1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
|
# mypy: allow-untyped-defs
from __future__ import annotations
import dataclasses
import functools
import itertools
import logging
import re
from collections import defaultdict
from math import inf
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Tuple,
TYPE_CHECKING,
Union,
)
import sympy
import torch
import torch._logging
from ..._prims_common import is_integer_dtype
from ...utils._sympy.functions import FloorDiv, ModularIndexing
from ...utils._sympy.symbol import symbol_is_type, SymT
from ...utils._sympy.value_ranges import ValueRanges
from .. import config, ir
from ..codecache import HalideCodeCache
from ..ir import get_reduction_combine_fn
from ..metrics import is_metric_table_enabled, log_kernel_metadata
from ..ops_handler import AddParenHandler, MockHandler
from ..runtime.hints import HalideInputSpec, HalideMeta
from ..utils import (
get_bounds_index_expr,
get_kernel_metadata,
parallel_num_threads,
sympy_index_symbol,
sympy_subs,
)
from ..virtualized import _ops as ops, OpsHandler, V
from .common import (
BackendFeature,
CSEVariable,
DeferredLine,
IndentedBuffer,
OpOverrides,
PythonPrinter,
SizeArg,
TensorArg,
)
from .cpp import DTYPE_TO_CPP
from .cpp_utils import cexpr
from .simd import constant_repr, SIMDKernel, SIMDScheduling
if TYPE_CHECKING:
from ..ops_handler import ReductionType, StoreMode
log = logging.getLogger(__name__)
def halide_constant(val):
if isinstance(val, int) and not (-2147483648 <= val <= 2147483647):
info = torch.iinfo(torch.int64)
if val == info.min:
return "hl.Int(64).min()"
if val == info.max:
return "hl.Int(64).max()"
return f"hl.i64({val!r})"
if isinstance(val, float):
return f"hl.f64({constant_repr(val)})"
return repr(val)
class Unsupported(RuntimeError):
def __init__(self, thing) -> None:
super().__init__(f"halide backend does not support: {thing}")
class HalidePrinter(PythonPrinter):
@staticmethod
def cast_index(expr):
return f"hl.cast({V.kernel.index_dtype}, {expr})"
@staticmethod
def cast_float(expr):
return f"hl.cast(hl.Float(32), {expr})"
def _print_Float(self, expr):
return f"hl.f32({expr})"
def _print_ToFloat(self, expr):
assert len(expr.args) == 1
return f"hl.f32({self._print(expr.args[0])})"
def _print_floor(self, expr):
assert len(expr.args) == 1
return self.cast_index(f"hl.floor({self._print(expr.args[0])})")
def _print_Trunc(self, expr):
assert len(expr.args) == 1
return self.cast_index(f"hl.trunc({self._print(expr.args[0])})")
_print_TruncToInt = _print_Trunc
def _print_ceiling(self, expr):
assert len(expr.args) == 1
return self.cast_index(f"hl.ceil({self._print(expr.args[0])})")
def _helper_sqrt(self, expr):
return f"hl.sqrt({self.cast_float(self._print(expr))})"
def _print_Where(self, expr):
c = self.doprint(expr.args[0])
p = self.doprint(expr.args[1])
q = self.doprint(expr.args[2])
return f"hl.select({c}, {p}, {q})"
def _print_Min(self, expr):
if len(expr.args) == 1:
return self._print(expr.args[0])
mid = len(expr.args) // 2
a = self._print(sympy.Min(*expr.args[:mid]))
b = self._print(sympy.Min(*expr.args[mid:]))
return f"hl.min({a}, {b})"
def _print_Max(self, expr):
if len(expr.args) == 1:
return self._print(expr.args[0])
mid = len(expr.args) // 2
a = self._print(sympy.Max(*expr.args[:mid]))
b = self._print(sympy.Max(*expr.args[mid:]))
return f"hl.max({a}, {b})"
def _print_Abs(self, expr):
assert len(expr.args) == 1
return self.cast_index(f"hl.abs({self._print(expr.args[0])})")
def _print_OpaqueUnaryFn_cos(self, expr):
assert len(expr.args) == 1
return f"hl.cos(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_cosh(self, expr):
assert len(expr.args) == 1
return f"hl.cosh(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_acos(self, expr):
assert len(expr.args) == 1
return f"hl.acos(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sin(self, expr):
assert len(expr.args) == 1
return f"hl.sin(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sinh(self, expr):
assert len(expr.args) == 1
return f"hl.sinh(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_asin(self, expr):
assert len(expr.args) == 1
return f"hl.asin(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_tan(self, expr):
assert len(expr.args) == 1
return f"hl.tan(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_tanh(self, expr):
assert len(expr.args) == 1
return f"hl.tanh(({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_atan(self, expr):
assert len(expr.args) == 1
return f"hl.atan(({self._print(expr.args[0])})"
def _print_FloorDiv(self, expr):
if expr.is_integer:
return super()._print_FloorDiv(expr)
x, div = expr.args
x = self.cast_float(self.doprint(x))
div = self.cast_float(self.doprint(div))
return self.cast_index(f"hl.floor({x} / {div})")
def _print_Round(self, expr):
assert len(expr.args) == 1
return self.cast_index(f"hl.round({self._print(expr.args[0])})")
_print_RoundToInt = _print_Round
def _print_IntTrueDiv(self, expr):
a, b = expr.args
# force a cast to float
return f"({a}) / ({b}+hl.f32(0))"
def _print_RoundDecimal(self, expr):
val, n = expr.args
val = self._print(val)
n = int(n)
return f"hl.f32({10.**(-n)!r})*hl.round(({val})*hl.f32({10.**n!r}))"
texpr = HalidePrinter().doprint
pexpr = PythonPrinter().doprint
_halide_type = {
torch.bool: "hl.Bool()",
torch.bfloat16: "hl.BFloat(16)",
torch.float16: "hl.Float(16)",
torch.float32: "hl.Float(32)",
torch.float64: "hl.Float(64)",
torch.int8: "hl.Int(8)",
torch.int16: "hl.Int(16)",
torch.int32: "hl.Int(32)",
torch.int64: "hl.Int(64)",
torch.uint8: "hl.UInt(8)",
torch.uint16: "hl.UInt(16)",
torch.uint32: "hl.UInt(32)",
torch.uint64: "hl.UInt(64)",
}
def halide_type(dtype):
return _halide_type[dtype]
def halide_acc_type(dtype):
