1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
# mypy: allow-untyped-defs
import functools
import os
from itertools import chain, count, zip_longest
from typing import Any, Callable, List, Optional, Tuple, TYPE_CHECKING, Union
import sympy
from torch import dtype as torch_dtype
from torch._inductor.codecache import get_cpp_wrapper_cubin_path_name
from torch._inductor.runtime.runtime_utils import dynamo_timed
from torch._inductor.runtime.triton_heuristics import grid as default_grid_fn
from .. import config
from ..codecache import CudaKernelParamCache
from ..ir import IRNode, TensorBox
from ..utils import DeferredLineBase, get_gpu_type, GPU_ALIGN_BYTES
from ..virtualized import V
from .aoti_hipify_utils import maybe_hipify_code_wrapper
from .common import get_device_op_overrides
from .cpp_utils import cexpr
from .cpp_wrapper_cpu import CppWrapperCpu
from .multi_kernel import MultiKernelCall
from .wrapper import PythonWrapperCodegen, SymbolicCallArg
if TYPE_CHECKING:
from ..graph import GraphLowering
class DeferredGpuKernelLine(DeferredLineBase):
"""
When using cpp wrapper, GPU kernel load and launch needs to wait for Triton kernels
to be tuned and stored as cubin files, so use a deferred line to backfill those information
"""
def __init__(
self,
kernel_name: str,
line_template: str,
keys: Tuple[str, ...],
additional_files: List[str],
):
super().__init__(line_template)
assert not isinstance(line_template, DeferredLineBase)
self.additional_files = additional_files
self.kernel_name = kernel_name
self.line_template = line_template
self.keys = keys
def __call__(self):
if self.kernel_name.startswith("multi_kernel_"):
# MultiKernel will select one kernel after running the autotune block
self.kernel_name = MultiKernelCall.lookup_choice(self.kernel_name)
params = CudaKernelParamCache.get(self.kernel_name)
assert (
params is not None
), f"{self.kernel_name} not found in CudaKernelParamCache"
for key in self.keys:
assert (
key in params
), f"{key} not found in CudaKernelParamCache[{self.kernel_name}]"
if key == get_cpp_wrapper_cubin_path_name():
assert os.path.exists(params[key]), f"{params[key]} does not exist"
self.additional_files.append(params[key])
return self.line_template % tuple(params[key] for key in self.keys)
def _new_line(self, line):
return DeferredGpuKernelLine(
self.kernel_name, line, self.keys, self.additional_files
)
class DeferredGpuDefaultGrid:
"""
A container for the default grid, which may be used by DeferredGpuGridLine
"""
def __init__(
self,
kernel_name: str,
grid,
grid_callable: Optional[Callable[..., Any]] = None,
**grid_extra_kwargs,
):
self.kernel_name = kernel_name
self.grid = grid
self.grid_callable = grid_callable
self.grid_extra_kwargs = grid_extra_kwargs
def __iter__(self):
# DeferredGpuDefaultGrid can be passed to the base class, PythonWrapperCodegen,
# to generate the autotune code block, and thus we need this iterator
return iter(self.grid)
def _process_grid(self, grid: Union[List[Any], Tuple[Any, ...]]):
if isinstance(grid, (list, tuple)):
return [self._process_grid(e) for e in grid]
else:
return grid.inner_expr if isinstance(grid, SymbolicCallArg) else grid
def __call__(self):
if self.kernel_name.startswith("multi_kernel_"):
# MultiKernel will select one kernel after running the autotune block
self.kernel_name = MultiKernelCall.lookup_choice(self.kernel_name)
grid = self.grid
assert isinstance(grid, (list, tuple)), f"expected {grid=} to be a list"
grid = self._process_grid(grid)
assert self.grid_callable is not None, "grid_callable can't be None"
if not self.grid_extra_kwargs:
grid_fn = self.grid_callable(*grid)
else:
grid_fn = self.grid_callable(*grid, **self.grid_extra_kwargs)
params = CudaKernelParamCache.get(self.kernel_name)
assert (
params is not None
), f"{self.kernel_name} not found in CudaKernelParamCache"
return grid_fn(params["meta"])
class DeferredGpuGridLine(DeferredLineBase):
"""
When using cpp wrapper, GPU kernel load and launch needs to wait for Triton kernels
to be tuned and stored as cubin files, so use a deferred line to backfill those information
"""
def __init__(
self,
kernel_name: str,
grid_var: str,
grid,
autotune_configs,
):
super().__init__("")
self.kernel_name = kernel_name
self.grid_var = grid_var
self.grid = grid
self.autotune_configs = autotune_configs
def __call__(self):
if self.kernel_name.startswith("multi_kernel_"):
# MultiKernel will select one kernel after running the autotune block
self.kernel_name = MultiKernelCall.lookup_choice(self.kernel_name)
params = CudaKernelParamCache.get(self.kernel_name)
assert (
params is not None
), f"{self.kernel_name} not found in CudaKernelParamCache"
if self.autotune_configs is not None:
# This indicates the Triton kernel is a user-defined one.
grid = None
if len(self.grid) == 1:
grid = self.grid[0]
else:
for i, c in enumerate(self.autotune_configs):
if all(arg == params["meta"][key] for key, arg in c.kwargs.items()):
grid = self.grid[i]
break
assert grid is not None
elif isinstance(self.grid, DeferredGpuDefaultGrid):
grid = self.grid()
else:
grid = self.grid
assert len(grid) != 0, "Grid can't be empty"
grid_args_str = ", ".join(
[cexpr(V.graph.sizevars.simplify(item)) for item in grid]
)
return f" Grid {self.grid_var} = Grid({grid_args_str});"
def _new_line(self, line):
return DeferredGpuGridLine(
self.kernel_name, self.grid_var, self.grid, self.autotune_configs
)
class CppWrapperGpu(CppWrapperCpu):
"""
Generates cpp wrapper for running on GPU and calls CUDA kernels
"""
def __init__(self) -> None:
self.device = get_gpu_type()
self.device_codegen = get_device_op_overrides(self.device)
super().__init__()
self.grid_id = count()
@staticmethod
def create(
is_subgraph: bool, subgraph_name: str, parent_wrapper: PythonWrapperCodegen
):
# TODO - support subgraph codegen by lifting functions. Check the
# comment at CppWrapperCpu `codegen_subgraph` function.
return CppWrapperGpu()
def write_header(self):
if V.graph.is_const_graph:
# We do not write header for constant graph, it will be written by main module.
return
super().write_header()
self.header.splice("#include <filesystem>")
self.header.splice(self.device_codegen.abi_compatible_header())
self.header.splice(
maybe_hipify_code_wrapper(self.device_codegen.kernel_driver())
)
@functools.lru_cache(None) # noqa: B019
def write_tma_descriptor_helpers_once(self):
self.header.splice(self.device_codegen.tma_descriptor_helpers())
def write_get_raw_stream(self, device_idx: int, graph=None) -> str:
name = f"stream{device_idx}"
self.writeline(
maybe_hipify_code_wrapper(
f"{self.device_codegen.cpp_stream_type()} {name};"
)
)
self.writeline(
f"AOTI_TORCH_ERROR_CODE_CHECK({self.device_codegen.aoti_get_stream()}({device_idx}, (void**)&{name}));"
)
return name
def codegen_inputs(self):
