1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
|
# mypy: allow-untyped-defs
import functools
import math
import os
import sys
from itertools import count
from typing import Callable, Dict, List, Optional, Sequence, Set, Tuple
import sympy
from sympy import Expr
import torch
import torch._inductor.async_compile # noqa: F401 required to warm up AsyncCompile pools
import torch._ops
from torch._inductor.runtime.runtime_utils import dynamo_timed
from torch.fx.experimental.symbolic_shapes import ConvertIntKey, DivideByKey, SymTypes
from torch.utils._sympy.symbol import symbol_is_type, SymT
from .. import config, ir
from ..utils import _align, ALIGN_BYTES, cache_on_self, normalize_name
from ..virtualized import V
from .aoti_hipify_utils import maybe_hipify_code_wrapper
from .common import get_device_op_overrides, IndentedBuffer, Kernel
from .cpp_utils import cexpr, DEVICE_TO_ATEN, DTYPE_TO_ATEN, DTYPE_TO_CPP
from .triton_utils import should_unwrap_unspec_arg
from .wrapper import (
EnterSubgraphLine,
ExitSubgraphLine,
PythonWrapperCodegen,
SymbolicCallArg,
)
class CppWrapperCpu(PythonWrapperCodegen):
"""
Generates cpp wrapper for running on CPU and calls cpp kernels
"""
def __init__(self):
if not hasattr(self, "device"):
self.device = "cpu"
super().__init__()
self.declare = "auto "
self.declare_maybe_reference = "decltype(auto) "
self.ending = ";"
self.comment = "//"
self.none_str = "nullptr"
self.supports_intermediate_hooks = False
self.outputs_need_copy = set()
self.kernel_callsite_id = count()
self.var_array_id = (
count()
) # for different types of local array variable declarations
self.declared_var_array_vars = set()
self.int_array_id = count() # for int array local variable declarations
self.declared_int_array_vars = set()
self.tmp_tensor_id = count() # for tmp tensor local variable declarations
self.arg_var_id = count()
self.used_cached_devices = set()
self.used_cached_dtypes = set()
self.used_cached_layouts = set()
self.used_cached_memory_formats = set()
self.used_cond_predicate = set()
self.cached_output_id = count()
self.scalar_to_tensor_id = count()
self.custom_op_wrapper_loaded = False
# For GEMM kernels that must be initialized and are resolved at linking.
self.initialized_kernels: Dict[str, Kernel] = {}
self.device_codegen = get_device_op_overrides(self.device)
@staticmethod
def create(
is_subgraph: bool, subgraph_name: str, parent_wrapper: PythonWrapperCodegen
):
# TODO - support subgraph codegen by lifting functions. Check the
# comment at CppWrapperCpu `codegen_subgraph` function.
return CppWrapperCpu()
def generate_kernel_call(
self,
kernel_name: str,
call_args,
grid=None,
device_index=None,
gpu=False,
triton=False,
arg_types=None,
raw_args=None,
grid_fn: str = "grid",
triton_meta=None,
autotune_configs=None,
grid_extra_kwargs="",
):
"""
Generates kernel call code.
gpu: Defines whether the backend is GPU. Otherwise the backend is CPU.
triton: Defines whether the GPU backend uses Triton for codegen.
Otherwise it uses the CUDA language for codegen.
Only valid when cuda == True.
"""
assert not gpu, "CppWrapperCpu.generate_kernel_call does not support GPU"
assert arg_types is not None and len(call_args) == len(
arg_types
), "Mismatch call_args and arg_types in generate_kernel_call"
new_args = []
for idx, arg in enumerate(call_args):
if "*" in arg_types[idx]:
new_args.append(f"({arg_types[idx]})({arg}.data_ptr())")
else:
# arg is a scalar
new_args.append(arg)
# debug printer related logic for cpp kernel type.
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.set_printer_args(
call_args,
kernel_name,
None,
None,
"cpp",
)
with debug_printer_manager:
self.writeline(self.wrap_kernel_call(kernel_name, new_args))
def write_constant(self, name, hashed):
# include a hash so our code cache gives different constants different files
self.header.writeline(f"// {name} {hashed}")
def write_header(self):
if V.graph.is_const_graph:
# We do not write header for constant graph, it will be written by main module.
return
if V.graph.aot_mode:
self.header.splice(
"""
#include <torch/csrc/inductor/aoti_runtime/interface.h>
#include <torch/csrc/inductor/aoti_runtime/model.h>
"""
)
with open(
os.path.join(os.path.dirname(__file__), "aoti_runtime", "interface.cpp")
) as f:
self.header.splice(f.read())
else:
self.header.splice(
"""
import torch
from torch._inductor.codecache import CppWrapperCodeCache
cpp_wrapper_src = (
'''
#include <pybind11/pybind11.h>
namespace py = pybind11;
class RAIIPyObject {
public:
RAIIPyObject() : obj_(nullptr) {}
RAIIPyObject(PyObject* obj) : obj_(obj) {}
~RAIIPyObject() {
Py_XDECREF(obj_);
}
RAIIPyObject& operator=(const RAIIPyObject& other) {
if (this != &other) {
Py_XDECREF(obj_);
obj_ = other.obj_;
Py_XINCREF(obj_);
}
return *this;
}
operator PyObject*() {
return obj_;
}
PyObject* get() {
return obj_;
}
private:
PyObject* obj_;
};
#include <torch/csrc/inductor/aoti_runtime/device_utils.h>
#include <torch/csrc/inductor/aoti_runtime/utils.h>
using namespace torch::aot_inductor;
"""
)
self.header.splice(
f"""
#include <torch/csrc/inductor/aoti_runtime/arrayref_tensor.h>
#include <torch/csrc/inductor/aoti_runtime/thread_local.h>
#include <torch/csrc/inductor/aoti_runtime/scalar_to_tensor.h>
#include <torch/csrc/inductor/aoti_torch/generated/c_shim_{self.device}.h>
#include <c10/util/generic_math.h>
typedef at::Half half;
typedef at::BFloat16 bfloat16;
// Round up to the nearest multiple of {ALIGN_BYTES}
[[maybe_unused]] static int64_t align(int64_t nbytes) {{
return (nbytes + {ALIGN_BYTES} - 1) & -{ALIGN_BYTES};
}}
"""
)
extend_aoti_c_shim_include = (
f"torch/csrc/inductor/aoti_torch/generated/extend/c_shim_{self.device}.h"
)
extend_aoti_c_shim_path = os.path.join(
os.path.dirname(torch.__file__),
"include",
extend_aoti_c_shim_include,
)
if os.path.exists(extend_aoti_c_shim_path):
self.header.splice(f"#include <{extend_aoti_c_shim_include}>")
enable_kernel_profile = config.cpp.enable_kernel_profile and sys.platform in [
"linux",
"win32",
]
if config.profiler_mark_wrapper_call or enable_kernel_profile:
# No C shim for profiling APIs, assuming profiling is a debugging feature which
# does not provide any ABI compatibility promise.
self.header.splice("#include <ATen/record_function.h>")
@functools.lru_cache(None) # noqa: B019
def include_extra_header(self, header: str):
# This is needed for cpp to python dtype conversion
self.header.splice(f"#include <{header}>")
def mark_output_type(self):
# mark output type to unwrap tensor back to python scalar
from ..ir import ShapeAsConstantBuffer
output_is_tensor = {}
for idx, x in enumerate(V.graph.graph_outputs):
if isinstance(x, ShapeAsConstantBuffer):
output_is_tensor[idx] = False
else:
output_is_tensor[idx] = True
self.output_is_tensor = output_is_tensor
def write_prefix(self):
if V.graph.is_const_graph:
# We do not write prefix for constant graph, it will be written by main module.
return
if V.graph.aot_mode:
self.prefix.writeline("namespace torch::aot_inductor {")
def write_input_output_info(
self,
info_kind: str,
idx: int,
name: str,
):
self.prefix.writeline(f"""{info_kind}[{idx}].name = "{name}";""")
def codegen_input_symbol_assignment(
self,
name: str,
value: ir.TensorBox,
bound_vars: Set[sympy.Symbol],
):
code = self.prefix
@functools.lru_cache(None)
def sizeof(name):
self.codegen_input_size_var_decl(code, name)
return f"{name}_size"
@functools.lru_cache(None)
def strideof(name):
self.codegen_input_stride_var_decl(code, name)
return f"{name}_stride"
if isinstance(value, sympy.Expr):
if not isinstance(value, sympy.Symbol) or value in bound_vars:
return
if value.is_integer:
decl = "int64_t"
elif value.is_float:
decl = "double"
else:
raise AssertionError("Unexpected symbol type")
code.writeline(f"{decl} {value} = {name};")
bound_vars.add(value)
elif isinstance(value, ir.TensorBox):
for dim, size in enumerate(value.get_size()):
if isinstance(size, sympy.Symbol) and size not in bound_vars:
code.writeline(f"int64_t {size} = {sizeof(name)}[{dim}];")
bound_vars.add(size)
for dim, stride in enumerate(value.get_stride()):
if isinstance(stride, sympy.Symbol) and stride not in bound_vars:
code.writeline(f"int64_t {stride} = {strideof(name)}[{dim}];")
bound_vars.add(stride)
else:
raise AssertionError(f"Unknown value type: {type(value)}")
def generate_input_output_runtime_checks(self):
