1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
# mypy: allow-untyped-defs
from __future__ import annotations
import functools
import logging
import os
from enum import Enum
from typing import List, Optional
import torch
from torch import dtype as torch_dtype
from .. import config
from ..virtualized import V
from .multi_kernel import MultiKernel
log = logging.getLogger(__name__)
def _print_debugging_tensor_value_info(msg, arg):
# helper for printing debugging stats for intermediate tensor values
# at jit inductor level codegen
max_numel_to_print = 64
print(msg)
numel = arg.float().numel()
# print the debug printing stats
if numel <= max_numel_to_print:
print(arg)
print("Number of elements: ", numel)
print("Size: ", arg.float().size())
print("Dtype: ", arg.float().mean().item())
print("Mean: ", arg.float().mean().item())
print("Min: ", arg.float().min().item())
print("Max: ", arg.float().max().item())
print("Std: ", arg.float().std().item())
# AOTI debug printing related configs
class IntermediateValueDebuggingLevel(Enum):
# OFF: No intermediate tensor value debug info will be printed or saved.
OFF = "0"
# LEVEL 1: Save all intermediate tensor values to individual `.pt` files. No debug printing will be displayed.
SAVE_ONLY = "1"
# LEVEL 2: Print all intermediate tensor values by default to the console. No debug saving will be performed.
PRINT_ONLY = "2"
# LEVEL 3: Print all kernel names to the console only. No debug saving/printing for input tensor value info will be performed.
# This mode can be helpful in cases when you just want to pinpointing what kernel is running into a CUDA IMA issue, etc.
PRINT_KERNEL_NAMES_ONLY = "3"
class DebugPrinterManager:
def __init__(
self,
debug_printer_level,
args_to_print_or_save: Optional[List[str]] = None,
kernel_name: str = "",
kernel=None,
arg_signatures: Optional[List[type]] = None,
kernel_type=None,
):
self.debug_printer_level = IntermediateValueDebuggingLevel(debug_printer_level)
if args_to_print_or_save is None:
args_to_print_or_save = []
self.args_to_print_or_save = args_to_print_or_save
self.kernel_name = kernel_name
self.arg_signatures: Optional[List[type]] = None
self.kernel = kernel
self.filtered_kernel_names_to_print = self._get_debug_filtered_kernel_names()
self.kernel_type = None
def __enter__(self):
self._perform_debug_print_or_save_helper(
self.args_to_print_or_save,
self.kernel_name,
before_launch=True,
arg_signatures=self.arg_signatures,
)
def __exit__(self, args_to_print_or_save, kernel_name, arg_signatures):
self._perform_debug_print_or_save_helper(
args_to_print_or_save,
kernel_name,
before_launch=False,
arg_signatures=arg_signatures,
)
def _perform_debug_print_or_save_helper(
self,
args_to_print_or_save,
kernel_name,
before_launch,
arg_signatures: Optional[List[type]] = None,
):
if self.debug_printer_level == IntermediateValueDebuggingLevel.OFF:
return
if self.debug_printer_level == IntermediateValueDebuggingLevel.SAVE_ONLY:
# by default save all the tensor values before launch
self.codegen_intermediate_tensor_value_save(
self.args_to_print_or_save,
self.kernel_name,
before_launch,
arg_signatures=self.arg_signatures,
)
if self.debug_printer_level == IntermediateValueDebuggingLevel.PRINT_ONLY:
# by default print all the tensor values before launch
self.codegen_intermediate_tensor_value_print(
self.args_to_print_or_save,
self.kernel_name,
before_launch,
arg_signatures=self.arg_signatures,
)
if (
self.debug_printer_level
== IntermediateValueDebuggingLevel.PRINT_KERNEL_NAMES_ONLY
):
# Print all kernel names to the console only
self.codegen_intermediate_tensor_value_print(
[],
self.kernel_name,
before_launch,
)
@functools.lru_cache # noqa: B019
def _get_debug_filtered_kernel_names(self) -> List[str]:
if config.aot_inductor.filtered_kernel_names is None:
return []
return [
x.strip()
for x in config.aot_inductor.filtered_kernel_names.lower().split(",")
]
def set_printer_args(
self,
args_to_print_or_save: List[str],
kernel_name: str,
arg_signatures: Optional[List[type]],
kernel,
kernel_type=None,
):
# Note: MultiKernel debug printing is not supported for now
if isinstance(kernel, MultiKernel):
log.info(
"MultiKernel type is not supported in AOTI debug printer tool yet."
