1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
# mypy: allow-untyped-defs
import functools
import itertools
import logging
from typing import List, Optional
from unittest.mock import patch
import sympy
import torch
from ...autotune_process import CUDABenchmarkRequest, TensorMeta
from ...ir import Buffer, CUDATemplateBuffer, IRNode, Layout
from ...utils import IndentedBuffer, unique
from ...virtualized import V
from ..common import KernelTemplate
from .cuda_kernel import CUDATemplateCaller, CUDATemplateKernel
log = logging.getLogger(__name__)
class CUDATemplate(KernelTemplate):
index_counter = itertools.count()
def __init__(
self,
name: str,
input_nodes: List[Buffer],
layout: Layout,
input_reorder: Optional[List[int]] = None,
) -> None:
"""
Baseclass for CUDA C++ Templates, derived from KernelTemplate. Not to be instantiated directly.
Args:
name (str): The name of the CUDATemplate object.
input_nodes (List[IRNode]): A list of input IRNodes.
layout (Layout): The layout of the output buffer / tensor.
input_reorder (Optional[List[int]]): An optional list that specifies the order of the input nodes.
"""
super().__init__(name)
self.input_nodes = input_nodes
self.output_node: Buffer = Buffer(name="buf_out", layout=layout)
self.input_reorder = input_reorder
self.layout = layout
def generate( # type: ignore[override]
self,
description,
**kwargs,
) -> CUDATemplateCaller:
"""
Generates the CUDA template caller object for the given GEMM template and operation. This CUDATemplateCaller
may be used to call and benchmark the generated CUDA kernel in a standalone manner to enable Autotuning.
Args:
kwargs: Additional keyword arguments.
Returns:
A CUDATemplateCaller object representing the generated CUDA template caller.
"""
kernel_name = f"cuda_{self.name}"
with patch.object(
V.graph, "get_dtype", self._fake_get_dtype(self.output_node)
), CUDATemplateKernel(
kernel_name=kernel_name,
) as kernel:
code = self.render(kernel=kernel, **kwargs)
_, call_args, _, _ = kernel.args.python_argdefs()
log.debug("Generated Code:\n%s", code)
log.debug(
"Args: cpp_argdefs: %s, python_argdefs: %s",
kernel.args.cpp_argdefs(),
kernel.args.python_argdefs(),
)
input_reorder = (
self.input_reorder
if self.input_reorder is not None
else list(range(len(self.input_nodes)))
)
expected_args = list(
unique(self.input_nodes[idx].get_name() for idx in input_reorder)
)
expected_args.extend([self.output_node.get_name()])
assert list(call_args)[: len(expected_args)] == expected_args, (
call_args,
expected_args,
)
extra_args = V.graph.sizevars.size_hints(
map(sympy.expand, call_args[len(expected_args) :])
)
size_args = V.graph.sizevars.size_hints(kernel.get_layout_args())
kernel_hash_name = f"cuda_{self.name}_{next(self.index_counter)}"
# create the BenchmarkRequest
bmreq = CUDABenchmarkRequest(
kernel_name=kernel_name,
input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes),
output_tensor_meta=TensorMeta.from_irnodes(self.output_node),
extra_args=size_args,
source_code=code,
)
def make_kernel_render(
template_node: CUDATemplateBuffer,
epilogue_nodes: Optional[List[IRNode]] = None,
):
kernel = CUDATemplateKernel(
kernel_name="KERNEL_NAME",
)
render = functools.partial(
self.render,
kernel=kernel,
template_buffer_node=template_node,
epilogue_nodes=epilogue_nodes,
**kwargs, # includes "op" argument in case of CUTLASSGemmTemplate
)
return kernel, render
return CUDATemplateCaller(
kernel_hash_name,
self.name,
self.input_nodes,
self.output_node.get_layout(),
make_kernel_render,
bmreq,
self,
kwargs,
description,
)
def header(self) -> IndentedBuffer:
res = IndentedBuffer()
res.splice(
"""
#include <exception>
#include <iostream>
#include <memory>
#include <random>
#include <vector>
"""
)
return res
def globals(self) -> IndentedBuffer:
res = IndentedBuffer()
res.splice(
"""
// We compile all models with -fvisibility=hidden. Any symbols that need to be
// exposed in the final shared library must be declared with PT_EXPORT to make
// them visible.
#ifdef __GNUC__ // Applies to any compiler with GNU extensions (clang and g++)
#define PT_EXPORT __attribute__((__visibility__("default")))
#else
#ifdef _WIN32
#define PT_EXPORT __declspec(dllexport)
#else
#define PT_EXPORT
#endif
#endif
using bfloat16 = nv_bfloat16;
"""
)
return res
def render(self, **kwargs) -> str:
raise NotImplementedError
class CUTLASSTemplate(CUDATemplate):
"""
CUTLASSTemplate is a class that provides a template for generating CUTLASS Templates. Used as a baseclass for the
CUTLASSGemmTemplate, providing functionality that might also be relevant for non-GEMM CUTLASS Kernels.
"""
def header(self) -> IndentedBuffer:
res = super().header()
res.splice(
"""
#include "cute/tensor.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/device/tensor_fill.h"
#include "cutlass/util/device_memory.h"
"""
)
return res
def globals(self) -> IndentedBuffer:
res = super().globals()
res.splice(
"""
using namespace cute;
#define CUTLASS_CHECK(status) \\
{ \\
cutlass::Status error = status; \\
if (error != cutlass::Status::kSuccess) { \\
auto msg = std::string("[") + __FILE__ + "] Got cutlass error: " + \\
cutlassGetStatusString(error) + " at: " + std::to_string(__LINE__); \\
throw std::runtime_error(msg); \\
} \\
}
// Used as pass-through functor in EVT just for type casting / rounding
template <typename T>
struct identity_op {
CUTLASS_HOST_DEVICE
T operator()(T val) const { return val; }
};
"""
)
return res
def cute_int(self, int_str: str, var_name: str) -> str:
res = ""
if int_str in {"1", "1L"}:
res = "cute::Int<1>{}"
else:
res = int_str
return f"{res} /* {var_name} */"
_DTYPE_TO_CUTLASS = {
torch.float32: "float",
torch.float64: "double",
torch.float16: "cutlass::half_t",
torch.int32: "int32_t",
torch.int16: "int16_t",
torch.int8: "int8_t",
torch.uint8: "uint8_t",
torch.bool: "bool",
torch.bfloat16: "cutlass::bfloat16_t",
}
_DTYPE_TO_CUTLASS_SPARSE_META = {
torch.int32: "uint32_t",
torch.int16: "uint16_t",
}
def cutlass_type_cast(self, node: IRNode, ptr: str) -> str:
if node is None:
return ptr
else:
return f"({self._DTYPE_TO_CUTLASS.get(node.get_dtype())}*)({ptr})"
def cutlass_sparse_meta_type_cast(self, node: IRNode, ptr: str) -> str:
if node is None:
return ptr
else:
return (
f"({self._DTYPE_TO_CUTLASS_SPARSE_META.get(node.get_dtype())}*)({ptr})"
)
|