Kt_);
}
}
}
assert(Mt != 0);
}
void mm_get_thread_blocking(
int num_threads,
int max_k_slices,
int64_t M,
int64_t N,
int64_t K,
int64_t Mr,
int64_t Nr,
int64_t Kr,
int64_t& Mt,
int64_t& Nt,
int64_t& Kt) {
thread_local std::map<
std::tuple<int, int, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t>,
std::tuple<int64_t, int64_t, int64_t>> cache;
auto key = std::make_tuple(num_threads, max_k_slices, M, N, K, Mr, Nr, Kr);
auto it = cache.find(key);
if (it != cache.end()) {
std::tie(Mt, Nt, Kt) = it->second;
return;
} else {
_mm_get_thread_blocking(num_threads, max_k_slices, M, N, K, Mr, Nr, Kr, Mt, Nt, Kt);
cache[key] = std::make_tuple(Mt, Nt, Kt);
}
}
template<typename X_t, typename W_t>
void _mm_get_cache_blocking(
int num_threads,
int64_t M,
int64_t N,
int64_t K,
int64_t Mr,
int64_t Nr,
int64_t Kr,
int64_t Mt_blocks,
int64_t Nt_blocks,
int64_t Kt_blocks,
int64_t& Mc_blocks,
int64_t& Nc_blocks,
int64_t& Kc_blocks,
uint32_t L1_cache_size,
uint32_t L2_cache_size) {
// See NOTE [CPP GEMM Cache Blocking Algorithm] for the cache blocking algorithm.
// TODO(jgong5): cache cache blocking results
// TODO: tune the factor here
float L1_limit_factor = 0.8;
float L2_limit_factor = 0.5;
auto L1 = L1_cache_size * L1_limit_factor;
auto L2 = L2_cache_size * L2_limit_factor;
constexpr size_t num_byte_A = sizeof(X_t);
constexpr size_t num_byte_B = sizeof(W_t);
int64_t size_cache_B = Kr * Kt_blocks * Nr * num_byte_B;
Kc_blocks = Kt_blocks;
if (size_cache_B > L1) {
Kc_blocks = (int64_t)std::floor(L1 / (Kr * Nr * num_byte_B));
}
float min_Mc_ratio = 2;
int64_t min_Mc_blocks = std::ceil(min_Mc_ratio * Mr / Nr);
auto Kt_bytes = Kt_blocks * Kr * num_byte_A;
if (min_Mc_blocks * Mr * Kt_bytes < L2) {
Mc_blocks = std::min(Mt_blocks, (int64_t)std::floor(L2 / (Mr * Kt_bytes)));
Nc_blocks = 1;
} else {
Mc_blocks = Mt_blocks;
Nc_blocks = std::min((int64_t)std::ceil((float)Mc_blocks * Mr / Nr), Nt_blocks);
auto Nc_bytes = Nc_blocks * Nr * 4;
auto Kc_bytes = Kc_blocks * Kr * num_byte_A;
if (Mc_blocks * Mr * (Kc_bytes + Nc_bytes) > L2) {
auto M_max = (std::sqrt(Kc_bytes * Kc_bytes + 16 * L2) - Kc_bytes) / 8;
if (M_max < Mc_blocks * Mr) {
Mc_blocks = (int64_t)std::floor(M_max / Mr);
Nc_blocks = std::min((int64_t)std::ceil((float)Mc_blocks * Mr / Nr), Nt_blocks);
}
}
}
}
template<typename X_t, typename W_t>
void mm_get_cache_blocking(
int num_threads,
int64_t M,
int64_t N,
int64_t K,
int64_t Mr,
int64_t Nr,
int64_t Kr,
int64_t Mt_blocks,
int64_t Nt_blocks,
int64_t Kt_blocks,
int64_t& Mc_blocks,
int64_t& Nc_blocks,
int64_t& Kc_blocks,
uint32_t L1_cache_size,
uint32_t L2_cache_size) {
thread_local std::map<
std::tuple<int, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t, int64_t>,
std::tuple<int64_t, int64_t, int64_t>> cache;
auto key = std::make_tuple(num_threads, M, N, K, Mr, Nr, Kr, Mt_blocks, Nt_blocks, Kt_blocks, L1_cache_size, L2_cache_size);
auto it = cache.find(key);
if (it != cache.end()) {
std::tie(Mc_blocks, Nc_blocks, Kc_blocks) = it->second;
return;
} else {
_mm_get_cache_blocking<X_t, W_t>(
num_threads, M, N, K, Mr, Nr, Kr, Mt_blocks, Nt_blocks, Kt_blocks, Mc_blocks, Nc_blocks, Kc_blocks, L1_cache_size, L2_cache_size);
cache[key] = std::make_tuple(Mc_blocks, Nc_blocks, Kc_blocks);
}
}
struct amx_tilecfg {
uint8_t palette_id;
uint8_t start_row;
uint8_t reserved_0[14];
uint16_t colsb[16];
uint8_t rows[16];
};
class AMXState {
private:
amx_tilecfg tilecfg_;
uint8_t rows_;
uint16_t colsb_;
uint8_t num_tile_rows_;
uint8_t num_tile_columns_;
public:
AMXState() : rows_(0), colsb_(0), num_tile_rows_(0), num_tile_columns_(0) {
memset(&tilecfg_, 0, sizeof(tilecfg_));
}
inline void configure(
uint8_t rows,
uint16_t colsb,
uint8_t num_tile_rows,
uint8_t num_tile_columns,
void (*loadconfig)(const amx_tilecfg&)) {
if (tilecfg_.palette_id == 1 && rows_ == rows && colsb_ == colsb &&
num_tile_rows_ == num_tile_rows &&
num_tile_columns_ == num_tile_columns) {
return;
}
tilecfg_.palette_id = 1;
rows_ = rows;
colsb_ = colsb;
num_tile_rows_ = num_tile_rows;
num_tile_columns_ = num_tile_columns;
const auto num_c_tiles = num_tile_rows * num_tile_columns;
// For C
for (int i = 0; i < num_c_tiles; i++) {
tilecfg_.rows[i] = rows;
tilecfg_.colsb[i] = 64;
}
// For A
for (int i = 0; i < num_tile_rows; i++) {
tilecfg_.rows[i + num_c_tiles] = rows;
tilecfg_.colsb[i + num_c_tiles] = colsb;
}
// For B
for (int i = 0; i < num_tile_columns; i++) {
tilecfg_.rows[i + num_c_tiles + num_tile_rows] = colsb / 4;
tilecfg_.colsb[i + num_c_tiles + num_tile_rows] = 64;
}
loadconfig(tilecfg_);
}
inline void release(void (*tile_release)()) {
tilecfg_.palette_id = 0;
tile_release();
}
};
|