# In debug_compile mode, we generate checks to ensure the dtype/shape/stride of each
# real input/output tensor match ones provided at compile time via sample
# input/output.
def gen_check(handle_kind, idx, name, tensor):
# Wrap AtenTensorHandle with ConstantHandle for cleaner utility function access
self.prefix.writeline(
f"ConstantHandle {name} = ConstantHandle({handle_kind}[{idx}]);"
)
self.codegen_tensor_dtype_var_decl(self.prefix, name)
expected_dtype_name = DTYPE_TO_ATEN[tensor.dtype]
dtype_str = str(tensor.dtype).split(".")[-1]
self.prefix.splice(
f"""
int32_t {name}_expected_dtype = aoti_torch_dtype_{dtype_str}();
if ({name}_expected_dtype != {name}_dtype) {{
std::stringstream ss;
ss << "{handle_kind}[{idx}]: unmatched dtype, "
<< "expected: " << {name}_expected_dtype << "({expected_dtype_name}), "
<< "but got: " << {name}_dtype << "\\n";
throw std::runtime_error(ss.str());
}}
"""
)
self.codegen_input_size_var_decl(self.prefix, name)
for dim_idx, d in enumerate(tensor.get_size()):
if isinstance(d, (int, sympy.Integer)):
self.prefix.splice(
f"""
if ({d} != {name}_size[{dim_idx}]) {{
std::stringstream ss;
ss << "{handle_kind}[{idx}]: unmatched dim value at {dim_idx}, "
<< "expected: {d}, " << "but got: " << {name}_size[{dim_idx}]
<< "\\n";
throw std::runtime_error(ss.str());
}}
"""
)
else:
from torch.utils._sympy.value_ranges import bound_sympy
sym_range = bound_sympy(d, V.graph.sizevars.shape_env.var_to_range)
if not math.isinf(sym_range.lower):
self.prefix.splice(
f"""
if ({name}_size[{dim_idx}] < {sym_range.lower}) {{
std::stringstream ss;
ss << "{handle_kind}[{idx}]: dim value is too small at {dim_idx}, "
<< "expected it to be >= {sym_range.lower}, " << "but got: "
<< {name}_size[{dim_idx}] << "\\n";
throw std::runtime_error(ss.str());
}}
"""
)
if not math.isinf(sym_range.upper):
self.prefix.splice(
f"""
if ({name}_size[{dim_idx}] > {sym_range.upper}) {{
std::stringstream ss;
ss << "{handle_kind}[{idx}]: dim value is too large at {dim_idx}, "
<< "expected to be <= {sym_range.upper}, " << "but got: "
<< {name}_size[{dim_idx}] << "\\n";
throw std::runtime_error(ss.str());
}}
"""
)
self.codegen_input_stride_var_decl(self.prefix, name)
for stride_idx, s in enumerate(tensor.get_stride()):
if not isinstance(s, (int, sympy.Integer)):
continue
self.prefix.splice(
f"""
if ({s} != {name}_stride[{stride_idx}]) {{
std::stringstream ss;
ss << "{handle_kind}[{idx}]: unmatched stride value at {stride_idx}, "
<< "expected: {s}, " << "but got: " << {name}_stride[{stride_idx}]
<< "\\n";
throw std::runtime_error(ss.str());
}}
"""
)
# force noinline to avoid any potential compilation slowdown due to aggressive
# inline done by the host compiler
self.prefix.splice(
"""
AOTI_NOINLINE static void __check_inputs_outputs(
AtenTensorHandle* input_handles,
AtenTensorHandle* output_handles) {
"""
)
with self.prefix.indent():
for idx, (name, tensor) in enumerate(V.graph.graph_inputs.items()):
gen_check("input_handles", idx, name, tensor)
self.prefix.writeline("}")
def write_wrapper_decl(self):
inputs_len = len(V.graph.graph_inputs.keys())
if V.graph.aot_mode:
if V.graph.const_module:
self.header.splice(V.graph.const_module.wrapper_code.header)
self.prefix.splice(V.graph.const_code)
if V.graph.is_const_graph:
self.prefix.splice(
"""
void AOTInductorModel::_const_run_impl(
std::vector<AtenTensorHandle>& output_handles,
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor
) {
"""
)
else:
if not config.aot_inductor.use_runtime_constant_folding:
# If we do not split the constant graph, we'll just create
# an empty implementation when wrapping the main module.
self.prefix.splice(
"""
void AOTInductorModel::_const_run_impl(
std::vector<AtenTensorHandle>& output_handles,
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor
) {}
"""
)
run_impl_proto = """
void AOTInductorModel::run_impl(
AtenTensorHandle*
input_handles, // array of input AtenTensorHandle; handles
// are stolen; the array itself is borrowed
AtenTensorHandle*
output_handles, // array for writing output AtenTensorHandle; handles
// will be stolen by the caller; the array itself is
// borrowed
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor
) {
"""
if config.aot_inductor.debug_compile:
self.generate_input_output_runtime_checks()
run_impl_proto += """
__check_inputs_outputs(input_handles, output_handles);
"""
self.prefix.splice(run_impl_proto)
else:
# cpp entry function for JIT with cpp wrapper
self.prefix.splice(
"""
void inductor_entry_impl(
AtenTensorHandle*
input_handles, // array of input AtenTensorHandle; handles
// are stolen; the array itself is borrowed
AtenTensorHandle*
output_handles // array for writing output AtenTensorHandle; handles
// will be stolen by the caller; the array itself is
// borrowed)
) {
"""
)
with self.prefix.indent():
# assign inputs and outputs in both cases so the later codegen can be simplified
if not V.graph.is_const_graph:
if V.graph.aot_mode:
num_args = len(V.graph.graph_inputs)
else:
# Weights are promoted in the JIT mode
num_args = len(V.graph.graph_inputs) + len(V.graph.constants)
# release GIL to support multiple instances inference (in different threads of the same process)
self.prefix.splice("py::gil_scoped_release release;")
self.prefix.splice(
f"""
auto inputs = steal_from_raw_handles_to_raii_handles(input_handles, {num_args});
"""
)
if inputs_len != 0:
for idx, input_key in enumerate(V.graph.graph_inputs.keys()):
# unwrap input tensor back to scalar
if isinstance(V.graph.graph_inputs[input_key], sympy.Expr):
from ..graph import may_get_constant_buffer_dtype
dtype = may_get_constant_buffer_dtype(
V.graph.graph_inputs[input_key] # type: ignore[arg-type]
)
assert (
dtype is not None
), "Fails to get the dtype of the sympy.Expr"
self.codegen_tensor_item(
dtype, f"inputs[{idx}]", input_key, self.prefix
)
else:
self.prefix.writeline(
f"auto {input_key} = std::move(inputs[{idx}]);"
)
# debug printing for all input args to AOTI model
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.codegen_model_inputs_value_print(
input_args_to_print=[
input_key
for input_key in V.graph.graph_inputs.keys()
if input_key.startswith("arg")
]
)
assert all(
isinstance(v, torch.Tensor) for v in list(V.graph.constants.values())
), "Expect all constants to be Tensor"
for idx, constants_key in enumerate(V.graph.constants.keys()):
if V.graph.aot_mode:
# Weights are stored in constants_ and owned by RAIIAtenTensorHandle there.
# Don't call std::move here because it will cause constants_ to lose the ownership.
self.prefix.writeline(
f"""[[maybe_unused]] auto {constants_key} = constants_->at({idx});"""
)
else:
# Append constants as inputs to the graph
constants_idx = inputs_len + idx
self.prefix.writeline(
f"[[maybe_unused]] auto {constants_key} = std::move(inputs[{constants_idx}]);"
)
self.codegen_inputs()
if V.graph.aot_mode:
if not V.graph.is_const_graph:
self.prefix.writeline("inputs.clear();")
self.prefix.writeline(
"auto& kernels = static_cast<AOTInductorModelKernels&>(*this->kernels_.get());"
)
def codegen_tensor_dtype_var_decl(self, code: IndentedBuffer, name):
code.writeline(f"int32_t {name}_dtype;")
code.writeline(
"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_dtype"
f"({name}, &{name}_dtype));"
)
def codegen_input_size_var_decl(self, code: IndentedBuffer, name):
code.writeline(f"auto {name}_size = {name}.sizes();")
def codegen_input_stride_var_decl(self, code: IndentedBuffer, name):
code.writeline(f"auto {name}_stride = {name}.strides();")
def codegen_model_kernels(self):
self.prefix.writeline("namespace {")
# Tell compiler we need to link with the non-mangled symbols
for kernel in self.initialized_kernels.values():
assert hasattr(
kernel, "get_signature"
), f"{kernel} must have get_signature implemented"
signature = kernel.get_signature()
self.prefix.writeline(f'extern "C" {signature};')
self.prefix.writeline(
"class AOTInductorModelKernels : public AOTInductorModelKernelsBase {"
)
self.prefix.writeline(" public:")
declare_kernel = set(self.src_to_kernel.values()) - set(
self.initialized_kernels.keys()
)
declare_kernel.update(
entry[0] for entry in self.user_defined_kernel_cache.values()
)
if V.graph.const_module:
declare_kernel.update(
V.graph.const_module.wrapper_code.src_to_kernel.values()
)
for kernel in sorted(declare_kernel):
self.prefix.writeline(
maybe_hipify_code_wrapper(
f" {self.device_codegen.cpp_kernel_type()} {kernel}{{nullptr}};"
)
)
for name, kernel in self.initialized_kernels.items():
assert hasattr(
kernel, "get_signature"
), f"{kernel} must have get_signature implemented"
kernel_ptr = f"(*{name})"
signature = kernel.get_signature().replace(name, kernel_ptr)
self.prefix.writeline(f" {signature} = torch::aot_inductor::{name};")
self.prefix.writeline("};")
self.prefix.writeline("} // namespace")
def codegen_model_constructor(self):
"""
// Generated code example
AOTInductorModel::AOTInductorModel()
: AOTInductorModelBase(4, 1) {
inputs_info_[0].name = "input0";
inputs_info_[0].dtype = "torch.float16";
...
constants_info_[0].name = "L__self___weight";
constants_info_[0].dtype = at::kFloat;
constants_info_[0].offset = 0;
constants_info_[0].data_size = 8192;
constants_info_[0].shape = {64, 32};
constants_info_[0].stride = {32, 1};
...