if is_integer_dtype(dtype) and dtype.is_signed and dtype != torch.int64:
dtype = torch.int32
if dtype in (torch.float16, torch.bfloat16):
dtype = torch.float32
return halide_type(dtype)
class HalideOverrides(OpOverrides):
@staticmethod
def to_dtype(
x,
dtype: torch.dtype,
src_dtype: Optional[torch.dtype] = None,
use_compute_types=True,
):
if dtype == torch.bool:
return f"({x} != 0)"
return f"hl.cast({halide_type(dtype)}, {x})"
@staticmethod
def to_dtype_bitcast(x, dtype: torch.dtype, src_dtype: torch.dtype):
if src_dtype in (torch.float16, torch.bfloat16):
x = f"hl.cast({halide_type(src_dtype)}, {x})" # body compute is upcast to fp32
line = f"hl.reinterpret({halide_type(dtype)}, {x})"
if dtype in (torch.float16, torch.bfloat16):
line = f"hl.cast(hl.Float(32), {line})"
return line
@classmethod
def constant(cls, value, dtype):
return cls.to_dtype(halide_constant(value), dtype)
@staticmethod
def abs(x):
return f"hl.abs({x})"
@staticmethod
def exp(x):
if not hasattr(x, "name"):
return f"hl.exp({x})"
return f"hl.fast_exp(hl.cast(hl.Float(32), {x})) if {x.name}.type().bits() <= 32 else hl.exp({x})"
@staticmethod
def libdevice_exp(x):
return f"hl.exp({x})" # higher precision that ops.exp
@staticmethod
def sqrt(x):
return f"hl.sqrt({x})"
@staticmethod
def minimum(a, b):
# return f"hl.min({a}, {b})" <== handles nan wrong
if not hasattr(a, "name"):
return f"hl.min({a}, {b})"
b = f"hl.cast({a.name}.type(), {b})"
return f"hl.select(({a}<{b})|hl.is_nan({a}), {a}, {b}) if {a.name}.type().is_float() else hl.min({a}, {b})"
@staticmethod
def maximum(a, b):
# return f"hl.max({a}, {b})" <== handles nan wrong
if not hasattr(a, "name"):
return f"hl.max({a}, {b})"
b = f"hl.cast({a.name}.type(), {b})"
return f"hl.select(({a}>{b})|hl.is_nan({a}), {a}, {b}) if {a.name}.type().is_float() else hl.max({a}, {b})"
@staticmethod
def where(a, b, c):
if hasattr(b, "name"):
c = f"hl.cast({b.name}.type(), {c})"
return f"hl.select({a}, {b}, {c})"
@staticmethod
def cos(x):
return f"hl.cos({x})"
@staticmethod
def sin(x):
return f"hl.sin({x})"
@staticmethod
def lgamma(x):
raise Unsupported("lgamma")
@staticmethod
def erf(x):
return f"hl.erf({x})"
@staticmethod
def cosh(x):
return f"hl.cosh({x})"
@staticmethod
def sinh(x):
return f"hl.sinh({x})"
@staticmethod
def acos(x):
return f"hl.acos({x})"
@staticmethod
def acosh(x):
return f"hl.acosh({x})"
@staticmethod
def asin(x):
return f"hl.asin({x})"
@staticmethod
def asinh(x):
return f"hl.asinh({x})"
@staticmethod
def atan2(x, y):
return f"hl.atan2({x}, {y})"
@staticmethod
def atan(x):
return f"hl.atan({x})"
@staticmethod
def atanh(x):
return f"hl.atanh({x})"
@staticmethod
def copysign(x, y):
raise Unsupported("copysign")
@staticmethod
def erfinv(x):
raise Unsupported("erfinv")
@staticmethod
def hypot(x, y):
return f"hl.hypot({x}, {y})"
@staticmethod
def nextafter(x, y):
raise Unsupported("nextafter")
@staticmethod
def logical_and(a, b):
return f"{a} & {b}"
@staticmethod
def logical_not(a):
return f"{a} == 0"
@staticmethod
def logical_or(a, b):
return f"{a} | {b}"
@staticmethod
def logical_xor(a, b):
return f"({a} ^ {b})"
@staticmethod
def bitwise_and(a, b):
return f"{a} & {b}"
@staticmethod
def bitwise_not(a):
return f"~{a}"
@staticmethod
def bitwise_or(a, b):
return f"{a} | {b}"
@staticmethod
def bitwise_xor(a, b):
return f"{a} ^ {b}"
@staticmethod
def bitwise_left_shift(a, b):
return f"{a} << {b}"
@staticmethod
def bitwise_right_shift(a, b):
return f"{a} >> {b}"
@staticmethod
def rand(seed, offset):
return f"halide_helpers.rand({seed}, {offset})"
@staticmethod
def randn(seed, offset):
return f"halide_helpers.randn({seed}, {offset})"
@staticmethod
def randint64(seed, offset, low, high):
return f"halide_helpers.randint64({seed}, {offset}, {low}, {high})"
@staticmethod
def load_seed(name, offset):
return f"{ops.load(name, 0)} + {V.kernel.args.seed_offset('load_seed_offset', offset)}"
@staticmethod
def rsqrt(x):
# return f"hl.fast_inverse_sqrt({x})" <== accuracy issues
return f"1./hl.sqrt({x})"
@staticmethod
def tan(x):
return f"hl.tan({x})"
@staticmethod
def tanh(x):
return f"hl.tanh({x})"
@staticmethod
def signbit(x):
return f"(hl.reinterpret(hl.UInt(32), hl.cast(hl.Float(32), {x})) >> 31) != 0"
@staticmethod
def fmod(a, b):
# TODO(jansel): find a better way to do this, builtin % has wrong sign
return f"{a} - hl.trunc({a}/{b})*{b}"
@staticmethod
def pow(a, b):
return f"hl.pow({a}, {b})" # hl.fast_pow fails accuracy
@staticmethod
def log(x):
return f"hl.log({x})" # hl.fast_log fails accuracy
@staticmethod
def isinf(x):
# workaround https://github.com/halide/Halide/issues/8309
return f"hl.is_inf(hl.cast(hl.Float(32), {x}))"
@staticmethod
def isnan(x):
# workaround https://github.com/halide/Halide/issues/8309
return f"hl.is_nan(hl.cast(hl.Float(32), {x}))"
@staticmethod
def round(x):
return f"hl.round({x})"
@staticmethod
def floor(x):
return f"hl.floor({x})"
@staticmethod
def int_truediv(a, b):
return f"({a}) / ({b} + hl.f32(0))"
@staticmethod
def floordiv(a, b):
# TODO(jansel): find a better ways to do this, the select-based trick from triton.py didn't work
return (
f"hl.floor(hl.cast(hl.Float(max(32, {a.name}.type().bits())), {a}) / {b})"
)
@classmethod
def sign(cls, x):
left = ops.to_dtype(ops.lt("0", x), torch.int8)
right = ops.to_dtype(ops.lt(x, "0"), torch.int8)
sub = ops.sub(left, right)
return f"hl.cast({x.name}.type(), {sub})"
@staticmethod
def trunc(x):
return f"hl.trunc({x})"
@staticmethod
def truncdiv(a, b):
# this causes crashes with floating point exception, see test_div_zero_dim_cpu
# return f"hl.div_round_to_zero({a}, {b})"
return (
f"hl.trunc(hl.cast(hl.Float(max(32, {a.name}.type().bits())), {a}) / {b})"
)
@staticmethod
def ceil(x):
return f"hl.ceil({x})"
@staticmethod
def relu(x):