# See Note: [Input Alignment handling in Inductor]
#
# JIT Inductor does not guard on input alignment. It relies on copy_misaligned_inputs to
# copy misaligned inputs to aligned buffers. For AOTInductor, we expect users to use it
# as non-Python deployment for its best performance, so implicitly copying misaligned inputs
# to aligned buffers is going to bring a surprising performance hit. Instead, we check input
# alignment and throw an error if any input is misaligned.
if V.graph.aot_mode and V.graph.inputs_to_check:
for idx in V.graph.inputs_to_check:
input_name = V.graph.graph_input_names[idx]
assert (
input_name in V.graph.graph_inputs
), f"{input_name} not found in graph inputs"
value = V.graph.graph_inputs[input_name]
assert isinstance(
value, TensorBox
), f"{input_name} is expected to be tensor but found as {type(value)}"
self.prefix.splice(
f"""
if ((long({input_name}.data_ptr()) & ({GPU_ALIGN_BYTES} -1)) != 0) {{
throw std::runtime_error("{input_name} is not aligned to {GPU_ALIGN_BYTES} bytes");
}}
"""
)
super().codegen_inputs()
def define_kernel(
self,
kernel_name: str,
kernel_body: str,
metadata: Optional[str] = None,
gpu=True,
):
if gpu:
if config.triton.autotune_at_compile_time:
# Call PythonWrapperCodegen to create the autotune code block
PythonWrapperCodegen.define_kernel(
self, kernel_name, kernel_body, metadata, gpu
)
else:
return CppWrapperCpu.define_kernel(
self, kernel_name, kernel_body, metadata, gpu
)
def generate(self, is_inference):
with dynamo_timed("CppWrapperGpu.generate", log_pt2_compile_event=True):
self.prefix.writeline("\n")
if not V.graph.aot_mode:
for kernel in chain(
sorted(self.src_to_kernel.values()),
sorted(
[entry[0] for entry in self.user_defined_kernel_cache.values()]
),
):
self.prefix.writeline(
maybe_hipify_code_wrapper(
f"static {self.device_codegen.cpp_kernel_type()} {kernel} = nullptr;"
)
)
self.prefix.writeline("\n")
return super().generate(is_inference)
def generate_user_defined_triton_kernel(
self,
kernel_name: str,
raw_args: List[Any],
grid: List[Any],
configs,
triton_meta,
constexprs,
):
if (
config.triton.autotune_at_compile_time
and kernel_name not in self.kernel_autotune_names
):
# Call PythonWrapperCodegen to create the autotune code block
PythonWrapperCodegen.generate_user_defined_triton_kernel(
self,
kernel_name,
raw_args,
grid,
configs,
triton_meta,
constexprs,
)
# in C++ wrapper, we don't pass constexpr args, as they don't
# get added as parameters to the PTX code compiled from the
# user-defined Triton kernel (only non-constexpr args do)
raw_args = [
raw_arg for i, raw_arg in enumerate(raw_args) if i not in constexprs
]
args = [self.val_to_arg_str(v) for v in raw_args]
arg_types = [
arg.get_dtype() if isinstance(arg, IRNode) else type(arg)
for arg in raw_args
]
# Call self.generate_kernel_call to generate the real kernel call in cpp
self.generate_kernel_call(
kernel_name,
args,
arg_types=arg_types,
raw_args=raw_args,
grid=grid,
gpu=True,
triton=True,
triton_meta=triton_meta,
autotune_configs=configs,
)
def generate_tma_descriptor(self, desc):
self.write_tma_descriptor_helpers_once()
# generate data pointer for the source tensor
source = self.generate_args_decl(
call_args=[self.val_to_arg_str(desc.tensor)],
arg_types=[desc.tensor.get_dtype()],
arg_signatures=[None],
)
desc_name = desc.name
self.writeline(f"alignas(64) CUtensorMap {desc_name};")
