File: cuda_kernel.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (559 lines) | stat: -rw-r--r-- 19,043 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# mypy: allow-untyped-defs
import logging
from dataclasses import dataclass
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    TYPE_CHECKING,
    Union,
)

from sympy import Expr

from torch import dtype as torch_dtype
from torch._inductor.codegen.cpp_wrapper_cpu import CppWrapperCpu

from ...autotune_process import CUDABenchmarkRequest
from ...ir import (
    Buffer,
    ChoiceCaller,
    CUDATemplateBuffer,
    IRNode,
    Layout,
    PrimitiveInfoType,
    TensorBox,
)
from ...utils import sympy_product
from ...virtualized import V
from ..common import (
    IndentedBuffer,
    Kernel,
    OpOverrides,
    WorkspaceArg,
    WorkspaceZeroMode,
)
from ..cpp_utils import CppPrinter, DTYPE_TO_CPP


if TYPE_CHECKING:
    from torch._inductor.codegen.cuda.cuda_template import CUDATemplate

log = logging.getLogger(__name__)

cexpr = CppPrinter().doprint


def _normalize_idx(index: int, total_length: int) -> int:
    return index if index >= 0 else index + total_length


ValidLayoutSymbols = Literal["M", "N", "K", "lda", "ldb", "ldc", "ldd"]
ValidLayoutAttrs = Literal["size", "stride"]


@dataclass(frozen=True)
class LayoutArg:
    node: IRNode
    symbol: ValidLayoutSymbols
    attr: ValidLayoutAttrs
    dim: int

    def matches(self, node, attr, dim) -> bool:
        return self.node == node and self.attr == attr and self.dim == dim


class CUDAKernel(Kernel):
    """
    Baseclass for CUDA / Cutlass based Kernels
    """

    overrides = OpOverrides  # type: ignore[assignment]

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.layout_args: Dict[str, LayoutArg] = {}
        # Mapping from arg name to IRNode.
        self.named_nodes: Dict[str, IRNode] = {}

    def find_symbol(
        self, node: IRNode, attr: ValidLayoutAttrs, dim: int
    ) -> Optional[str]:
        arg = self.find_layout_arg(node, attr, dim)
        return arg.symbol if arg else None

    def find_layout_arg(
        self, node: IRNode, attr: ValidLayoutAttrs, dim: int
    ) -> Optional[LayoutArg]:
        matches = [
            arg for arg in self.layout_args.values() if arg.matches(node, attr, dim)
        ]
        assert len(matches) <= 1, matches
        return None if len(matches) == 0 else matches[0]

    def add_layout_arg(
        self, symbol: ValidLayoutSymbols, node: IRNode, attr: ValidLayoutAttrs, dim: int
    ):
        arg = LayoutArg(node, symbol, attr, dim)
        self.layout_args.setdefault(symbol, arg)

    def init_layout_args(self) -> None:
        X = self.named_nodes["X"]
        W = self.named_nodes["W"]
        Y = self.named_nodes["Y"]
        Bias = self.named_nodes.get("Bias", None)
        mdim = _normalize_idx(-2, len(X.get_size()))
        ndim = _normalize_idx(-1, len(W.get_size()))
        kdim = _normalize_idx(-1, len(X.get_size()))
        self.add_layout_arg("M", X, "size", mdim)
        self.add_layout_arg("N", X, "size", ndim)
        self.add_layout_arg("K", X, "size", kdim)

        lda_dim = self.find_ld_idx(X)
        ldb_dim = self.find_ld_idx(W)
        ldc_dim = self.find_ld_idx(Y)
        ldd_dim = self.find_ld_idx(Bias) if Bias else None
        self.add_layout_arg("lda", X, "stride", lda_dim)
        self.add_layout_arg("ldb", W, "stride", ldb_dim)
        self.add_layout_arg("ldc", Y, "stride", ldc_dim)
        if Bias and ldd_dim:
            self.add_layout_arg("ldd", Bias, "stride", ldd_dim)

    def get_layout_args(self) -> Tuple[Union[Expr, int], ...]:
        X = self.named_nodes["X"]
        W = self.named_nodes["W"]
        Y = self.named_nodes["Y"]
        Bias = self.named_nodes.get("Bias", None)
        mdim = _normalize_idx(-2, len(X.get_size()))
        ndim = _normalize_idx(-1, len(W.get_size()))
        kdim = _normalize_idx(-1, len(X.get_size()))

        def get_ld(node) -> Union[Expr, int]:
            dim = self.find_ld_idx(node)
            return node.get_stride()[dim]