return f"hl.max({x}, 0)"
@classmethod
def index_expr(cls, expr, dtype):
index = V.kernel.prepare_indexing(expr)
var = V.kernel.genfunc(
V.kernel.index_to_str(index),
V.kernel.used_dims_from_index(index),
bounds=get_bounds_index_expr(expr),
)
if dtype not in {torch.int32, torch.int64}:
return ops.to_dtype(var, dtype)
return var
@classmethod
def indirect_indexing(cls, index_var, size, check=True, wrap_neg=True):
# TODO(jansel): Halide only supports 32-bit indexing, we should error on overflow
index_var = ops.to_dtype(index_var, torch.int32)
index_var = ops.halide_clamp(index_var, size, check)
index_var.indirect_indexing_size = size
return sympy_index_symbol(str(index_var))
@classmethod
def halide_clamp(cls, value, size, check):
end = V.kernel.kexpr(V.kernel.rename_indexing(size) - 1)
if not isinstance(size, (int, sympy.Integer)):
end = f"hl.cast({value.name}.type(), {end})"
# Skip unsafe_promise_clamped to workaround: https://github.com/halide/Halide/issues/8261#issuecomment-2148835692
# return f"hl.unsafe_promise_clamped({value}, 0, {end})"
return f"hl.clamp({value}, 0, {end})"
@staticmethod
def masked(mask, body, other):
with V.kernel.mask_loads(mask, other) as new_mask:
result = body()
if result.bounds.is_bool:
other = bool(other)
# Take dtype from result to prevent accidental promotion
other = V.kernel.genfunc(
f"hl.cast({result.name}.type(), {halide_constant(other)})",
[],
bounds=ValueRanges.wrap(other),
)
# TODO(jansel): look into removing the where in the same places triton does
return ops.where(new_mask, result, other)
# Use mypy to check protocol implemented correctly
def _typecheck_HalideOverrides(h: HalideOverrides) -> OpsHandler[str]:
return h
class HalideCSEVariable(CSEVariable):
undefined_re = re.compile(r"\b(tmp\d+)\[\?\]")
def __init__(
self,
name,
bounds: ValueRanges[Any],
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__(name, bounds, dtype)
self.used_dims: Optional[List[sympy.Symbol]] = None
def update_on_args(self, name, args, kwargs):
used = set(self.used_dims or ())
for arg in itertools.chain(args, kwargs.values()):
if isinstance(arg, HalideCSEVariable):
assert arg.used_dims is not None, (name, arg, args)
used.update(arg.used_dims)
self.used_dims = V.kernel.sort_used_dims(used)
def index_str(self, dims):
if len(dims) == 0:
return f"{self.name}[()]"
# Reversed since Halide is column major
return f"{self.name}[{', '.join(map(str, dims))}]"
def __str__(self) -> str:
if self.used_dims is None:
# This will get recomputed and replaced in codegen_kernel()
return f"{self.name}[?]"
return self.index_str(self.used_dims)
def subs_str(self, replacements):
assert self.used_dims is not None and all(
isinstance(x, sympy.Expr) for x in self.used_dims
)
return self.index_str([replacements.get(n, n) for n in self.used_dims])
@dataclasses.dataclass
class DimensionInfo:
expr: Optional[sympy.Expr]
size: sympy.Expr
stride: sympy.Expr
def __init__(self, expr, size, stride) -> None:
super().__init__()
if V.graph.sizevars.statically_known_lt(stride, 0):
stride = -stride
expr = -expr
self.expr = expr
self.size = size
self.stride = stride
def index_str(self, replacements=None, zero_vars=False):
assert self.expr is not None
expr = self.expr
if zero_vars and expr == 0:
return "hl.Var()"
if replacements:
replacements = {**replacements}
for sym in expr.free_symbols:
if symbol_is_type(sym, SymT.TMP):
assert isinstance(sym, sympy.Symbol)
var = V.kernel.lookup_cse_var(sym.name)
assert isinstance(var, HalideCSEVariable)
replacements[sym] = sympy_index_symbol(var.subs_str(replacements))
expr = sympy_subs(expr, replacements)
return V.kernel.index_to_str(expr)
def eq(left, right):
if V.graph.sizevars.statically_known_equals(left, right):
return True
try:
a = V.graph.sizevars.size_hint(left)
b = V.graph.sizevars.size_hint(right)
except TypeError: # unbacked symints
return False
if a == b:
V.graph.sizevars.guard_equals(left, right)
return a == b
def lt(left, right):
if V.graph.sizevars.statically_known_lt(left, right):
return True
try:
a = V.graph.sizevars.size_hint(left)
b = V.graph.sizevars.size_hint(right)
except TypeError: # unbacked symints
gcd = sympy.gcd(left, right)
if gcd == left:
return left != right
return False
if a < b:
V.graph.sizevars.guard_lt(left, right)
return a < b
class HalideKernel(SIMDKernel):
overrides = HalideOverrides # type: ignore[assignment]
kexpr: Callable[[sympy.Expr], str] = texpr
def __init__(
self,
tiling: Dict[str, sympy.Expr],
**kwargs,
) -> None:
super().__init__(tiling, **kwargs)
# For halide, we just write directly to the body
self.compute = self.body
self.loads = self.body
self.stores = self.body
self.indexing_code_dom = IndentedBuffer()
self.needs_dom_indexing = self.inside_reduction
self.has_reduction = self.inside_reduction
self.buffer_dimensions: Dict[str, List[DimensionInfo]] = {}
self.buffer_offsets: Dict[str, sympy.Expr] = {}
# {h0: size1, h1: size2, ...}
self.halide_vars: Dict[sympy.Symbol, sympy.Expr] = {}
# {x0: h0, x1: h1+10*h2, ...}
self.index_replacements: Dict[sympy.Expr, sympy.Expr] = {}
# {h1: hr1, ...}
self.reduction_renames: Dict[sympy.Symbol, sympy.Symbol] = {}
# {"i": {h0: hi0}, "o": ...}
self.dom_renames: Dict[str, Dict[sympy.Symbol, sympy.Symbol]] = {}
# {"in_ptr0": ["in_ptr0_view0"], ...}
self.buffer_aliases: Dict[str, List[str]] = defaultdict(list)
self.has_indirect_indexing = False
def dtype_to_str(self, dtype: torch.dtype) -> str:
return halide_type(dtype)
def create_cse_var(self, name, bounds=None, dtype=None):
self.body.writeline(f"{name} = hl.Func({name!r})")
return HalideCSEVariable(name, bounds, dtype)
def finalize_indexing(self, indices: Sequence[sympy.Expr]):
"""
Hook called right before codegen with every index that will be
used in the fused kernel.