# `source` is in the form of `&var_x`, where `var_x` is the data pointer
# (CUdeviceptr); we dereference `source` and cast to `void*` to pass to
# the data pointer of the source tensor ot the helper function
# `init{1,2}DTMADescriptor`
ptr = f"reinterpret_cast<void*>(*({source}))"
dims = ", ".join(self.val_to_arg_str(dim) for dim in desc.dims)
block_dims = ", ".join(self.val_to_arg_str(dim) for dim in desc.block_dims)
element_size = self.val_to_arg_str(desc.element_size)
fn = f"init{desc.rank}DTMADescriptor"
args = f"&{desc_name}, {ptr}, {dims}, {block_dims}, {element_size}"
self.writeline(f"{fn}({args});")
@functools.lru_cache(None) # noqa: B019
def generate_load_kernel_once(
self,
kernel_name: str,
graph: "GraphLowering", # for per-graph caching
):
keys = (get_cpp_wrapper_cubin_path_name(), "mangled_name", "shared_mem")
kernel_var_name = f"kernels.{kernel_name}" if V.graph.aot_mode else kernel_name
self.writeline(f"if ({kernel_var_name} == nullptr) {{")
deferred_gpu_kernel_line = DeferredGpuKernelLine(
kernel_name,
(
" "
+ kernel_var_name
+ ' = loadKernel("%s", "%s", %s, this->cubin_dir_);'
if V.graph.aot_mode
else " " + kernel_var_name + ' = loadKernel("%s", "%s", %s);'
),
keys,
self.additional_files,
)
self.writeline(deferred_gpu_kernel_line)
self.writeline("}")
return kernel_var_name
def generate_args_decl(self, call_args, arg_types, arg_signatures):
new_args: list[str] = []
# Add more cases for other types as needed
signature2dtype = {
"i32": "int32_t",
"i64": "int64_t",
"fp32": "float",
}
def process_args(arg, arg_type, arg_signature=None):
var_name = f"var_{next(self.arg_var_id)}"
# ignore nvTmaDesc, as host-side TMA descriptors need
# to be passed to the compiled Triton kernel by value
if isinstance(arg_type, torch_dtype) and arg_signature != "nvTmaDesc":
if arg.endswith(".item()"):
# Need to declare a scalar in this case
arg = arg[:-7]
self.codegen_tensor_item(
arg_type,
arg,
var_name,
)
else:
device_ptr_type = self.device_codegen.cpp_device_ptr()
self.writeline(
maybe_hipify_code_wrapper(
f"{device_ptr_type} {var_name} = reinterpret_cast<{device_ptr_type}>({arg}.data_ptr());"
)
)
elif arg_type in (sympy.Integer, int):
self.writeline(f"int {var_name} = {cexpr(arg)};")
elif arg_type in (sympy.Float, float):
self.writeline(f"float {var_name} = {cexpr(arg)};")
# For symbolic call arguments, examine the arg signatures from triton meta
# to explicitly cast to the right type
# Reason: `auto` can infer unexpected type against kernel input signature.
elif (
isinstance(arg_type, type(SymbolicCallArg))
and arg_signature is not None
and arg_signature in signature2dtype.keys()
):
self.writeline(
f"{signature2dtype[arg_signature]} {var_name} = {cexpr(arg)};"
)
else:
self.writeline(f"auto {var_name} = {cexpr(arg)};")
new_args.append(f"&{var_name}")
for arg, arg_type, arg_signature in zip_longest(
call_args, arg_types, arg_signatures
):
process_args(arg, arg_type, arg_signature)
return ", ".join(new_args)
def generate_default_grid(
self,
kernel_name: str,
grid_args: List[Any],
gpu: bool = True,
grid_callable: Optional[Callable[..., Any]] = default_grid_fn,
**grid_extra_kwargs,
):
"""
Generate grid configs for launching a CUDA kernel using the grid
function from triton_heuristics. Because its computation needs
to read kernel config after autotune, it is done in a deferred way
using DeferredGpuDefaultGrid.