outputs_info_[0].name = "output0";
outputs_info_[0].dtype = "torch.float16";
}
"""
num_inputs = len(V.graph.graph_inputs)
num_outputs = len(V.graph.graph_outputs)
num_constants = len(V.graph.constants)
include_weights = (
"true" if config.aot_inductor.package_constants_in_so else "false"
)
self.prefix.splice(
f"""
AOTInductorModel::AOTInductorModel(std::shared_ptr<ConstantMap> constants_map,
std::shared_ptr<std::vector<ConstantHandle>> constants_array,
const std::string& device_str,
std::optional<std::string> cubin_dir,
bool include_weights)
: AOTInductorModelBase({num_inputs}, {num_outputs}, {num_constants}, device_str, cubin_dir, {include_weights}) {{
"""
)
with self.prefix.indent():
for idx, (name, inp) in enumerate(V.graph.graph_inputs.items()):
assert not isinstance(
inp, sympy.Expr
), f"input {name=} cannot be symbolic"
self.write_input_output_info("inputs_info_", idx, name)
all_cuda = all(
V.graph.get_original_value_of_constant(name).is_cuda
for name in V.graph.constants.keys()
if name not in V.graph.folded_constants
)
for idx, name in enumerate(V.graph.constants.keys()):
tensor = V.graph.get_original_value_of_constant(name)
assert isinstance(tensor, torch.Tensor)
self.prefix.writeline(f"""constants_info_[{idx}].name = "{name}";""")
self.prefix.writeline(
f"constants_info_[{idx}].dtype = static_cast<int32_t>({self.codegen_dtype(tensor.dtype)});"
)
self.prefix.writeline(
f"constants_info_[{idx}].offset = {tensor.storage_offset()};"
)
# If constants to serialize contain cpu tensors, we always align data_size it to 64.
# When loading the constants, the valid data will depends on the size
# not the data_size so there won't be correctness issue.
data_size = (
torch.ops.mkldnn._nbytes(tensor)
if tensor.is_mkldnn
else tensor.untyped_storage().nbytes()
)
self.prefix.writeline(
f"constants_info_[{idx}].data_size = {data_size if all_cuda else _align(data_size)};"
)
from_folded = "true" if name in V.graph.folded_constants else "false"
self.prefix.writeline(
f"constants_info_[{idx}].from_folded = {from_folded};"
)
if name in V.graph.folded_constants:
constant_type_str = "FoldedConstant"
elif name.startswith("_tensor_constant"):
constant_type_str = "TensorConstant"
elif any(
name == normalize_name(parameter_name)
for parameter_name, _ in V.graph.orig_gm.named_parameters()
):
constant_type_str = "Parameter"
elif any(
name == normalize_name(buffer_name)
for buffer_name, _ in V.graph.orig_gm.named_buffers()
):
constant_type_str = "Buffer"
else:
constant_type_str = "Unknown"
self.prefix.writeline(
f"constants_info_[{idx}].type = static_cast<int32_t>(torch::aot_inductor::ConstantType::{constant_type_str});"
)
size_str = ", ".join([str(s) for s in tensor.size()])
self.prefix.writeline(f"constants_info_[{idx}].shape = {{{size_str}}};")
stride_str = ", ".join([str(s) for s in tensor.stride()])
self.prefix.writeline(
f"constants_info_[{idx}].stride = {{{stride_str}}};"
)
self.prefix.writeline(
f"constants_info_[{idx}].layout = static_cast<int32_t>({self.codegen_layout(tensor.layout)});"
)
if tensor.is_mkldnn:
opaque_metadata_tensor = torch.ops.mkldnn._get_mkldnn_serialized_md(
tensor
)
assert (
opaque_metadata_tensor.dim() == 1
), "Expect opaque_metadata_tensor to be 1-D"
opaque_metadata_list = opaque_metadata_tensor.tolist()
opaque_metadata_str = self.codegen_shape_tuple(opaque_metadata_list)
self.prefix.writeline(
f"constants_info_[{idx}].opaque_metadata = {opaque_metadata_str};"
)
if name in V.graph.dynamo_flat_name_to_original_fqn:
original_fqn = V.graph.dynamo_flat_name_to_original_fqn.get(
name, name
)
elif name in V.graph.allocated_constant_name:
original_fqn = V.graph.allocated_constant_name[name]
else:
raise AssertionError("original_fqn must be set for constant")
self.prefix.writeline(
f"""constants_info_[{idx}].original_fqn = "{original_fqn}";"""
)
self.prefix.writeline("update_constants_map(std::move(constants_map));")
self.prefix.writeline("update_constants_array(std::move(constants_array));")
def escape_string(x):
return (
x.replace("\\", "\\\\")
.replace('"', '\\"')
.replace("\n", "\\n")
.replace("\t", "\\t")
)
self.prefix.writeline(
f'in_spec_ = "{escape_string(config.aot_inductor.serialized_in_spec)}";'
)
self.prefix.writeline(
f'out_spec_ = "{escape_string(config.aot_inductor.serialized_out_spec)}";'
)
for idx, output in enumerate(V.graph.graph_outputs):
assert not isinstance(
output, sympy.Expr
), f"output {name=} cannot be symbolic"
name = f"output{idx}"
self.write_input_output_info("outputs_info_", idx, name)
self.prefix.writeline(
"this->kernels_ = std::make_unique<AOTInductorModelKernels>();"
)
self.prefix.writeline("}")
def codegen_const_run_driver(self):
"""
// Generated code example
std::unordered_map<std::string, AtenTensorHandle> AOTInductorModel::const_run_impl(
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor,
bool initialization
) {
std::unordered_map<std::string, AtenTensorHandle> folded_constants_map;
std::vector<AtenTensorHandle> output_handles;
// build up output_handles over here.
_const_run_impl(output_handles, stream, proxy_executor);
// build up folded_constants_map
return folded_constants_map;
}
"""
self.prefix.splice(
"""
std::unordered_map<std::string, AtenTensorHandle> AOTInductorModel::const_run_impl(
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor,
bool initialization
) {
"""
)
if not config.aot_inductor.use_runtime_constant_folding:
self.prefix.splice(
"""
if (!initialization) {
std::cerr << "[WARNING] Calling constant_folding in model, but compiled with config: "
<< "aot_inductor.use_runtime_constant_folding=False\\n";
}
return {};
}
"""
)
return
with self.prefix.indent():
# This is a mapping to the index of constant folding graph's output
const_index_mapping: List[Optional[Tuple[int, str]]] = [None] * len(
V.graph.const_output_index
)
for idx, (name, _) in enumerate(V.graph.constants.items()):
if name in V.graph.const_output_index:
const_index_mapping[V.graph.const_output_index[name]] = (idx, name) # type: ignore[call-overload]
assert (
None not in const_index_mapping
), "Not all constant gets mapped for constant folding graph."
self.prefix.writeline(
f"""
std::unordered_map<std::string, AtenTensorHandle> folded_constants_map;
folded_constants_map.reserve({len(const_index_mapping)});
std::vector<AtenTensorHandle> output_handles({len(const_index_mapping)});
"""
)
self.prefix.splice(
"""
// The below assignment of output_handles to constants is not used directly.
// It's only used to memo the correspondence of handle and constants.
"""
)
for output_idx, (const_idx, _) in enumerate(const_index_mapping): # type: ignore[misc]
self.prefix.writeline(
f"output_handles[{output_idx}] = constants_->at({const_idx});"
)
self.prefix.writeline(
"_const_run_impl(output_handles, stream, proxy_executor);"
)
for output_idx, (_, const_name) in enumerate(const_index_mapping): # type: ignore[misc]
self.prefix.writeline(
f'folded_constants_map["{const_name}"] = output_handles[{output_idx}];'
)
self.prefix.writeline("return folded_constants_map;")
self.prefix.writeline("}")
def generate(self, is_inference):
with dynamo_timed("CppWrapperCpu.generate", log_pt2_compile_event=True):
if V.graph.aot_mode and not V.graph.is_const_graph:
self.codegen_model_kernels()
self.codegen_model_constructor()
self.codegen_const_run_driver()
self.write_wrapper_decl()
return super().generate(is_inference)
def finalize_prefix(self):
cached_dtypes_buffer = IndentedBuffer()
for dtype in self.used_cached_dtypes:
cached_dtypes_buffer.writeline(f"CACHE_TORCH_DTYPE({dtype});")
for device in self.used_cached_devices:
cached_dtypes_buffer.writeline(f"CACHE_TORCH_DEVICE({device});")
for layout in self.used_cached_layouts:
cached_dtypes_buffer.writeline(f"CACHE_TORCH_LAYOUT({layout});")
for memory_format in self.used_cached_memory_formats:
cached_dtypes_buffer.writeline(
f"CACHE_TORCH_MEMORY_FORMAT({memory_format});"
)
cached_dtypes_buffer.splice(self.prefix)
self.prefix = cached_dtypes_buffer
def define_kernel(
self,
kernel_name: str,
kernel_body: str,
metadata: Optional[str] = None,
gpu=False,
):
self.header.splice(f"\n{kernel_body}\n")
def codegen_scalar_to_tensor(self, output: str):
name = f"scalar_to_tensor_{next(self.scalar_to_tensor_id)}"
self.wrapper_call.writeline(
f"RAIIAtenTensorHandle {name} = scalar_to_tensor_handle({output});"
)
return name
def codegen_tensor_item(
self, dtype: torch.dtype, tensor: str, scalar: str, indented_buffer=None
):
dtype_str = str(dtype).split(".")[-1]
writer = indented_buffer or self
if dtype == torch.float16 or dtype == torch.bfloat16:
scalar_tmp = f"{scalar}_tmp"
writer.writeline(f"{DTYPE_TO_CPP[dtype]} {scalar_tmp};")
writer.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_item_{dtype_str}({tensor}, &{scalar_tmp}));"
)
writer.writeline(f"float {scalar} = float({scalar_tmp});")
else:
writer.writeline(f"{DTYPE_TO_CPP[dtype]} {scalar};")
writer.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_item_{dtype_str}({tensor}, &{scalar}));"
)
@cache_on_self
def get_output_refs(self):
return [x.codegen_reference(self.wrapper_call) for x in V.graph.graph_outputs]
def generate_return(self, output_refs: List[str]):
cst_names = V.graph.constants.keys()
output2idx: Dict[str, int] = {}
for idx, output in enumerate(output_refs):
if output == "nullptr":
continue
is_constant_buffer = output in cst_names
output_buffer = V.graph.graph_outputs[idx]
if isinstance(output_buffer, ir.BaseView):
output_storage = output_buffer.unwrap_view()
if isinstance(output_storage.data, ir.ConstantBuffer):
is_constant_buffer = True
if isinstance(output_buffer, ir.ShapeAsConstantBuffer):
# Need to wrap scalar into tensor as the main function returns a vector of tensors
output_tensor = self.codegen_scalar_to_tensor(output)
self.wrapper_call.writeline(
f"output_handles[{idx}] = {output_tensor}.release();"
)
continue
if is_constant_buffer:
# See NOTE(return_constant) above.
self.wrapper_call.writeline(
f"aoti_torch_clone({output}, &output_handles[{idx}]);"
)
else:
if output in output2idx:
src_idx = output2idx[output]
self.wrapper_call.writeline(
f"output_handles[{idx}] = output_handles[{src_idx}];"
)
else:
self.wrapper_call.writeline(
f"output_handles[{idx}] = {output}.release();"
)
if output not in output2idx:
output2idx[output] = idx
def generate_before_suffix(self, result):
if not V.graph.is_const_graph:
if V.graph.aot_mode:
result.writeline("} // AOTInductorModel::run_impl")
else:
result.writeline("} // inductor_entry_impl")
def generate_end(self, result):
if V.graph.aot_mode:
if V.graph.is_const_graph:
result.writeline("} // AOTInductorModel::_const_run_impl")
else:
result.writeline("} // namespace torch::aot_inductor\n\n\n")
return
# cpp entry function for JIT with cpp wrapper
result.splice(
f"""
'''
)
inductor_entry = CppWrapperCodeCache.load_pybinding(
["std::vector<AtenTensorHandle>"], cpp_wrapper_src, "{self.device}", {len(V.graph.graph_outputs)})
"""
)
wrapper_body = "input_tensors = [arg if isinstance(arg, torch.Tensor) else torch.tensor(arg) for arg in args]"
if V.graph.constants:
# Append constants to the input args for cpp wrapper.
# Python wrapper directly gets the value inside the wrapper call
# as a global variable passed when calling exec(code, mod.__dict__, mod.__dict__).
# For cpp wrapper, we need to pass this python value to the inductor_entry_impl function explicitly.
assert all(
isinstance(v, torch.Tensor) for v in list(V.graph.constants.values())
), "Expect all constants to be Tensor"
constants_str = f"[{', '.join(V.graph.constants.keys())}]"
wrapper_body += f"""
constants_tensor = {constants_str}
input_tensors.extend(constants_tensor)
"""
# Convert vector of at::Tensor to vector of AtenTensorHandle.
# If we pass at::Tensor, the compilation will be too slow.
wrapper_body += """
input_handles = torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(input_tensors)
"""
# Release the inputs for memory reuse.
wrapper_body += """
args.clear()
"""
# unwrap output tensor back to python scalar
if all(x for x in self.output_is_tensor.values()):
# If no ShapeAsConstantBuffer in the output, directly return the output as tensors
outputs_str = "output_tensors"
else:
outputs = [
(
f"output_tensors[{i}]"
if self.output_is_tensor[i]
else f"output_tensors[{i}].item()"
)
for i in range(len(V.graph.graph_outputs))
]
outputs_str = f"[{', '.join(outputs)}]"
wrapper_body += f"""
output_handles = f(input_handles)
output_tensors = torch._C._aoti.alloc_tensors_by_stealing_from_void_ptrs(output_handles)
return {outputs_str}
"""
# Wrap the func to support setting result._boxed_call = True
result.splice(
f"""
def _wrap_func(f):
def g(args):
{wrapper_body}
return g
call = _wrap_func(inductor_entry)
"""
)
def get_c_shim_func_name(self, kernel):
if kernel.startswith("aoti_torch_"):
return kernel
assert "::" in kernel, "Cpp kernel name: " + kernel + " does not contain '::'"
kernel_tokens = kernel.split("::")
kernel_suffix = kernel_tokens[-1]
if kernel_suffix == "call":
kernel_suffix = kernel_tokens[-2]
shim_fn = f"aoti_torch_{self.device}_{kernel_suffix}"
return shim_fn
def generate_c_shim_extern_kernel_call(self, kernel, args):
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.set_printer_args(args, kernel, None, None, "extern")
with debug_printer_manager:
shim_fn = self.get_c_shim_func_name(kernel)
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK({shim_fn}({', '.join(args)}));"
)
def generate_c_shim_extern_kernel_alloc(self, extern_kernel, args):
# registered output buffer name
name = extern_kernel.name
output_handle_name = f"{name}_handle"
self.writeline(f"AtenTensorHandle {output_handle_name};")
output_arg = f"&{output_handle_name}"
self.generate_c_shim_extern_kernel_call(
extern_kernel.get_kernel_name(), args + [output_arg]
)
self.writeline(f"RAIIAtenTensorHandle {name}({output_handle_name});")
def generate_extern_kernel_alloc(self, extern_kernel, args):
if getattr(extern_kernel, "outputs", None):
# ir.ExternKernelAlloc may have outputs if it returns a tuple
self.generate_c_shim_fallback_kernel(extern_kernel, args)
else:
self.generate_c_shim_extern_kernel_alloc(extern_kernel, args)
def generate_c_shim_fallback_kernel(self, fallback_kernel, args):
output_args = []
output_raii_handles = []
output_name_base = fallback_kernel.get_name()
for idx, output in enumerate(fallback_kernel.outputs):
if isinstance(output, ir.MultiOutput):
# TODO: handle integer output (e.g., as in attention)
name = f"{output.get_name()}"
output_handle_name = f"{name}_handle"
if output.indices:
assert (
output.indices[0][1] == idx
), f"expected {output.indices[0][1]=} == {idx=} for {output_name_base=}"
self.writeline(f"AtenTensorHandle {output_handle_name};")
output_args.append(f"&{output_handle_name}")
output_raii_handles.append(
f"RAIIAtenTensorHandle {name}({output_handle_name});"
)
elif isinstance(output, int):
output_name = f"{output_name_base}_{idx}"
self.writeline(f"int64_t {output_name} = {output};")
output_args.append(f"&{output_name}")
elif isinstance(output, sympy.Expr):
output_name = f"{output_name_base}_{idx}"
self.writeline(f"auto {output_name} = {cexpr(output)};")
output_args.append(f"&{output_name}")
elif output is None:
output_args.append("nullptr")
else:
raise NotImplementedError(f"unsupported type of {output=}")
args = args + output_args
self.generate_c_shim_extern_kernel_call(fallback_kernel.cpp_kernel_name, args)
for raii_handle in output_raii_handles:
self.writeline(raii_handle)
def generate_fallback_kernel(self, fallback_kernel, args):
self.generate_c_shim_fallback_kernel(fallback_kernel, args)
def generate_extern_kernel_out(
self, kernel: str, out: str, out_view: Optional[str], args: List[str]
):
if out_view:
out_name = f"{out}_as_strided"
self.writeline(f"auto {out_name} = {out_view};")
args.insert(0, out_name)
else:
args.insert(0, out)
self.generate_c_shim_extern_kernel_call(kernel, args)
def generate_scatter_fallback(
self,
output,
inputs,
cpp_kernel_name,
python_kernel_name,
src_is_tensor,
reduce,
kwargs,
):
# call the ABI shim function instead of the ATen one
cpp_kernel_name = self.get_c_shim_func_name(cpp_kernel_name)
# TODO: consider remove "_out" and add missing inplace variants to fallback_ops.py
cpp_kernel_name = cpp_kernel_name.replace("__", "_") + "_out"
inputs_wrapped = [str(x) for x in inputs]
line = f"{cpp_kernel_name}({output}, {','.join(inputs_wrapped)}"
if python_kernel_name.startswith("aten.scatter_reduce"):
line += f", {','.join(kwargs)}"
else:
if src_is_tensor:
if reduce:
line += f", {V.graph.wrapper_code.val_to_arg_str(reduce)}"
else:
assert (
reduce is None
), "Expect reduce to be None for aten.scatter_ with scalar src"
line += ");"
self.writeline(line)
def generate_index_put_fallback(self, kernel, x, indices, values, accumulate):
# TODO: update aoti_torch_index_put_out in ir.py to use autogen out version
# See the comment in codegen_reinterpret_view about why having something like
# RAIIAtenTensorHandle(tmp_tensor_handle_2) in a tmp array can cause the correponding
# tensor prematurely deallocated, thus this std::vector().data() trick here.
indices_str = (
"std::vector<AtenTensorHandle>{" + (", ".join(indices)) + "}.data()"
)
args = [
x,
indices_str,
str(len(indices)),
values,
accumulate,
]
args.insert(0, x) # set x as the output tensor, this fallback mutates x.
self.writeline(self.wrap_kernel_call(kernel, args))
def add_benchmark_harness(self, output):
if V.graph.aot_mode:
return
super().add_benchmark_harness(output)
def codegen_cpp_sizevar(self, x: Expr, *, simplify: bool = True) -> str:
return cexpr(V.graph.sizevars.simplify(x) if simplify else x)
def codegen_sizevar(self, x: Expr) -> str:
return self.codegen_cpp_sizevar(x)
def codegen_tuple_access(self, basename: str, name: str, index: str) -> str:
# in the abi_compatible mode, outputs are returned via arguments
return name
def codegen_shape_tuple(self, shape: Sequence[Expr]) -> str:
parts = [*map(self.codegen_sizevar, shape)]
if len(parts) == 0:
return "{}"
if len(parts) == 1:
return f"{{{parts[0]}, }}"
return f"{{{', '.join(parts)}}}"
def ensure_size_computed(self, sym: sympy.Symbol):
if isinstance(sym, sympy.Symbol) and symbol_is_type(sym, SymT.PRECOMPUTED_SIZE):
if sym in self.computed_sizes:
return
self.computed_sizes.add(sym)
expr = V.graph.sizevars.inv_precomputed_replacements[sym]
self.writeline(f"int64_t {sym} = {cexpr(expr)};")
def generate_numel_expr(self, kernel_name: str, tree, suffix: Optional[str] = None):
expr = f"{kernel_name}_{tree.prefix}numel"
if suffix is not None:
expr += f"_{suffix}"
if (expr, V.graph) not in self.kernel_numel_expr:
# declare expr once in each graph (scope)
self.kernel_numel_expr.add((expr, V.graph))
self.writeline(f"int64_t {expr} = {cexpr(tree.numel)};")
else:
self.writeline(f"{expr} = {cexpr(tree.numel)};")