This populates self.halide_vars/index_replacements/reduction_renames which is an alternate indexing
scheme that avoids using divide and modulus. Instead of xindex/yindex/rindex
we base indexing on a larger number of vars whose product combines to those.
This function populates self.halide_vars, self.index_replacements, and self.reduction_renames
"""
assert not (
self.index_replacements or self.halide_vars or self.reduction_renames
)
size_hint = functools.partial(V.graph.sizevars.size_hint, fallback=inf) # type: ignore[arg-type]
indices = dict.fromkeys(map(super().prepare_indexing, indices))
all_used_symbols = set()
sym_to_node = {
n.symbol(): n
for n in itertools.chain.from_iterable(
[tree.nodes.values() for tree in self.range_trees]
)
}
def simplify(expr):
return sympy.simplify(
V.graph.sizevars.remove_precomputed_replacements(expr)
)
def visit_modular_indexing(base, divisor, modulus):
if base in sym_to_node:
node = sym_to_node[base]
all_used_symbols.add(
node.root.lookup(
node.divisor * divisor,
V.graph.sizevars.evaluate_min(
modulus, FloorDiv(node.length, divisor)
),
).symbol()
)
def visit_floor_div(base, divisor):
if base in sym_to_node:
node = sym_to_node[base]
all_used_symbols.add(
node.root.lookup(
node.divisor * divisor,
FloorDiv(node.length, divisor),
).symbol()
)
# first figure out all_used_symbols to do dead symbol elimination
for index in indices:
if index.has(ModularIndexing):
index.replace(
ModularIndexing(
sympy.Wild("base"),
sympy.Wild("divisor"),
sympy.Wild("modulus"),
),
visit_modular_indexing,
)
if index.has(FloorDiv):
index.replace(
FloorDiv(
sympy.Wild("base"),
sympy.Wild("divisor"),
),
visit_floor_div,
)
all_used_symbols.update(super().prepare_indexing(index).free_symbols)
self.has_indirect_indexing = any(
symbol_is_type(sym, SymT.INDIRECT) for sym in all_used_symbols
)
had_fallback = False
for tree in reversed(self.range_trees):
nodes = [n for n in tree.nodes.values() if n.symbol() in all_used_symbols]
nodes.sort(key=lambda n: size_hint(n.divisor))
if not nodes:
nodes.append(tree.lookup(1, tree.numel))
handled_count = 0
divisor = sympy.S.One
added_sym_size = []
# decide on a minimal set of symbols and put them in self.halide_vars
while handled_count < len(nodes) and not eq(tree.numel, divisor):
sizes_to_add = [
simplify(n.length) for n in nodes if eq(n.divisor, divisor)
]
handled_count += len(sizes_to_add)
assert sizes_to_add, nodes
end = divisor * functools.reduce(
V.graph.sizevars.evaluate_max, sizes_to_add
)
sizes_to_add.extend(
[
simplify(n.divisor / divisor)
for n in nodes
if lt(divisor, n.divisor) and lt(n.divisor, end)
]
)
while sizes_to_add:
next_size = functools.reduce(sympy.gcd, sizes_to_add)
if eq(next_size, 1):
# sizes share no common factors, e.g [2, 21, 42, 441, 889056]
# TODO(jansel): we should just prevent fusion in cases that hit this
next_size = simplify(tree.numel / divisor)
assert not eq(next_size, 1)
sizes_to_add = []
handled_count = len(nodes)
had_fallback = True
sym = sympy_index_symbol(f"h{len(self.halide_vars)}")
if tree.is_reduction:
self.reduction_renames[sym] = sympy_index_symbol(
f"hr{len(self.halide_vars)}"
)
self.halide_vars[sym] = next_size
added_sym_size.append((sym, next_size))
divisor *= next_size
new_sizes = [n.length for n in nodes if eq(n.divisor, divisor)]
handled_count += len(new_sizes)
prior_len = len(sizes_to_add)
sizes_to_add = [
sympy.simplify(s / next_size)
for s in sizes_to_add
if not eq(s, next_size)
]
assert len(sizes_to_add) < prior_len or prior_len == 0
sizes_to_add.extend(new_sizes)
# create a mapping to the new set of symbols in self.index_replacements
for node in nodes:
try:
idx = 0
divisor = 1
while not eq(node.divisor, divisor):
sym, size = added_sym_size[idx]
idx += 1
divisor *= size
length = 1
expr = sympy.S.Zero
while not eq(node.length, length):
sym, size = added_sym_size[idx]
idx += 1
expr += length * sym
length *= size
self.index_replacements[node.symbol()] = expr
except IndexError:
assert had_fallback
full_index = sympy.S.Zero
stride = sympy.S.One
for sym, size in added_sym_size:
full_index += stride * sym
stride *= size
self.index_replacements[
node.symbol()
] = V.graph.sizevars.simplify_with_ranges(
ModularIndexing(full_index, node.divisor, node.length),
self.halide_vars, # type: ignore[arg-type]
)
# codegen the variable definitions
for sym in self.halide_vars:
self.indexing_code.writeline(f"{sym} = hl.Var({sym.name!r})")
if self.reduction_renames:
self.codegen_rdom(
"rdom",
{rv: self.halide_vars[v] for v, rv in self.reduction_renames.items()},
)
def setup_dom_indexing(self):
"""RDom based indexing uses explicit iteration ranges for Func updates"""
prefix = "i" if self.inside_reduction else "o"
if prefix in self.dom_renames:
return self.dom_renames[prefix]
renames = {}
for var in self.halide_vars.keys():
if not self.inside_reduction and var in self.reduction_renames:
continue
m = re.match(r"^h(\d+)$", var.name)
assert m
renames[var] = sympy_index_symbol(f"h{prefix}{m.group(1)}")
self.codegen_rdom(
f"{prefix}dom", {rv: self.halide_vars[v] for v, rv in renames.items()}
)
self.dom_renames[prefix] = renames
return renames
def codegen_rdom(self, name, vars):
rsizes = [
f"hl.Range(0, {self.kexpr(self.rename_indexing(size))})"
for size in vars.values()
]
self.indexing_code.writeline(f"{name} = hl.RDom([{', '.join(rsizes)}])")
for i, rsym in enumerate(vars.keys()):
self.indexing_code.writeline(f"{rsym} = {name}[{i}]")
def prepare_indexing(
self,
index: sympy.Expr,
):
index = super().prepare_indexing(index)
index = sympy_subs(index, self.index_replacements)
return V.graph.sizevars.simplify_with_ranges(index, self.halide_vars) # type: ignore[arg-type]
def sym_size(self, sym):
"""The size of an index symbol"""
if symbol_is_type(sym, SymT.TMP):
return self.lookup_cse_var(sym.name).indirect_indexing_size
return self.halide_vars[sym]
def indexing_to_dimensions(self, var: str, index: sympy.Expr, is_store: bool):