)
self.debug_printer_level = IntermediateValueDebuggingLevel.OFF
self.kernel_type = kernel_type
# Note: if the kernel type is an extern kernel (or cpp kernel), we do a special handling to
# get the list of args_to_print_or_save
# TODO: Find a more reliable way to detect kernel args types to print for extern kernel calls
if kernel_type == "extern":
args_to_print_or_save_extern = [
arg for arg in args_to_print_or_save if arg.startswith(("buf", "arg"))
]
self.args_to_print_or_save = args_to_print_or_save_extern
elif kernel_type == "cpp":
args_to_print_or_save_cpp = [
f"copy_arrayref_tensor_to_tensor({arg})"
for arg in args_to_print_or_save
if arg.startswith(("buf", "arg"))
]
self.args_to_print_or_save = args_to_print_or_save_cpp
else:
self.args_to_print_or_save = args_to_print_or_save
self.kernel_name = kernel_name
self.arg_signatures = arg_signatures
self.kernel = kernel
def codegen_model_inputs_value_print(self, input_args_to_print: List[str]) -> None:
if self.debug_printer_level != IntermediateValueDebuggingLevel.PRINT_ONLY:
return
for arg in input_args_to_print:
if V.graph.cpp_wrapper:
V.graph.wrapper_code.prefix.writeline(
f'aoti_torch_print_tensor_handle({arg}, "aoti_model_inputs - {arg}");'
)
def codegen_intermediate_tensor_value_save(
self,
args_to_save,
kernel_name,
before_launch=True,
arg_signatures: Optional[List[type]] = None,
) -> None:
for i, arg in enumerate(args_to_save):
if arg_signatures is not None and not isinstance(
arg_signatures[i], torch_dtype
):
# infer from the arg data type (has torch.dtype) to see if it is a tensor type
continue
launch_prefix = "before_launch" if before_launch else "after_launch"
if V.graph.cpp_wrapper:
V.graph.wrapper_code.writeline(
f'aoti_torch_save_tensor_handle({arg}, "{arg}", "{launch_prefix}", "{kernel_name}");'
)
else:
cwd = os.getcwd()
saved_dir = cwd + "/tmp/jit_inductor/"
if not os.path.exists(saved_dir):
log.info(
"Creating directory to save inductor intermediate tensor values."
)
os.makedirs(saved_dir)
# Save the model to the directory
saved_path = saved_dir + f"{launch_prefix}_{kernel_name}_{arg}.pt"
log.info(
"Saved intermediate tensor %s for %s to %s",
arg,
kernel_name,
saved_path,
)
line = f"torch.save({arg}, '{saved_path}')"
V.graph.wrapper_code.writeline(line)
def codegen_intermediate_tensor_value_print(
self,
args_to_print,
kernel_name,
before_launch=True,
arg_signatures: Optional[List[type]] = None,
) -> None:
launch_prefix = "before_launch" if before_launch else "after_launch"
# if the debug printing level is PRINT_KERNEL_NAMES_ONLY
# we only print the kernel name to the console
if (
self.debug_printer_level
== IntermediateValueDebuggingLevel.PRINT_KERNEL_NAMES_ONLY
):
if V.graph.cpp_wrapper:
V.graph.wrapper_code.writeline(
f'printf("[ {launch_prefix}: {kernel_name} ]");'
)
V.graph.wrapper_code.writeline('printf("\\n");')
return
if self.debug_printer_level != IntermediateValueDebuggingLevel.PRINT_ONLY:
return
for i, arg in enumerate(args_to_print):
# when debug printing is enabled i.e. IntermediateValueDebuggingLevel.PRINT_ONLY,
# check if filtered kernel name list is provided
if (
len(self.filtered_kernel_names_to_print) > 0
and kernel_name.lower() not in self.filtered_kernel_names_to_print
):
continue
if V.graph.cpp_wrapper:
if arg_signatures is not None and isinstance(
arg_signatures[i], (torch_dtype)
):
# infer from the arg data type (has torch.dtype) to see if it is a tensor type
V.graph.wrapper_code.writeline(
f'aoti_torch_print_tensor_handle({arg}, "{launch_prefix} - {kernel_name} - {arg}");'
)
elif arg_signatures is not None and isinstance(
arg_signatures[i],
(
type(torch._inductor.codegen.wrapper.SymbolicCallArg),
type(int),
type(float),
type(bool),
),
):
V.graph.wrapper_code.writeline(
f'printf("[ {launch_prefix} - {kernel_name} - {arg}: %ld ]", {arg}); printf("\\n");'
)
else:
if arg_signatures is None and self.kernel_type == "cpp" or "extern":
V.graph.wrapper_code.writeline(
f'aoti_torch_print_tensor_handle({arg}, "{launch_prefix} - {kernel_name} - {arg}");'
)
else:
V.graph.wrapper_code.writeline(
f'_print_debugging_tensor_value_info("inductor: {launch_prefix} - {kernel_name} - {arg}", {arg})'
)
|