        M = X.get_size()[mdim]
        N = W.get_size()[ndim]
        K = X.get_size()[kdim]
        LDA = get_ld(X)
        LDB = get_ld(W)
        LDC = get_ld(Y)
        LDD = get_ld(Bias) if Bias else 0
        return (M, N, K, LDA, LDB, LDC, LDD)

    @staticmethod
    def find_ld_idx(node: IRNode) -> int:
        strides = node.get_stride()
        # Handle 1D tensor case
        if V.graph.sizevars.statically_known_equals(strides[-1], 1):
            return _normalize_idx(-2, len(strides))

        assert V.graph.sizevars.statically_known_equals(strides[-2], 1), strides[-2]
        return _normalize_idx(-1, len(strides))


class CUDATemplateKernel(CUDAKernel):
    """
    Template kernels defined by CUDA / Cutlass in C++.
    """

    _EXTRA_CPP_ARGS = "size_t* workspace_size, uint8_t* workspace, cudaStream_t stream"

    def __init__(self, kernel_name) -> None:
        """
        Initializes a new instance of the CUDATemplateKernel class.

        Args:
            kernel_name (str): The name of the kernel.
        """
        super().__init__()
        self.kernel_name = kernel_name

    def arg_name(self, node: IRNode) -> Optional[str]:
        """
        Returns arg name of a given input or output node.
        """
        if node is None:
            return None
        return {**self.args.input_buffers, **self.args.output_buffers}.get(
            node.get_name(), None
        )

    def check_not_null(self, node: IRNode) -> str:
        """
        Generates code to check that a node is not null.
        """
        if node is None:
            return ""

        size_str = self.size(node, 0, -1)
        name_str = self.arg_name(node)
        if name_str is None:
            return ""

        res = IndentedBuffer(initial_indent=2)
        res.tabwidth = 1
        res.splice(
            f"""
            {{
              if (!{name_str}) {{
                int64_t {name_str}_size = {size_str};
                if ({name_str}_size > 0) {{
                  throw std::runtime_error("input {name_str} is null but size is not 0!");
                }}
              }}
            }}
            """
        )
        return res.getvalue()

    def get_signature(self) -> str:
        return self.signature

    def def_kernel(
        self,
        inputs: List[IRNode],
        outputs: List[IRNode],
        names_str: str = "",
        input_reorder: Optional[List[int]] = None,
    ) -> str:
        """
        Hook called from template code to generate function definition and
        needed args.

        Args:
            inputs: List of input IRNodes
            outputs: List of output IRNodes
            names_str: Comma separated list of input + output argument names.
            input_reorder: The actual order of input nodes.
                           e.g. The template might have input argument defined as [X, W, Bias],
                           and the actual input passed into this template could be [Bias, X, W].
                           In this case, the `input_reorder` would be [2, 0, 1].
        """
        names = [x.strip() for x in names_str.strip().split(",")]
        if len(inputs) + len(outputs) != len(names):
            raise RuntimeError(
                f"{len(inputs) + len(outputs)=} != {len(names)=}, {inputs=}, {outputs=}, {names=}"
            )

        if input_reorder is not None:
            assert len(inputs) == len(input_reorder)
        else:
            input_reorder = list(range(len(inputs)))

        for idx in input_reorder:
            name = names[idx]
            node = inputs[idx]
            if node is not None:
                self.named_nodes[name] = node
                self.args.input_buffers[node.get_name()] = name

        for name, node in zip(names[len(inputs) : len(inputs) + len(outputs)], outputs):
            if node is not None:
                self.named_nodes[name] = node
                self.args.output_buffers[node.get_name()] = name

        arg_defs, *_ = self.args.cpp_argdefs()

        self.init_layout_args()
        size_args = [
            f"const int {s}" for s in ("M", "N", "K", "lda", "ldb", "ldc", "ldd")
        ]

        signature = f"int {self.kernel_name}({', '.join(arg_defs + size_args)}, {self._EXTRA_CPP_ARGS})"
        self.signature = signature
        return signature

    def call_kernel(
        self,
        name: str,
        node: "CUDATemplateBuffer",  # type: ignore[name-defined]
    ) -> None:
        """
        Generates code to call the kernel through V.graph.wrapper_code.
        used from within torch._inductor.wrapper.PythonWrapperCodegen

        name: Name of kernel function.
        node: The CUDATemplateBuffer node which contains information about the kernel, it's fused epilogue nodes
        as well as all required inputs and outputs.
        """
        wrapper = V.graph.wrapper_code