"""Convert address-based indexing into dimensions using self.halide_vars"""
symbols = []
for sym in sorted(index.free_symbols, key=lambda x: x.name): # type: ignore[attr-defined]
if symbol_is_type(sym, (SymT.HALIDE, SymT.TMP)):
symbols.append(sym)
else:
assert symbol_is_type(
sym,
(
SymT.UNBACKED_INT,
SymT.SIZE,
SymT.PRECOMPUTED_SIZE,
),
), sym
# group the expression by variables used
offset = sympy.S.Zero
split_expr = {s: sympy.S.Zero for s in symbols}
split_failed: List[Tuple[List[sympy.Symbol], sympy.Expr]] = []
index = sympy.expand(self.rename_indexing(index))
for part in index.args if isinstance(index, sympy.Add) else [index]:
part_vars = [v for v in part.free_symbols if v in split_expr]
if len(part_vars) == 0:
offset += part
elif len(part_vars) == 1:
split_expr[part_vars[0]] += part
else:
new_split_failed = []
for i in range(len(split_failed)):
assert split_failed[i] is not None
other_vars, other_part = split_failed[i]
if set(other_vars) & set(part_vars):
part_vars.extend([v for v in other_vars if v not in part_vars])
part += other_part
else:
new_split_failed.append((other_vars, other_part))
split_failed = [*new_split_failed, (part_vars, part)]
def expr_to_dimension(expr, syms):
expr = sympy.factor(expr)
if len(syms) == 1:
stride_wild = sympy.Wild("wild", exclude=symbols)
m = expr.match(stride_wild * syms[0])
if m:
return DimensionInfo(
syms[0], self.sym_size(syms[0]), m[stride_wild]
)
assert not is_store, expr
length = sympy.simplify(
sympy_subs(expr, {sym: self.sym_size(sym) - 1 for sym in syms}) + 1
)
stride = sympy.S.One
if isinstance(expr, sympy.Mul):
for term in expr.args:
if isinstance(term, sympy.Integer):
stride *= term
expr = sympy.simplify(expr / term)
length = sympy.simplify(sympy.ceiling(length / term))
return DimensionInfo(expr, length, stride)
# try to turn each group into a strided access
dims = []
for syms, expr in split_failed:
for v in syms:
expr += split_expr.pop(v)
dims.append(expr_to_dimension(expr, syms))
for sym, expr in split_expr.items():
dims.append(expr_to_dimension(expr, [sym]))
dims.sort(key=lambda d: V.graph.sizevars.size_hint(d.stride, fallback=inf)) # type: ignore[arg-type]
if not dims: # scalar load/store
if self.has_indirect_indexing:
# workaround https://github.com/halide/Halide/issues/8338
dims.append(DimensionInfo(sympy.S.Zero, 1, 1))
elif not V.graph.sizevars.statically_known_equals(dims[0].stride, 1):
# Halide assumes dimension 0 is stride == 1, so add a dummy dimension
dims.insert(
0, DimensionInfo(sympy.S.Zero, 1 if is_store else dims[0].stride, 1)
)
if dims and not is_store:
if var in self.buffer_offsets and V.graph.sizevars.statically_known_geq(
offset, self.buffer_offsets[var]
):
# reuse the existing offset to avoid needing an input alias
self.apply_offset_to_dimension(dims, offset - self.buffer_offsets[var])
offset = self.buffer_offsets[var]
elif V.graph.sizevars.statically_known_gt(
offset, 0
): # TODO(jansel): negative offsets
# roll the offset into the dimensions for cleaner indexing
self.apply_offset_to_dimension(dims, offset)
offset = 0
orig_var = var
for i in itertools.count():
if self.install_dims(var, dims, offset, is_store):
return var, dims
assert not is_store
var = f"{orig_var}_view{i}"
if var not in self.buffer_aliases[orig_var]:
self.buffer_aliases[orig_var].append(var)
def install_dims(self, var, dims, offset, is_store):
"""Try to set self.buffer_dimensions[var], return True on success"""
if var not in self.buffer_dimensions:
self.buffer_dimensions[var] = dims
self.buffer_offsets[var] = offset
return True
if self.buffer_offsets[var] != offset or len(
self.buffer_dimensions[var]
) != len(dims):
return False
if is_store:
return self.buffer_dimensions[var] == dims
for old, new in zip(self.buffer_dimensions[var], dims):
if old.stride != new.stride:
return False
if old.size != new.size or old.expr != new.expr:
old.size = V.graph.sizevars.evaluate_max(old.size, new.size)
old.expr = None
return True
def apply_offset_to_dimension(self, dims, offset):
if offset == 0:
return
for i in reversed(range(len(dims))):
if dims[i].stride == 1 or V.graph.sizevars.statically_known_geq(
offset, dims[i].stride
):
part = FloorDiv(offset, dims[i].stride)
offset -= part * dims[i].stride
dims[i].expr += part
assert offset == 0
def used_dims_from_index(self, index: sympy.Expr):
"""Detect which range trees are used to populate HalideCSEVariable.used_dims"""
used_dims = set()
for sym in index.free_symbols:
assert isinstance(sym, sympy.Symbol)
if symbol_is_type(sym, SymT.TMP):
# indirect indexing
cse_var = self.lookup_cse_var(sym.name)
assert (
isinstance(cse_var, HalideCSEVariable)
and cse_var.used_dims is not None
)
used_dims.update(cse_var.used_dims)
elif symbol_is_type(sym, SymT.HALIDE):
used_dims.add(sym)
elif symbol_is_type(
sym, (SymT.UNBACKED_INT, SymT.SIZE, SymT.PRECOMPUTED_SIZE, SymT.INDEX)
):
pass
else:
raise NotImplementedError(f"unhandled symbol {sym}")
return self.sort_used_dims(used_dims)
def sort_used_dims(self, used_dims):
assert all(isinstance(x, sympy.Expr) for x in used_dims)
ordered = [
sym
for sym in itertools.chain(
self.halide_vars, self.reduction_renames.values()
)
if sym in used_dims
]
assert len(ordered) == len(used_dims)
return ordered
def make_index_str(self, dims, replacements=None, zero_vars=False):
index_str = ", ".join(d.index_str(replacements, zero_vars) for d in dims)
if len(dims) == 0:
index_str = "()"
elif len(dims) == 1:
# workaround for https://github.com/halide/Halide/issues/8299
index_str = f"{index_str},"
return index_str
def load(self, name: str, index: sympy.Expr):
"""Codegen a load from an InputBuffer"""
var = self.args.input(name)
index = self.prepare_indexing(index)
var, dims = self.indexing_to_dimensions(var, index, False)
line = f"{var}[{self.make_index_str(dims)}]"
dtype = V.graph.get_dtype(name)
if dtype in (torch.float16, torch.bfloat16):
dtype = torch.float32