# We can get symbolic expressions here, like s0*64
# It is fine to have them here, but we need to handle them correctly as their own type
# This is tricky to do, so we wrap in a custom type, distinct from scalars, but also from sympy*
# scalars as well.
# This is handled in `generate_args_decl` which has a correct comment of: TODO: only works for
# constant now, need type info. I agree, this needs type info, and while this is not true type info
# it suffices as a type hint for the purposes of producing the correct code for this type.
return SymbolicCallArg(expr, tree.numel)
def prepare_triton_kernel_call(self, device_index, call_args):
def wrap_arg(arg):
if isinstance(arg, str):
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
return arg + ".item()" if should_unwrap_unspec_arg(arg) else arg
elif isinstance(arg, (int, float, bool, SymbolicCallArg)):
return str(arg)
else:
return cexpr(V.graph.sizevars.simplify(arg))
call_args = [wrap_arg(arg) for arg in call_args]
if device_index is None:
current_device = V.graph.get_current_device_or_throw()
device_index = current_device.index
return device_index, call_args
def codegen_dynamic_scalar(self, node):
(data,) = (t.codegen_reference() for t in node.inputs)
self.codegen_tensor_item(node.inputs[0].get_dtype(), data, f"{node.sym}_raw")
if len(node.keypath) == 0:
self.writeline(f"auto {node.sym} = {node.sym}_raw;")
elif len(node.keypath) == 1 and isinstance(node.keypath[0], ConvertIntKey):
self.writeline(f"int64_t {node.sym} = {node.sym}_raw ? 1 : 0;")
elif len(node.keypath) == 1 and isinstance(node.keypath[0], DivideByKey):
# TODO: assert divisibility here
self.writeline(
f"int64_t {node.sym} = {node.sym}_raw / {node.keypath[0].divisor};"
)
else:
raise AssertionError(f"unrecognized keypath {node.keypath}")
# record in unbacked_symbol_decls so we won't generate a declaration of the symbol again
self.unbacked_symbol_decls.add(str(node.sym))
def make_buffer_free(self, buffer):
return (
""
if isinstance(buffer.get_output_spec(), ir.MultiOutputLayout)
or isinstance(buffer, ir.TMADescriptor)
else f"{buffer.get_name()}.reset();"
)
def make_free_by_names(self, names_to_del: List[str]):
return " ".join(f"{name}.reset();" for name in names_to_del)
def codegen_exact_buffer_reuse(self, old_name: str, new_name: str, del_line: str):
return f"auto {new_name} = std::move({old_name}); // reuse"
def generate_profiler_mark_wrapper_call(self, stack):
self.wrapper_call.writeline(
'RECORD_FUNCTION("inductor_wrapper_call", c10::ArrayRef<c10::IValue>());'
)
def generate_start_graph(self):
pass
def generate_end_graph(self):
pass
def generate_inf_and_nan_checker(self, nodes):
for buf in nodes.get_names():
# TODO: Add buf name directly into check_inf_and_nan.
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_check_inf_and_nan({buf}));"
)
def codegen_device(self, device):
assert device.type in DEVICE_TO_ATEN, (
device.type + " not found in DEVICE_TO_ATEN"
)
device_str = DEVICE_TO_ATEN[device.type][5:].lower() # remove "at::k"
self.used_cached_devices.add(device_str)
return f"cached_torch_device_type_{device_str}, {device.index if device.index else 0}"
def codegen_dtype(self, dtype):
dtype_str = str(dtype).split(".")[-1]
self.used_cached_dtypes.add(dtype_str)
return f"cached_torch_dtype_{dtype_str}"
def codegen_layout(self, layout):
layout_str = str(layout).split(".")[-1]
self.used_cached_layouts.add(layout_str)
return f"cached_torch_layout_{layout_str}"
def codegen_memory_format(self, memory_format):
memory_format_str = str(memory_format).split(".")[-1]
self.used_cached_memory_formats.add(memory_format_str)
return f"cached_torch_memory_format_{memory_format_str}"
@functools.lru_cache(None) # noqa: B019
def codegen_int_array_var(
self,
int_array: str,
writeline: Callable[..., None],
known_statically=False,
graph=None, # for per-graph caching
):
# Used for size/stride declaration
#
# Because the memory planning is done in two passes (see the implementation
# of self.generate), the writeline behavior is different in the two passes.
# As a result, the emitted int array declarations may appear in a later
# position of the generated code, so the second pass codegen should not
# reuse int array declarations generated in the first pass.
# This is why writeline needs to explicitly passed in as a parameter.
var = f"int_array_{next(self.int_array_id)}"
ctype = "int64_t"
if var not in self.declared_int_array_vars:
self.declared_int_array_vars.add(var)
if known_statically:
writeline(f"static constexpr {ctype} {var}[] = {int_array};")
else:
writeline(f"const {ctype} {var}[] = {int_array};")
return var
def make_buffer_allocation(self, buffer):
return self.make_allocation(
buffer.get_name(),
buffer.get_device(),
buffer.get_dtype(),
buffer.get_size(),
buffer.get_stride(),
)
def make_allocation(self, name, device, dtype, shape, stride):
orig_stride = stride
device_str = self.codegen_device(device)
dtype_code = self.codegen_dtype(dtype)
size = self.codegen_shape_tuple(shape)
stride = self.codegen_shape_tuple(orig_stride)
size_array_var = self.codegen_int_array_var(
size,
self.wrapper_call.writeline,
known_statically=self.is_statically_known_list_of_ints(shape),
graph=self.get_codegened_graph(),
)
stride_array_var = self.codegen_int_array_var(
stride,
self.wrapper_call.writeline,
known_statically=self.is_statically_known_list_of_ints(orig_stride),
graph=self.get_codegened_graph(),
)
device_type, device_id = device_str.split(",")
device_idx = "this->device_idx_" if V.graph.aot_mode else device_id
args = [
str(len(shape)),
size_array_var,
stride_array_var,
dtype_code,
device_type,
device_idx,
f"&{name}_handle",
]
self.wrapper_call.writeline(f"AtenTensorHandle {name}_handle;")
self.wrapper_call.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided({', '.join(args)}));"
)
return f"RAIIAtenTensorHandle {name}({name}_handle);"
def codegen_alloc_from_pool(self, name, offset, dtype, shape, stride) -> str:
size = self.codegen_shape_tuple(shape)
stride = self.codegen_shape_tuple(stride)
tmp_name = f"tmp_tensor_handle_{next(self.tmp_tensor_id)}"
args = [
name,
cexpr(offset), # bytes not numel
self.codegen_dtype(dtype),
str(len(shape)),
self.codegen_int_array_var(
size, self.wrapper_call.writeline, graph=self.get_codegened_graph()
),
self.codegen_int_array_var(
stride, self.wrapper_call.writeline, graph=self.get_codegened_graph()
),
f"&{tmp_name}",
]
self.wrapper_call.writeline(f"AtenTensorHandle {tmp_name};")
self.wrapper_call.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch__alloc_from_pool({', '.join(args)}));"
)
return f"RAIIAtenTensorHandle({tmp_name})"
def codegen_reinterpret_view(
self,
data,
size,
stride,
offset,
writeline: Callable[..., None],
dtype=None,
) -> str:
dim = str(len(size))
original_offset = offset
offset = self.codegen_sizevar(offset)
call_strs = []
final_tmp_name = None
def create_reinterpret_call() -> Tuple[str, str]:
tmp_name = f"tmp_tensor_handle_{next(self.tmp_tensor_id)}"
args = [
f"{data.get_name()}",
dim,
self.codegen_int_array_var(
self.codegen_shape_tuple(size),
writeline,
known_statically=self.is_statically_known_list_of_ints(size),
graph=self.get_codegened_graph(),
),
self.codegen_int_array_var(
self.codegen_shape_tuple(stride),
writeline,
known_statically=self.is_statically_known_list_of_ints(stride),
graph=self.get_codegened_graph(),
),
offset,
]
call_str = (
f"auto {tmp_name} = reinterpret_tensor_wrapper({', '.join(args)});"
)
return tmp_name, call_str
def create_dtypeview_call(reinterpret_call: str) -> Tuple[str, List[str]]:
tmp_AtenTensorHandle = f"tmp_{data.get_name()}_{next(self.tmp_tensor_id)}"
call_strs = [f"AtenTensorHandle {tmp_AtenTensorHandle};"]
dtype_name = str(dtype).split(".")[-1]
device_name = data.layout.device.type
get_dtype_function = f"aoti_torch_dtype_{dtype_name}"
dtypeview_function = f"aoti_torch_{device_name}_view_dtype"
call_strs.append(
f"AOTI_TORCH_ERROR_CODE_CHECK({dtypeview_function}"
f"({reinterpret_call}, {get_dtype_function}(), &{tmp_AtenTensorHandle}));"
)
tmp_RAIIAtenTensorHandle = (
f"tmp_{data.get_name()}_{next(self.tmp_tensor_id)}_handle"
)
call_strs.append(
f"RAIIAtenTensorHandle {tmp_RAIIAtenTensorHandle}({tmp_AtenTensorHandle});"
)
return tmp_RAIIAtenTensorHandle, call_strs
if (
size == data.layout.size
and stride == data.layout.stride
and original_offset == data.layout.offset
):
# pure dtypeview
if dtype is not None and dtype != data.dtype:
tmp_output_name, tmp_call_strs = create_dtypeview_call(data.get_name())
call_strs.extend(tmp_call_strs)
final_tmp_name = tmp_output_name
else:
return data.get_name()
else:
# firstly create reinterpretview
final_tmp_name, reinterpret_call = create_reinterpret_call()
call_strs.append(reinterpret_call)
if dtype is not None and dtype != data.dtype:
# wrap it with dtypeview
final_tmp_name, tmp_call_strs = create_dtypeview_call(final_tmp_name)
call_strs.extend(tmp_call_strs)
else:
call_strs.append(
f"RAIIAtenTensorHandle {final_tmp_name}_raii({final_tmp_name});"
)
final_tmp_name = f"{final_tmp_name}_raii"
for line in call_strs:
writeline(line)