        if V.graph.cpp_wrapper:
            # Make sure we initialize these kernels since they're exported as
            # C-style symbol names.
            assert isinstance(wrapper, CppWrapperCpu)
            wrapper.initialized_kernels[name] = self
            # We always originally initialize name with "KERNEL_NAME". So, we
            # we replace with the real kernel name passed as an arg to this function.
            self.signature = self.signature.replace("KERNEL_NAME", name)
            _, call_args, arg_types = self.args.cpp_argdefs()
        else:
            _, call_args, _, arg_types = self.args.python_argdefs()

        layout_args = self.get_layout_args()
        call_args.extend(layout_args)
        arg_types.extend("int" for a in layout_args)
        # dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
        for i in range(len(call_args)):
            if V.graph.is_unspec_arg(call_args[i]):
                call_args[i] = call_args[i] + ".item()"
            elif isinstance(arg_types[i], torch_dtype):
                call_args[i] = (
                    call_args[i]
                    if V.graph.cpp_wrapper
                    else f"c_void_p({call_args[i]}.data_ptr())"
                )

        # workspace_size ptr is NULL to mark this call is not intended for retrieving workspace_size.
        # workspace_size should have already been retrieved prior to this call.
        # workspace_size is here.
        call_args.append("nullptr" if V.graph.cpp_wrapper else "None")
        if V.graph.cpp_wrapper:
            arg_types.append("size_t*")

        if node.get_workspace_size() > 0:
            ws = WorkspaceArg(
                count=node.get_workspace_size(),
                device=V.graph.get_current_device_or_throw(),
                zero_mode=WorkspaceZeroMode.UNINITIALIZED,
                outer_name=WorkspaceArg.unique_name(),
            )
            wrapper.generate_workspace_allocation(ws)
            data_ptr = f"{ws.outer_name}.data_ptr()"
            call_args.append(
                data_ptr if V.graph.cpp_wrapper else f"c_void_p({data_ptr})"
            )
        else:
            ws = None
            call_args.append("nullptr" if V.graph.cpp_wrapper else "None")
        if V.graph.cpp_wrapper:
            arg_types.append("uint8_t*")

        wrapper.generate_kernel_call(
            name,
            call_args,
            gpu=True,
            triton=False,
            arg_types=arg_types,
        )
        if ws:
            wrapper.generate_workspace_deallocation(ws)

    def dtype(self, node: IRNode) -> Optional[str]:
        """
        Generates code which represents dtype of a given node.
        """

        if node is None:
            return "void"
        return DTYPE_TO_CPP.get(node.get_layout().dtype)

    def cutlass_dtype(self, node: IRNode, default_dtype="void") -> Optional[str]:
        # Helper method, called into from CUTLASSGemmTemplate
        if node is None:
            return default_dtype
        from torch._inductor.codegen.cuda.cuda_template import CUTLASSTemplate

        return CUTLASSTemplate._DTYPE_TO_CUTLASS[node.get_layout().dtype]

    def max_valid_index(self, node: IRNode, default=-1):
        # Helper method, called into from CUTLASSGemmTemplate
        if node is None:
            return default
        max_valid_offset = 0
        for i in range(len(node.get_size())):
            max_valid_offset += (node.get_size()[i] - 1) * node.get_stride()[i]
        return max_valid_offset

    def offset(self, node: IRNode) -> str:
        """
        Generates code which represents offset of a given node.
        """

        if node is None:
            return "0"
        return str(node.get_layout().offset)  # type: ignore[union-attr]

    def ptr(self, node: IRNode) -> str:
        """
        Generates code which represents pointer of a given node.
        """

        if node is None:
            return "nullptr"
        arg_name = self.arg_name(node)
        if arg_name is None:
            return "nullptr"
        offset = self.offset(node)
        return arg_name if offset == "0" else f"{arg_name} + {offset}"

    def size(
        self,
        node: IRNode,
        start_index: int,
        end_index: Optional[int] = None,
        default_value: int = 0,
    ) -> str:
        """
        Hook called from template code to get the size of an arg.
        Generates code which represents size of a given node in [start_index, end_index).
        If node is None, returns default_value.

        TODO: Will add needed args to pass it in if it is dynamic.
        """

        if node is None:
            return str(default_value)

        start_index = _normalize_idx(start_index, len(node.get_size()))
        if end_index is None:
            end_index = start_index
        end_index = _normalize_idx(end_index, len(node.get_size()))
        sizes = [
            self.find_symbol(node, "size", dim=i) or node.get_size()[i]
            for i in range(start_index, end_index + 1)
        ]
        if len(sizes) == 0:
            return str(default_value)

        val = sympy_product(sizes)
        return val

    def stride(self, node: IRNode, index: int, default_value: int = 0) -> str:
        """
        Hook called from template code to get the stride of an arg.
        Generates code which represents stride of a given node at index.
        If node is None, returns default_value.