line = f"hl.cast(hl.Float(32), {line})"
if self._load_mask:
assert (
isinstance(self._load_mask, HalideCSEVariable)
and self._load_mask.used_dims is not None
)
used_dims = {*self.used_dims_from_index(index), *self._load_mask.used_dims}
result = self.newfunc(self.sort_used_dims(used_dims))
if result.used_dims:
self.body.writeline(f"{result.name}_mask = hl.RDom([hl.Range(0, 1)])")
self.body.writeline(f"{result.name}_mask.where({self._load_mask})")
other = self.kexpr(self._load_other or 0) # type: ignore[arg-type]
self.body.writeline(
f"{result} = hl.cast({halide_type(dtype)}, {other})"
)
self.body.writeline(
f"{result} = {line} + hl.cast({halide_type(dtype)}, {result.name}_mask)"
)
else:
# scalar case
self.body.writeline(
f"{result} = hl.select({self._load_mask}, {line}, hl.cast({halide_type(dtype)}, 0))"
)
return result
else:
return self.genfunc(line, self.used_dims_from_index(index))
def lookup_cse_var(self, name: str):
return self.cse.varname_map[re.sub(r"\[.*", "", name)]
def store(
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
"""Codegen a store to an OutputBuffer"""
assert isinstance(value, HalideCSEVariable)
var = self.args.output(name)
index = self.prepare_indexing(index)
var, dims = self.indexing_to_dimensions(var, index, True)
if self.is_indirect_indexing(index) or mode is not None:
replacements = self.setup_dom_indexing()
index_str = self.make_index_str(dims, replacements)
value_str = value.subs_str(replacements)
undef_dims = (", ".join(["hl.Var()"] * len(dims))) or "()"
self.body.writeline(
DeferredLine(name, f"{var}[{undef_dims}] = hl.undef({var}.type())")
)
else:
index_str = self.make_index_str(dims, zero_vars=True)
value_str = str(value)
dtype = V.graph.get_dtype(name)
if mode is None:
line = f"{var}[{index_str}] = hl.cast({halide_type(dtype)}, {value_str})"
elif mode == "atomic_add":
line = f"{var}[{index_str}] += hl.cast({halide_type(dtype)}, {value_str})"
else:
raise NotImplementedError(f"store mode={mode}")
self.body.writeline(DeferredLine(name, line))
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
"""Codegen a reduction operation"""
assert self.inside_reduction
assert not self._load_mask
cache_key = (src_dtype, reduction_type, value)
if cache_key in self.cse.reduction_cache:
return self.cse.reduction_cache[cache_key]
if isinstance(value, tuple):
assert reduction_type == "welford_combine"
self.cse.reduction_cache[
cache_key
] = result_tuple = self.welford_combine_impl(*value)
return result_tuple
assert isinstance(value, HalideCSEVariable) and value.used_dims is not None
reduction_vars = {*self.reduction_renames}
result_var = self.newfunc(
[v for v in value.used_dims if v not in reduction_vars]
)
if reduction_vars - {*value.used_dims}:
value = self.genfunc(
f"{value}", self.sort_used_dims({*value.used_dims, *reduction_vars})
)
value_str = value.subs_str(self.reduction_renames)
default = ir.Reduction.default_accumulator(reduction_type, src_dtype)
acc_type = halide_acc_type(dtype)
if reduction_type in ("argmax", "argmin"):
index = f"{result_var.name}_{reduction_type}"
self.body.writeline(f"{index} = hl.{reduction_type}(rdom, {value_str})")
# turn the N-D argmax index into a 1-D one
parts = []
stride = 1
for i, sym in enumerate(self.reduction_renames):
parts.append(f"{index}[{i}]")
if stride != 1:
parts[-1] += f"*{stride}"
stride *= self.halide_vars[sym]
self.body.writeline(f"{result_var} = {' + '.join(parts)}")
elif reduction_type == "welford_reduce":
# TODO(jansel): implement welford_reduce without fallback
result_var = self.welford_reduce_fallback(dtype, value)
else:
combine_fn = get_reduction_combine_fn(reduction_type, acc_type)
with V.set_ops_handler(AddParenHandler(HalideOverrides(MockHandler()))):
combine_str = combine_fn(result_var, value_str) # type: ignore[arg-type]
default_str = f"hl.cast({acc_type}, {halide_constant(default)})"
self.body.writeline(f"{result_var} = {default_str}")
self.body.writeline(f"{result_var} = {combine_str}")
self.cse.reduction_cache[cache_key] = result_var
return result_var
def welford_combine_impl(self, mean, m2, weight):
assert isinstance(mean, HalideCSEVariable) and mean.used_dims is not None
assert isinstance(m2, HalideCSEVariable) and m2.used_dims is not None
assert isinstance(weight, HalideCSEVariable) and weight.used_dims is not None
used_dims = {*mean.used_dims, *m2.used_dims, *weight.used_dims} or {
*self.halide_vars
}
used_dims -= {*self.reduction_renames}
result_var = self.newfunc(self.sort_used_dims(used_dims))
default = [f"hl.cast({x.name}.type(), 0)" for x in (mean, m2, weight)]
pfx = result_var.name
self.body.writeline(f"{result_var} = hl.Tuple([{', '.join(default)}])")
self.body.writeline(f"{pfx}_mean_1 = {result_var}[0]")
self.body.writeline(f"{pfx}_m2_1 = {result_var}[1]")
self.body.writeline(f"{pfx}_weight_1 = {result_var}[2]")
self.body.writeline(f"{pfx}_mean_2 = {mean.subs_str(self.reduction_renames)}")
self.body.writeline(f"{pfx}_m2_2 = {m2.subs_str(self.reduction_renames)}")
self.body.writeline(
f"{pfx}_weight_2 = {weight.subs_str(self.reduction_renames)}"
)
self.body.writeline(f"{pfx}_delta = {pfx}_mean_2 - {pfx}_mean_1")
self.body.writeline(f"{pfx}_new_weight = {pfx}_weight_1 + {pfx}_weight_2")
self.body.writeline(
f"{pfx}_w2_over_w = hl.select({pfx}_new_weight == 0.0, 0.0, {pfx}_weight_2 / {pfx}_new_weight)"
)
update = [
f"{pfx}_mean_1 + {pfx}_delta * {pfx}_w2_over_w",
f"{pfx}_m2_1 + {pfx}_m2_2 + {pfx}_delta * {pfx}_delta * {pfx}_weight_1 * {pfx}_w2_over_w",
f"{pfx}_new_weight",
]
self.body.writeline(f"{result_var} = hl.Tuple([{', '.join(update)}])")
unpacked = []
for i in range(3):
unpacked.append(self.newfunc(result_var.used_dims))
self.body.writeline(f"{unpacked[-1]} = {result_var}[{i}]")
return tuple(unpacked)
def scan(
self,
dtypes: Tuple[torch.dtype, ...],
combine_fn: Callable[
[Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]], Tuple[CSEVariable, ...]