# NB, the return handle here represents a temporary tensor, which will be automatically
# released.
# Here's a sample usage in the cpp wrapper code:
# ```
# aoti_torch_addmm_out(
# buf1,
# arg1_1,
# RAIIAtenTensorHandle(tmp_tensor_handle_0),
# buf0,
# 1L,
# 1L));
# ```
# RAIIAtenTensorHandle(tmp_tensor_handle_0) will be released after the call to addmm_out.
# This could be problematic when it's used in a different pattern, for example:
# ````
# AtenTensorHandle tensor_args[] = {RAIIAtenTensorHandle(tmp_tensor_handle_2), buf5, buf6};
# aoti_torch_proxy_executor_call_function(..., tensor_args);
# ````
# RAIIAtenTensorHandle(tmp_tensor_handle_2) will be invalid when it's used in the latter
# kernel call.
#
# This is solved by updating the proxy_executor invocation to
# ```
# aoti_torch_proxy_executor_call_function(...,
# std::vector<AtenTensorHandle>{
# RAIIAtenTensorHandle(tmp_tensor_handle_2), buf5, buf6
# }.data()
# );
# ```
return final_tmp_name
def codegen_device_copy(self, src, dst, non_blocking: bool):
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_copy_(expensive_copy_to_tensor_if_needed({dst}), {src}, {non_blocking}));"
)
def codegen_multi_output(self, name, value):
# in the abi_compatible mode, outputs are retrieved by passing
# output pointers, so we skip its codegen here.
pass
def codegen_subgraph_prefix(self, subgraph, outer_inputs, outer_outputs):
assert len(subgraph.graph.graph_inputs) == len(outer_inputs)
for (inner_input, inner_input_val), outer_input in zip(
subgraph.graph.graph_inputs.items(), outer_inputs
):
if not isinstance(inner_input_val, ir.TensorBox):
continue
# in ABI-compatible mode, we copy the underlying at::Tensor of the conditional
# input (outer_input) into another at::Tensor to be used as a subgraph input
# (inner_input) in the nested scope. we can't std::move here, as the codegened
# outer input may be an expression / rvalue (e.g., reinterpret_view(x)), so we
# can't necessarily std::move it back to the origin (x).
self.writeline(f"AtenTensorHandle {inner_input}_handle;")
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_assign_tensors_out({outer_input}, &{inner_input}_handle));"
)
self.writeline(f"RAIIAtenTensorHandle {inner_input}({inner_input}_handle);")
def codegen_subgraph_suffix(self, subgraph, outer_inputs, outer_outputs):
for inner_output, outer_output in zip(
subgraph.graph.graph_outputs, outer_outputs
):
src = inner_output.codegen_reference()
# in ABI-compatible mode, we need to std::move subgraph output (inner_output)
# to the conditional output (outer_output), as RAIIAtenTensorHandle's copy
# constructor is deleted.
src = f"std::move({src})"
# in case the outer_output carried a value
# before (e.g., in the while_loop codegen)
self.writeline(f"{outer_output}.reset();")
self.writeline(f"{outer_output} = {src};")
def codegen_invoke_subgraph(self, invoke_subgraph):
raise NotImplementedError(
"codegen invoke_subgraph is not implemented for cpp wrapper"
)
def codegen_conditional(self, conditional):
name = conditional.get_name()
outer_inputs = [f"{buf.codegen_reference()}" for buf in conditional.operands]
outer_outputs = []
for out in conditional.outputs:
# in ABI-compatible mode, ir.MultiOutput is not codegened,
# hence pre-declare output variables directly and separately
self.writeline(f"RAIIAtenTensorHandle {out.get_name()};")
outer_outputs.append(out.get_name())
if not isinstance(conditional.predicate, ir.ShapeAsConstantBuffer):
# in ABI-compatible mode, we need to use the ABI shim function
# to extract a C++ bool from the unrelying scalar bool Tensor
predicate = f"{conditional.predicate.get_name()}_scalar"
if predicate not in self.used_cond_predicate:
self.codegen_tensor_item(
torch.bool,
conditional.predicate.codegen_reference(),
predicate,
)
self.used_cond_predicate.add(predicate)
else:
# the predicate is not a Tensor: SymBool or Python bool
predicate = conditional.predicate.codegen_reference()
self.writeline(f"if ({predicate}) {{")
self.writeline(EnterSubgraphLine(self, conditional.true_subgraph.graph))
self.codegen_subgraph(conditional.true_subgraph, outer_inputs, outer_outputs)
self.writeline(ExitSubgraphLine(self))
self.writeline("} else {")
self.writeline(EnterSubgraphLine(self, conditional.false_subgraph.graph))
self.codegen_subgraph(conditional.false_subgraph, outer_inputs, outer_outputs)
self.writeline(ExitSubgraphLine(self))
self.writeline("}")
def codegen_subgraph(self, subgraph, outer_inputs, outer_outputs):
# TODO (desertfire) - This function is the old way of supporting
# subgraph codegen by inlining subgraphs in the output code. For python
# wrapper, we have moved to lifting subgraphs as functions, supported by
# PythonWrapperCode `codegen_subgraph` function. We should perhaps
# support lifting of subgraphs as functions for cpp wrapper as well.
try:
self.push_codegened_graph(subgraph.graph)
self.writeline(f"// subgraph: {subgraph.name}")
self.codegen_subgraph_prefix(subgraph, outer_inputs, outer_outputs)
parent_graph = V.graph
with V.set_graph_handler(subgraph.graph):
subgraph.graph.codegen_subgraph(
parent_graph=parent_graph,
)
self.codegen_subgraph_suffix(subgraph, outer_inputs, outer_outputs)
finally:
self.pop_codegened_graph()
def codegen_while_loop(self, while_loop):
name = while_loop.get_name()
outer_carried_inputs = [
buf.codegen_reference() for buf in while_loop.carried_inputs
]
outer_additional_inputs = [
buf.codegen_reference() for buf in while_loop.additional_inputs
]
cond_result_name = f"{name}_cond_result"
self.writeline(f"RAIIAtenTensorHandle {cond_result_name};")
cond_outer_inputs = []
for inp, out in zip(outer_carried_inputs, while_loop.outputs):
# in ABI-compatible mode, the carried inputs are codegened
# as buffers outside the while loop and set to the initial
# values. at the end of each while_loop iteration, they
# will be assined the carried values.
out_name = out.get_name()
self.writeline(f"AtenTensorHandle {out_name}_handle;")
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_assign_tensors_out({inp}, &{out_name}_handle));"
)
self.writeline(f"RAIIAtenTensorHandle {out_name}({out_name}_handle);")
cond_outer_inputs.append(out_name)
# additional inputs will be assinged within the while_loop
# iteration directly from the corresponding outer graph buffers
cond_outer_inputs.extend(outer_additional_inputs)
cond_outer_outputs = [cond_result_name]
body_outer_inputs = list(cond_outer_inputs)
body_outer_outputs = body_outer_inputs[: len(outer_carried_inputs)]
self.writeline("while (1) {")
self.writeline(EnterSubgraphLine(self, while_loop.cond_subgraph.graph))
self.codegen_subgraph(
while_loop.cond_subgraph, cond_outer_inputs, cond_outer_outputs
)
cond_result = f"{cond_result_name}_scalar"
self.codegen_tensor_item(torch.bool, cond_result_name, cond_result)
self.writeline(f"if (!{cond_result}) break;")
self.writeline(ExitSubgraphLine(self))
self.writeline(EnterSubgraphLine(self, while_loop.body_subgraph.graph))
self.codegen_subgraph(
while_loop.body_subgraph, body_outer_inputs, body_outer_outputs
)
self.writeline(ExitSubgraphLine(self))
self.writeline("}")
def generate_extern_kernel_args_decl_if_needed(
self,
op_overload,
raw_args,
output_args: Optional[List[str]] = None,
raw_outputs: Optional[List[ir.Buffer]] = None,
):
arg_types = [x.real_type for x in op_overload._schema.arguments]
return_types = [x.type for x in op_overload._schema.returns]
new_tensor_args = []
new_int_args = []
def fill_args(arg, arg_type):
static_arg_types = (
torch.FloatType,
torch.BoolType,
torch.StringType,
torch.Type,
torch.DeviceObjType,
)
inductor_tensor_buffers = (
ir.Buffer,
ir.ReinterpretView,
)
if isinstance(arg_type, torch.TensorType):
assert isinstance(arg, inductor_tensor_buffers), f"got {type(arg)}"
new_tensor_args.append(f"{arg.codegen_reference()}")
elif isinstance(arg_type, torch.IntType):
# int
new_int_args.append(str(arg))
elif isinstance(arg_type, torch.SymIntType):
# SymInt
expr = arg.node.expr if isinstance(arg, torch.SymInt) else arg
new_int_args.append(cexpr(expr))
elif isinstance(arg_type, torch.NumberType):
# Scalar of type int
assert isinstance(arg, (int, float, bool))
# Only treat int Scalar as dynamic
if isinstance(arg, int):
new_int_args.append(str(arg))
elif isinstance(arg_type, torch.ListType):
assert isinstance(arg, (list, tuple))
# List[Tensor]
if isinstance(arg_type.getElementType(), torch.TensorType):
new_tensor_args.extend([f"{a.codegen_reference()}" for a in arg])
# List[Optional[Tensor]]
elif isinstance(
arg_type.getElementType(), torch.OptionalType
) and isinstance(
arg_type.getElementType().getElementType(), torch.TensorType
):
new_tensor_args.extend(
[f"{a.codegen_reference()}" for a in arg if a is not None]
)
# List[int]
elif isinstance(arg_type.getElementType(), torch.IntType):
new_int_args.extend([str(a) for a in arg])
# List[SymInt]
elif isinstance(arg_type.getElementType(), torch.SymIntType):
expressions = [
a.node.expr if isinstance(a, torch.SymInt) else a for a in arg
]
new_int_args.extend([cexpr(expr) for expr in expressions])
# List[Scalar]
elif isinstance(arg_type.getElementType(), torch.NumberType):
# Only treat int Scalar as dynamic
is_int_type = [isinstance(a, int) for a in arg]
if any(is_int_type):
assert all(
is_int_type
), "AOTInductor only supports int scalars of the same type"
new_int_args.extend([str(a) for a in arg])
else:
assert isinstance(
arg_type.getElementType(), static_arg_types # type: ignore[arg-type]
), f"Fall through arguments must be one of static_arg_types, got {type(arg_type)}"
else:
assert isinstance(
arg_type, static_arg_types # type: ignore[arg-type]
), f"Fall through arguments must be one of static_arg_types, got {type(arg_type)}"
for arg, arg_type in zip(raw_args, arg_types):
if arg is not None:
if isinstance(arg_type, torch.OptionalType):
fill_args(arg, arg_type.getElementType())
else:
fill_args(arg, arg_type)
def fill_output_arg(arg, return_type, is_mutated_output: bool):
if isinstance(return_type, torch.TensorType):
if not is_mutated_output:
self.writeline(f"AtenTensorHandle {arg}_handle; // output buffer")
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_new_uninitialized_tensor(&{arg}_handle));"
)
self.writeline(f"RAIIAtenTensorHandle {arg}({arg}_handle);")
new_tensor_args.append(f"{arg}")
elif isinstance(return_type, torch.SymIntType):
raise NotImplementedError("NYI support for return type: SymInt")
elif isinstance(return_type, torch.ListType) and isinstance(
return_type.getElementType(), torch.SymIntType
):
raise NotImplementedError("NYI support for return type: List[SymInt]")
else:
raise AssertionError(f"Unsupported return type found: {return_type}")
# TODO: Only support tensor(s) returns for now, SymInt is not implemented yet
for return_type in return_types:
if isinstance(return_type, (torch.TensorType)):
pass
elif isinstance(return_type, torch.OptionalType):
assert isinstance(return_type.getElementType(), torch.TensorType)
elif isinstance(return_type, torch.ListType):
assert isinstance(return_type.getElementType(), torch.TensorType)
else:
raise NotImplementedError(
f"return type {return_type} is not yet supported."