"""
assert gpu, "CppWrapperGpu.generate_default_grid does not support non-GPU"
return DeferredGpuDefaultGrid(
kernel_name, grid_args, grid_callable, **grid_extra_kwargs
)
def generate_kernel_call(
self,
kernel_name: str,
call_args,
grid=None,
device_index=None,
gpu=True,
triton=True,
arg_types=None,
raw_args=None,
grid_fn: str = "grid",
triton_meta=None,
autotune_configs=None,
grid_extra_kwargs="",
):
"""
Override the default value of argument 'gpu' to True here.
generate_kernel_call can still be called with gpu=False because of
a mix of cpu kernels and gpu kernels.
"""
if not gpu:
# Even in CppWrapperGpu, we may see cpp kernels
return CppWrapperCpu.generate_kernel_call(
self,
kernel_name,
call_args,
grid,
device_index,
gpu,
triton,
arg_types,
raw_args,
grid_fn,
triton_meta,
autotune_configs,
grid_extra_kwargs,
)
if (
config.triton.autotune_at_compile_time
and kernel_name not in self.kernel_autotune_names
):
# Call PythonWrapperCodegen to create the autotune code block
PythonWrapperCodegen.generate_kernel_call(
self,
kernel_name,
call_args,
grid,
device_index,
gpu,
triton,
arg_types,
raw_args,
grid_fn,
triton_meta,
autotune_configs,
grid_extra_kwargs,
)
if device_index is None:
current_device = V.graph.get_current_device_or_throw()
device_index = current_device.index
stream = (
"stream"
if V.graph.aot_mode
else self.write_get_raw_stream(device_index, V.graph)
)
if triton:
device_index, call_args = self.prepare_triton_kernel_call(
device_index, call_args
)
kernel_var_name = self.generate_load_kernel_once(kernel_name, V.graph)
# args with value 1 are added into equal_to_1 and constants
# in triton_meta (in the Python codegen) which makes them
# inlined in the PTX and compiled CUBIN
arg_signatures = []
if (
triton_meta is not None
and triton_meta.get("configs")
and triton_meta.get("signature")
):
equal_to_1 = triton_meta["configs"][0].equal_to_1
call_args = [
arg for i, arg in enumerate(call_args) if i not in equal_to_1
]
arg_types = [t for i, t in enumerate(arg_types) if i not in equal_to_1]
# extract the arg signatures from triton_meta
arg_signatures = triton_meta["signature"].values()
arg_signatures = [
v for i, v in enumerate(arg_signatures) if i not in equal_to_1
]
call_args_str = self.generate_args_decl(
call_args, arg_types, arg_signatures
)
kernel_args_var = f"kernel_args_var_{next(self.kernel_callsite_id)}"
self.writeline(f"void* {kernel_args_var}[] = {{{call_args_str}}};")
grid_var = f"{kernel_name}_grid_{next(self.grid_id)}"
self.writeline(
DeferredGpuGridLine(kernel_name, grid_var, grid, autotune_configs)
)
kernel_var_name = (
f"kernels.{kernel_name}" if V.graph.aot_mode else kernel_name
)
# add debug printer code for all triton kernel related calls
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.set_printer_args(
call_args, kernel_name, arg_types, None
)
with debug_printer_manager:
self.writeline(f"if ({grid_var}.is_non_zero()) {{")
self.writeline(
DeferredGpuKernelLine(
kernel_name,
r" launchKernel({}, {}, {}, {}, %s, %s, {}, {});".format(
kernel_var_name,
f"{grid_var}.grid_x",
f"{grid_var}.grid_y",
f"{grid_var}.grid_z",
kernel_args_var,
stream,
),
("num_warps", "shared_mem"),
self.additional_files,
),
)
self.writeline("}")
else:
casted = []
for arg_type, arg in zip(arg_types, call_args):
new_arg = arg
if arg_type.endswith("*") and arg != "nullptr":
new_arg = f"{arg}.data_ptr()"
casted.append(f"({arg_type}){new_arg}")
call_args_str = ", ".join(casted)
self.writeline(f"kernels.{kernel_name}({call_args_str}, {stream});")
def make_zero_buffer(self, name):
return f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_zero_({name}.get()));"
|