],
values_orig: Tuple[CSEVariable, ...],
) -> Tuple[CSEVariable, ...]:
assert self.inside_reduction
assert len(dtypes) == len(values_orig)
values: List[HalideCSEVariable] = []
all_used_dims = set()
for value in values_orig:
assert isinstance(value, HalideCSEVariable) and value.used_dims is not None
if set(value.used_dims) & set(self.reduction_renames):
values.append(value)
else:
values.append(
self.genfunc(
f"{value}", [*value.used_dims, [*self.reduction_renames][:1]]
)
)
all_used_dims.update(value.used_dims)
result_var = self.newfunc(self.sort_used_dims(all_used_dims))
assert result_var.used_dims and set(result_var.used_dims) & set(
self.reduction_renames
)
initial = [
f"hl.cast({halide_acc_type(dtype)}, {value})"
for dtype, value in zip(dtypes, values)
]
length = self.kexpr(self.rename_indexing(self.range_trees[-1].numel))
scan_dom = f"{result_var.name}_rdom"
scan = f"{scan_dom}.x"
self.body.writeline(f"{scan_dom} = hl.RDom([hl.Range(1, {length})])")
assert (
len(self.reduction_renames) == 1
), "multi-dimensional scan not implemented"
(scan_var,) = [*self.reduction_renames] # type: ignore[misc]
scan_renames_cur = {scan_var: sympy_index_symbol(scan)}
scan_renames_pri = {scan_var: sympy_index_symbol(scan) - 1}
if len(values) == 1:
def maybe_tuple(x):
return x[0]
read_left = [result_var.subs_str(scan_renames_pri)]
read_right = [result_var.subs_str(scan_renames_cur)]
else:
def maybe_tuple(x):
return f"hl.Tuple([{', '.join(x)}])"
read_left = [
result_var.subs_str(scan_renames_pri) + f"[{i}]"
for i in range(len(values))
]
read_right = [
result_var.subs_str(scan_renames_cur) + f"[{i}]"
for i in range(len(values))
]
self.body.writeline(f"{result_var} = {maybe_tuple(initial)}")
# Disable CSE for update fn
with V.set_ops_handler(AddParenHandler(HalideOverrides(MockHandler()))):
combine_str = combine_fn(read_left, read_right) # type: ignore[arg-type]
self.body.writeline(
f"{result_var.subs_str(scan_renames_cur)} = {maybe_tuple(combine_str)}"
)
if len(values) == 1:
return (result_var,)
unpack_vars = [self.newfunc(self.sort_used_dims(all_used_dims)) for _ in values]
for i, v in enumerate(unpack_vars):
self.body.writeline(f"{v} = {result_var}[{i}]")
return tuple(unpack_vars)
def genfunc(
self, line, used_dims, *, bounds=ValueRanges.unknown()
) -> HalideCSEVariable:
var = self.cse.generate(self.body, line, bounds=bounds)
assert isinstance(var, HalideCSEVariable)
var.used_dims = used_dims
return var
def newfunc(self, used_dims) -> HalideCSEVariable:
var = self.cse.newvar()
assert isinstance(var, HalideCSEVariable)
var.used_dims = used_dims
return var
def halide_buffer_numel(self, name: str):
"""
We map all tensors to 1D buffers in Halide since Halide has trouble representing some strides that PyTorch
supports. If there are gaps in the underlying layout the numel we pass to Halide includes the gaps while
PyTorch's numel excludes them.
"""
return V.graph.get_buffer(name).get_layout().storage_size()
def halide_argdefs(self):
"""
Halide requires scalar inputs before outputs, so need to reorder args.