)
for output_arg, raw_output_arg in zip(output_args, raw_outputs): # type: ignore[arg-type]
assert output_arg is not None, "Optional return types are not yet supported"
if isinstance(output_arg, (list, tuple)):
for out in output_arg:
fill_output_arg(
out,
torch.TensorType.get(),
isinstance(raw_output_arg, ir.MutationOutput),
)
else:
fill_output_arg(
output_arg,
torch.TensorType.get(),
isinstance(raw_output_arg, ir.MutationOutput),
)
return new_tensor_args, new_int_args
def generate_fallback_kernel_with_runtime_lookup(
self,
buf_name: str,
python_kernel_name: str,
cpp_kernel_name: str,
codegen_args: List[str],
op_overload: Optional[torch._ops.OpOverload] = None,
raw_args=None,
outputs=None,
):
def extract_output_name(out):
if out is None:
return None
elif isinstance(out, (ir.MultiOutput, ir._CollectiveKernel)):
return out.get_name()
elif isinstance(out, ir.MutationOutput):
mutated_buf_names = out.get_mutation_names()
assert (
isinstance(mutated_buf_names, list) and len(mutated_buf_names) == 1
), "Expect only one mutated buffer in MutationOutput"
return mutated_buf_names[0]
elif isinstance(out, (list, tuple)):
return type(out)(extract_output_name(o) for o in out)
else:
raise AssertionError(f"Unexpected output: {type(out)}")
# output_args has the same pytree structure as outputs
if op_overload and not op_overload._schema.returns:
# kernel does not return a value
output_args = []
elif outputs is None:
# outputs is not specified, the default is to write to buf_name
output_args = [buf_name]
else:
output_args = extract_output_name(outputs)
if isinstance(output_args, str):
output_args = [output_args]
if V.graph.aot_mode:
assert op_overload is not None
assert raw_args is not None
assert output_args is not None
return self.generate_fallback_kernel_with_runtime_lookup_aot(
op_overload,
raw_args,
output_args,
outputs,
)
else:
return self.generate_fallback_kernel_with_runtime_lookup_jit(
buf_name,
python_kernel_name,
cpp_kernel_name,
codegen_args,
op_overload,
raw_args,
output_args,
outputs,
)
def generate_scoped_gil_acquire(self, declarations_before_scope, lines_in_scope):
scoped_lines = IndentedBuffer()
for declaration in declarations_before_scope:
scoped_lines.writeline(declaration)
scoped_lines.writeline("{")
with scoped_lines.indent():
scoped_lines.writeline("py::gil_scoped_acquire acquire;")
scoped_lines.writelines(lines_in_scope.split("\n"))
scoped_lines.writelines("}")
return scoped_lines._lines
def load_custom_op_wrapper(self):
# TODO: need to support control flow
if self.custom_op_wrapper_loaded:
return
lines = """
RAIIPyObject codecache_module(PyImport_ImportModule("torch._inductor.codecache"));
if (codecache_module.get() == NULL) {
throw std::runtime_error("Failed to load torch._inductor.codecache");
}
custom_op_wrapper = PyObject_GetAttrString(codecache_module, "custom_op_wrapper");
if (custom_op_wrapper.get() == NULL) {
throw std::runtime_error("Failed to load torch._inductor.codecache.custom_op_wrapper");
}"""
declarations_before_scope = ["RAIIPyObject custom_op_wrapper;"]
scope_gil_acquire = self.generate_scoped_gil_acquire(
declarations_before_scope, lines
)
self.writelines(scope_gil_acquire)
self.custom_op_wrapper_loaded = True
def generate_float_value(self, val):
assert isinstance(val, float)
if val == float("inf"):
return "std::numeric_limits<float>::infinity()"
elif val == float("-inf"):
return "-std::numeric_limits<float>::infinity()"
elif val == float("nan"):
return "std::numeric_limits<float>::quiet_NaN()"
else:
return f"{val}"
def generate_py_arg(self, py_args_var, idx, raw_arg, arg_type):
def generate_py_arg_inner(lines, raw_arg, arg_type):
def add_py_newref():
if sys.version_info < (3, 10):
# Py_NewRef is only available since Python 3.10
self.include_extra_header("torch/csrc/utils/pythoncapi_compat.h")
if raw_arg is None:
# Py_None is a singleton, so we have to explicitly incref it here
lines.append("Py_INCREF(Py_None);\n")
return "Py_None"
elif isinstance(arg_type, torch.TensorType):
# Store AtenTensorHandle as void*
base_handle = raw_arg.codegen_reference()
(
tmp_raii_handle_var,
tmp_raii_handle_var_decl,
) = self.create_tmp_raii_handle_var(base_handle)
if tmp_raii_handle_var:
lines.append(tmp_raii_handle_var_decl)
base_handle = tmp_raii_handle_var
return f"PyCapsule_New(reinterpret_cast<void*>({base_handle}.get()), NULL, NULL)"
elif isinstance(arg_type, torch.OptionalType):
return generate_py_arg_inner(lines, raw_arg, arg_type.getElementType())
elif isinstance(arg_type, torch.IntType):
# int
return f"PyLong_FromLongLong({raw_arg})"
elif isinstance(arg_type, torch.SymIntType):
# SymInt
expr = (
raw_arg.node.expr if isinstance(raw_arg, torch.SymInt) else raw_arg
)
return f"PyLong_FromLongLong({cexpr(expr)})"
elif isinstance(arg_type, torch.FloatType):
return f"PyFloat_FromDouble({self.generate_float_value(raw_arg)})"
elif isinstance(arg_type, torch.BoolType):
return f"PyBool_FromLong({1 if raw_arg else 0})"
elif isinstance(arg_type, torch.StringType):
return f'PyUnicode_FromString("{raw_arg}")'
elif isinstance(arg_type, torch.NumberType):
# Union[bool, int, float, complex]
# torch/_prims_common/__init__.py
if isinstance(raw_arg, int):
return f"PyLong_FromLongLong({raw_arg})"
elif isinstance(raw_arg, float):
return f"PyFloat_FromDouble({self.generate_float_value(raw_arg)})"
elif isinstance(raw_arg, bool):
return f"PyBool_FromLong({1 if raw_arg else 0})"
elif isinstance(raw_arg, complex):
return f"PyComplex_FromDoubles({raw_arg.real, raw_arg.imag})"
elif isinstance(raw_arg, torch.SymInt):
expr = raw_arg.node.expr
return f"PyLong_FromLongLong({cexpr(expr)})"
else:
raise NotImplementedError(
f"arg type {arg_type} with raw_arg {raw_arg}, {type(raw_arg)} is not yet supported by custom_op_wrapper"
)
elif isinstance(raw_arg, torch.device):
# device
self.include_extra_header("torch/csrc/Device.h")
device_str, device_index = self.codegen_device(raw_arg).split(", ")
return f"THPDevice_New(c10::Device(static_cast<c10::DeviceType>({device_str}), {device_index}))"
elif isinstance(raw_arg, torch.dtype):
# dtype
add_py_newref()
self.include_extra_header("torch/csrc/DynamicTypes.h")
return f"Py_NewRef(torch::getTHPDtype(static_cast<c10::ScalarType>({self.codegen_dtype(raw_arg)})))"
elif isinstance(raw_arg, torch.layout):
# memory layout
add_py_newref()
self.include_extra_header("torch/csrc/DynamicTypes.h")
return f"Py_NewRef(torch::getTHPLayout(static_cast<c10::Layout>({self.codegen_layout(raw_arg)})))"
elif isinstance(raw_arg, torch.memory_format):
# memory_format
add_py_newref()
self.include_extra_header("torch/csrc/utils/tensor_memoryformats.h")
return (
"Py_NewRef(torch::utils::getTHPMemoryFormat(static_cast<c10::MemoryFormat>("
f"{self.codegen_memory_format(raw_arg)})))"
)
else:
raise NotImplementedError(
f"arg type {arg_type} is not yet supported by custom_op_wrapper"
)
lines = []
if isinstance(arg_type, torch.ListType):
assert isinstance(raw_arg, (list, tuple)), str(raw_arg) + " is not a list"
lines.append(
f"PyObject* {py_args_var}_{idx} = PyList_New({len(raw_arg)});\n"
)
for i, elem in enumerate(raw_arg):
lines.append(
f"PyList_SetItem({py_args_var}_{idx}, {i}, {generate_py_arg_inner(lines, elem, arg_type.getElementType())});\n"
)
lines.append(
f"PyTuple_SetItem({py_args_var}, {idx}, {py_args_var}_{idx});\n"
)
else:
lines.append(
f"PyTuple_SetItem({py_args_var}, {idx}, {generate_py_arg_inner(lines, raw_arg, arg_type)});\n"
)
return "".join(lines)
def generate_fallback_kernel_with_runtime_lookup_jit(
self,
buf_name: str,
python_kernel_name: str,
cpp_kernel_name: str,
codegen_args: List[str],
op_overload: Optional[torch._ops.OpOverload] = None,
raw_args=None,
output_args: Optional[List[str]] = None,
raw_outputs: Optional[List[ir.Buffer]] = None,
):