        TODO: Will add needed args to pass it in if it is dynamic.
        """

        if node is None:
            return str(default_value)

        index = _normalize_idx(index, len(node.get_size()))
        if index < 0:
            return str(default_value)

        stride = node.get_stride()[index]
        if V.graph.sizevars.statically_known_leq(stride, 1):
            return str(stride)
        return self.find_symbol(node, "stride", dim=index) or str(stride)

    def row_or_column_stride(self, node: IRNode, default_value: int = 0) -> str:
        """
        Hook called from template code to get the row or column stride of an arg.
        This is required by some CUTLASS 2.X APIs.
        If the node is in row_major, it returns stride[-2].
        If the node is in column_major, it returns stride[-1].

        TODO: Will add needed args to pass it in if it is dynamic.
        """

        if node is None or len(node.get_stride()) < 2:
            return str(default_value)

        stride0 = node.get_stride()[-1]
        stride1 = node.get_stride()[-2]
        if stride0 == 1:
            return cexpr(self.rename_indexing(stride1))
        elif stride1 == 1:
            return cexpr(self.rename_indexing(stride0))
        else:
            raise RuntimeError(
                f"At least 1 stride should be 1. Strides: {node.get_stride()=}"
            )


class CUDATemplateCaller(ChoiceCaller):
    """
    CUDATemplateCaller

    This class represents a caller for CUDA template kernels. It is a subclass of ChoiceCaller.
    Attributes:
        name (str): The name of the caller.
        category (str): The category of the caller.
        bmreq (CUDABenchmarkRequest): The benchmark request for the caller.
        template_buffer (CUDATemplateBuffer): The template buffer for the caller.
    """

    def __init__(
        self,
        name: str,
        category: str,
        input_nodes: List[Buffer],
        layout: Layout,
        make_kernel_render: Callable[[CUDATemplateBuffer, Optional[List[IRNode]]], str],
        bmreq: CUDABenchmarkRequest,
        template: "CUDATemplate",  # type: ignore[name-defined]
        info_kwargs: Optional[Dict[str, Union[PrimitiveInfoType, List[PrimitiveInfoType]]]],  # type: ignore[type-arg]
        description: str,
    ) -> None:
        super().__init__(name, input_nodes, layout, description)
        self.category = category
        self.make_kernel_render = make_kernel_render
        self.bmreq = bmreq
        self.template = template
        self.info_kwargs = info_kwargs

    def precompile(self) -> None:
        assert self.bmreq is not None
        self.bmreq.precompile()

    def benchmark(self, *args, out) -> float:
        assert self.bmreq is not None
        return self.bmreq.benchmark(
            *args, output_tensor=out
        )  # @TODO: Hack for ensuring that Cutlass Kernel is preferred

    def __str__(self) -> str:
        return f"CUDATemplateCaller(source_file={self.bmreq.source_file})"

    def call_name(self) -> str:
        return f"cuda_template_kernels.{self.name}"

    def hash_key(self) -> str:
        return "-".join(
            [
                self.category,
                self.bmreq.hash_key,
            ]
        )

    def info_dict(self) -> Dict[str, Union[PrimitiveInfoType, List[PrimitiveInfoType]]]:
        """Information returned here is logged to the autotune log file when that is enabled."""
        if self.info_kwargs is not None and "op" in self.info_kwargs:
            op: Any = self.info_kwargs["op"]
            return {
                "backend": "CUDA",
                "op_type": type(op).__name__,
                "op_conf_name": str(op.configuration_name()),
                "op_arch": str(op.arch),
                "tile_shape": str(op.tile_description.tile_shape),
                "epilogue_schedule": str(op.epilogue_schedule),
                "kernel_schedule": str(op.kernel_schedule),
                "element_accumulator": str(op.accumulator_type()),
                "op_name": str(op.procedural_name()),
                "instruction_shape": str(
                    op.tile_description.math_instruction.instruction_shape
                ),
            }
        else:
            return {"backend": "CUDA", "op_type": "unknown"}

    def output_node(self) -> TensorBox:
        self.bmreq.update_workspace_size()
        return TensorBox.create(
            CUDATemplateBuffer(
                layout=self.layout,
                inputs=self.input_nodes,
                make_kernel_render=self.make_kernel_render,
                workspace_size=self.bmreq.workspace_size,
                template=self.template,
            )
        )