# In the JIT mode, because of the ABI-compatible requirement, we can't directly call
# c10::Dispatcher to find the custom op and call it. Instead, we go back to Python
# to invoke this custom op.
self.load_custom_op_wrapper()
assert output_args is not None, "output_args should not be None"
num_args = len(raw_args)
py_args_var = f"py_args_{next(self.arg_var_id)}"
# First arg is always the python op name
lines = f"""
RAIIPyObject {py_args_var}(PyTuple_New({num_args + 1}));
if ({py_args_var}.get() == NULL) {{
throw std::runtime_error("PyTuple_New {py_args_var} failed");
}}
PyTuple_SetItem({py_args_var}, 0, PyUnicode_FromString("{python_kernel_name}"));
"""
assert op_overload is not None, "op_overload should not be None"
for idx, (raw_arg, schema_arg) in enumerate(
zip(raw_args, op_overload._schema.arguments)
):
lines += self.generate_py_arg(
py_args_var, idx + 1, raw_arg, schema_arg.real_type
)
lines += f"""
// Call the custom op in Python
RAIIPyObject py_{buf_name}(PyObject_CallObject(custom_op_wrapper, {py_args_var}));
if (py_{buf_name}.get() == NULL) {{
if (PyErr_Occurred()) {{
return;
}}
throw std::runtime_error("PyObject_CallObject {python_kernel_name} failed");
}}"""
if len(output_args) == 1:
# result is a single tensor
lines += f"""
{output_args[0]} = reinterpret_cast<AtenTensorHandle>(PyCapsule_GetPointer(py_{buf_name}.get(), NULL));"""
else:
# result is a tuple of tensors
for idx, output_arg in enumerate(output_args):
if output_arg is None:
continue
lines += f"""
{output_arg} =
reinterpret_cast<AtenTensorHandle>(PyCapsule_GetPointer(PyList_GET_ITEM(py_{buf_name}.get(), {idx}), NULL));"""
if raw_outputs:
declarations_before_scope = [
f"RAIIAtenTensorHandle {output_arg};"
for output_arg, raw_output_arg in zip(output_args, raw_outputs) # type: ignore[arg-type]
if output_arg is not None
and not isinstance(raw_output_arg, ir.MutationOutput)
]
else:
declarations_before_scope = [
f"RAIIAtenTensorHandle {output_arg};"
for output_arg in output_args # type: ignore[arg-type]
if output_arg is not None
]
scope_gil_acquire = self.generate_scoped_gil_acquire(
declarations_before_scope, lines
)
self.writelines(scope_gil_acquire)
def generate_fallback_kernel_with_runtime_lookup_aot(
self,
op_overload,
raw_args, # contains both args and flatten kwargs
output_args: Optional[List[str]] = None,
raw_outputs: Optional[List[ir.Buffer]] = None,
):
(
tensor_call_args,
int_call_args,
) = self.generate_extern_kernel_args_decl_if_needed(
op_overload,
raw_args,
output_args,
raw_outputs,
)
tensor_call_args_str = ", ".join(tensor_call_args)
int_call_args_str = ", ".join(int_call_args)
extern_kernel_node_index = len(V.graph.extern_kernel_nodes) - 1
self.writeline(
f"aoti_torch_proxy_executor_call_function(proxy_executor, "
f"{extern_kernel_node_index}, "
f"{len(int_call_args)}, "
f"std::vector<int64_t>{{{int_call_args_str}}}.data(), "
f"{len(tensor_call_args)}, "
f"std::vector<AtenTensorHandle>{{{tensor_call_args_str}}}.data());"
)
def generate_reset_kernel_saved_flags(self):
pass
def generate_save_uncompiled_kernels(self):
pass
def c_type_for_prim_type(self, val, type_) -> str:
if isinstance(type_, torch.OptionalType):
return f"{self.c_type_for_prim_type(val, type_.getElementType())}*"
elif isinstance(type_, torch.TensorType):
return "AtenTensorHandle"
elif isinstance(type_, (torch.IntType, torch.SymIntType)):
return "int64_t"
elif isinstance(
type_, (torch.BoolType, torch.SymBoolType, torch.EnumType)
) or repr(type_) in ("ScalarType", "Layout"):
return "int32_t"
elif isinstance(type_, torch.FloatType):
return "double"
elif isinstance(type_, torch.NumberType):
if isinstance(val, bool):
return "int32_t"
elif isinstance(val, (int, float)):
return "double"
elif val is None:
# This could happen when val is an optional value
return "double"
else:
raise AssertionError(
f"Unexpected type in c_type_for_prim_type: {type_=}"
)
elif isinstance(type_, torch.StringType):
return "const char*"
else:
raise AssertionError(f"Unexpected type in c_type_for_prim_type: {type_=}")
def val_to_arg_str_for_prim_type(self, val, type_) -> str:
# TODO: not using type_ as the first step of refactoring. Will update this later.
if isinstance(val, bool):
return "1" if val else "0"
elif isinstance(val, int):
# uint64_t is long on Linux, but long long on MacOS and Windows
return f"{val}LL" if sys.platform in ["darwin", "win32"] else f"{val}L"
elif isinstance(val, str):
return f'"{val}"'
elif isinstance(
val, (ir.Buffer, ir.ReinterpretView, ir.StorageBox, ir.TensorBox)
):
return val.codegen_reference()
elif isinstance(val, torch.device):
return self.codegen_device(val)
elif isinstance(val, torch.dtype):
return self.codegen_dtype(val)
elif isinstance(val, torch.layout):
return self.codegen_layout(val)
elif isinstance(val, torch.memory_format):
return self.codegen_memory_format(val)
elif isinstance(val, float):
return self.generate_float_value(val)
elif isinstance(val, (list, tuple)):
# FIXME: This happens because type_ is not always properly set to torch.ListType
return f"{{{', '.join(self.val_to_arg_str(x, None) for x in val)}}}"
elif isinstance(val, SymTypes):
return cexpr(val.node.expr)
elif isinstance(val, sympy.Expr):
return cexpr(val)
else:
return repr(val)
def val_to_arg_str(self, val, type_=None) -> str:
if val is None:
# None needs special care. It either represent nullopt or an empty tensor
if type_ is None or isinstance(type_, torch.OptionalType):
if type_ is not None and isinstance(
type_.getElementType(),
(
torch.ListType,
torch.TupleType,
torch.DeviceObjType,
),
):
return "0, 0"
else:
return "0" # nullptr is not available in C
elif isinstance(type_, torch.TensorType):
# create an empty tensor, the equivalent of at::Tensor()
var_name = f"var_{next(self.arg_var_id)}"
self.writeline(f"AtenTensorHandle {var_name}_handle;")
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_new_uninitialized_tensor(&{var_name}_handle));"
)
self.writeline(f"RAIIAtenTensorHandle {var_name}({var_name}_handle);")
return var_name
else:
raise AssertionError("Can not map None to a known data type")
if isinstance(type_, torch.OptionalType):
element_type = type_.getElementType()
if not isinstance(element_type, torch.TensorType):
var_name = f"var_{next(self.arg_var_id)}"
if isinstance(
element_type,
(torch.ListType, torch.TupleType, torch.DeviceObjType),
):
# type_ is something like Optional[List] or Optional[Device]
arg_str = self.val_to_arg_str(val, element_type)
# For datatypes with auxiliary info, we need to hoist out the extra arguments.
# NOTE: This only works if there is one additional argument, though it can easily be generalized.
main_value, aux = arg_str.rsplit(", ")
self.writeline(f"auto {var_name} = {main_value};")
return f"&{var_name}, {aux}"
else:
self.writeline(
f"{self.c_type_for_prim_type(val, element_type)} {var_name} = {self.val_to_arg_str(val, element_type)};"
)
return f"&{var_name}"
else:
# type_ is Optional[Tensor]
# Similar to other data type, use pointer to denote optional tensor arg in v2 C shim
base_handle = self.val_to_arg_str(val, element_type)
(
tmp_raii_handle_var,
tmp_raii_handle_var_decl,
) = self.create_tmp_raii_handle_var(base_handle)
if tmp_raii_handle_var:
self.writeline(tmp_raii_handle_var_decl)
base_handle = tmp_raii_handle_var
var_name = f"var_{next(self.arg_var_id)}"
self.writeline(f"AtenTensorHandle {var_name} = {base_handle}.get();")
return f"&{var_name}"
elif isinstance(type_, torch.ListType):
assert isinstance(
val, (list, tuple)
), f"{val} does not match with arg type {type_}"
element_type = type_.getElementType()
var_name = f"var_array_{next(self.var_array_id)}"
if len(val) == 0:
# Zero-size array is not supported in the C or C++ standard, so
# we declare a null pointer for it.
self.writeline(
f"const {self.c_type_for_prim_type(None, element_type)}* {var_name} = nullptr;"
)
else:
result = f"{{{', '.join(self.val_to_arg_str(x, element_type) for x in val)}}}"
self.writeline(
f"const {self.c_type_for_prim_type(val[0], element_type)} {var_name}[] = {result};"
)
# Need to pass the array length because we can't use std::vector
return f"{var_name}, {len(val)}"
return self.val_to_arg_str_for_prim_type(val, type_)
def create_tmp_raii_handle_var(self, base_handle):
if base_handle.startswith(("wrap_with_raii_handle_if_needed",)):
# wrap_with_raii_handle_if_needed creates a temp RAIIAtenTensorHandle, so we need to
# explicitly store it. Otherwise, it will be destroyed before the fallback kernel call.
tmp_var_name = f"var_{next(self.arg_var_id)}"
return (
tmp_var_name,
f"RAIIAtenTensorHandle {tmp_var_name} = {base_handle};\n",
)
else:
return "", ""
|