"""
def arg_order(arg_tuple):
call_str, arg = arg_tuple
if isinstance(arg, SizeArg):
return 1 # this would normally be at the end, move it to middle
elif "out_ptr" in arg.name:
return 2
else:
assert "in_ptr" in arg.name
return 0
result = []
_, a, b, _ = self.args.python_argdefs()
for call_str, arg in sorted(zip(a, b), key=arg_order):
result.append((call_str, arg))
if isinstance(arg, TensorArg):
assert arg.offset == 0 and arg.alias_of is None
result.extend(
(
None,
TensorArg(
alias,
arg.buffer,
arg.dtype,
arg.offset,
alias_of=arg.name,
),
)
for alias in self.buffer_aliases.get(arg.name, ())
)
return result
def halide_kernel_meta(self) -> HalideMeta:
"""Compute metadata required by codecache.py"""
argtypes = []
for _, arg in self.halide_argdefs():
if isinstance(arg, SizeArg):
shape = None
stride = None
offset = None
dtype = "long"
else:
shape = [
cexpr(self.rename_indexing(x.size))
for x in self.buffer_dimensions[arg.name]
]
stride = [
cexpr(self.rename_indexing(x.stride))
for x in self.buffer_dimensions[arg.name]
]
assert len(shape) == len(stride)
offset = cexpr(self.buffer_offsets[arg.name])
dtype = f"{DTYPE_TO_CPP[arg.dtype]}*"
argtypes.append(
HalideInputSpec(
dtype,
arg.name,
shape=shape,
stride=stride,
offset=offset,
alias_of=arg.alias_of,
)
)
current_device = V.graph.get_current_device_or_throw()
if current_device.type == "cpu":
target = [config.halide.cpu_target]
schduler = config.halide.scheduler_cpu
scheduler_flags = {
"parallelism": parallel_num_threads(),
}
cuda_device = None
else:
assert current_device.type == "cuda", "only cpu/cuda supported"
assert current_device.index <= 0, "only default device supported"
target = [config.halide.gpu_target]
schduler = config.halide.scheduler_cuda
capability = torch.cuda.get_device_properties(current_device)
if "cuda_capability" not in target[0]:
for major, minor in [(8, 6), (8, 0), (7, 5), (7, 0), (6, 1)]:
if capability.major >= major and capability.minor >= minor:
target.append(f"cuda_capability_{major}{minor}")
break
target.append("user_context")
scheduler_flags = {
"parallelism": capability.multi_processor_count,
# TODO(jansel): explore other flags, see:
# grep parser.parse ~/Halide/src/autoschedulers/anderson2021/AutoSchedule.cpp
}
cuda_device = max(0, current_device.index)
# strict_float is requires for correctness
target.append("strict_float")
# without this we will initialize cuda once per kernel and hit errors
target.append("no_runtime")
if not config.halide.asserts:
target.append("no_asserts")
if config.halide.debug:
target.append("debug")
if "64" in self.index_dtype:
# TODO(jansel): it is unclear if this does anything, since input sizes are still int32
target.append("large_buffers")
return HalideMeta(
argtypes,
target="-".join(target),
scheduler=schduler,
scheduler_flags=scheduler_flags,
cuda_device=cuda_device,
)
def codegen_kernel(self, name=None):
"""Called at the end to generate a final kernel string"""
if self.args.inplace_buffers:
raise Unsupported("inplace_buffers")
meta = self.halide_kernel_meta() # ensure needed args are added early
code = IndentedBuffer()
code.splice(
"""
import halide as hl
from torch._inductor.runtime import halide_helpers
from math import inf, nan
@hl.generator(name="kernel")
class Kernel:
""",
strip=True,
)
code.do_indent()
for _, arg in self.halide_argdefs():
if isinstance(arg, SizeArg):
code.writeline(f"{arg.name} = hl.InputScalar({self.index_dtype})")
else:
assert arg.buffer, arg
argcls = "hl.OutputBuffer" if "out" in arg.name else "hl.InputBuffer"
argtype = halide_type(arg.dtype)
ndim = len(self.buffer_dimensions[arg.name])
code.writeline(f"{arg.name} = {argcls}({argtype}, {ndim})")
code.splice(
"""
def generate(g):
"""
)
code.do_indent()
for _, arg in self.halide_argdefs():
code.writeline(f"{arg.name} = g.{arg.name}")
for old, new in self.args.aliases():
code.writeline(f"{old} = {new}")
code.splice(self.indexing_code)
def update_index(m):
var = self.cse.varname_map[m.group(1)]
assert var.used_dims is not None, var
return str(var)
for line in self.body._lines:
if isinstance(line, str):
# fill in missing indices
line = HalideCSEVariable.undefined_re.sub(update_index, line)
code.writeline(line)
code.writeline("")
code.writeline("assert g.using_autoscheduler()")
for _, arg in self.halide_argdefs():
# fallback=1 below because halide requires buffers to be at least as large as the estimates
# This causes crashes if our estimate is greater than the vector length
# https://github.com/halide/Halide/issues/3103
if isinstance(arg, SizeArg):
hint = V.graph.sizevars.size_hint(arg.expr, fallback=1)
code.writeline(f"{arg.name}.set_estimate({hint})")
else:
dims = self.buffer_dimensions[arg.name]
range_hints = []
for i, dim in enumerate(dims):
hint = self._autoscheduler_workarounds(
V.graph.sizevars.size_hint(dim.size, fallback=1), dims
)
range_hints.append(f"hl.Range(0, {hint})")
if "out" not in arg.name:
code.writeline(f"{arg.name}.dim({i}).set_min(0)")
try:
code.writeline(
f"{arg.name}.dim({i}).set_stride({int(dim.stride)})"
)
except TypeError:
pass # not integer
try:
code.writeline(
f"{arg.name}.dim({i}).set_extent({int(dim.size)})"
)
except TypeError:
pass # not integer
code.writeline(f"{arg.name}.set_estimates([{', '.join(range_hints)}])")
code.do_unindent(2)
code.splice(
"""
if __name__ == "__main__":
hl.main()
""".rstrip(),
)
if meta.scheduler:
code.splice(
f"""
else:
hl.load_plugin({HalideCodeCache.find_libautoschedule(meta.scheduler)!r})
target = hl.Target({meta.target!r})
autoscheduler = hl.AutoschedulerParams({meta.scheduler!r}, {meta.scheduler_flags!r})
with hl.GeneratorContext(target, autoscheduler):
gen = Kernel()
pipeline = gen._build_pipeline()
# gen.compile_to_callable() does not run the autoscheduler
pipeline.apply_autoscheduler(target, autoscheduler)
kernel = pipeline.compile_to_callable([
gen._get_input_parameter(a.name)._to_argument()
for a in gen._get_arginfos()
if a.dir == hl.ArgInfoDirection.Input
], target)
""",
strip=True,
)
else:
code.splice(
f"""
else:
with hl.GeneratorContext(hl.Target({meta.target!r})):
kernel = Kernel().compile_to_callable()
""",
strip=True,
)
return code.getvalue()
@staticmethod
def _autoscheduler_workarounds(n, dims):
if (
len(dims) == 1
and config.halide.scheduler_cuda == "Anderson2021"
and V.graph.get_current_device_or_throw().type == "cuda"
):
# workaround https://github.com/halide/Halide/issues/8246
n = max(2, n)
return n
def call_kernel(self, name: str, node=None):
"""Codegen a call to this kernel"""
wrapper = V.graph.wrapper_code
call_args = [f"{n}" for n, arg in self.halide_argdefs() if arg.alias_of is None]
current_device = V.graph.get_current_device_or_throw()
if current_device.type == "cuda":
stream_name = wrapper.write_get_raw_stream(current_device.index, V.graph)
call_args.append(stream_name)
wrapper.generate_kernel_call(
name,
call_args,
gpu=False, # grid/stream is handled internally in halide
triton=False,
)
def generate_assert(self, check):
return False # TODO(jansel): support asserts
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
):
pass # TODO(jansel): support asserts
class HalideScheduling(SIMDScheduling):
kernel_type = HalideKernel # type: ignore[arg-type,assignment]
@classmethod
def get_backend_features(cls, device: torch.device):
result = dict.fromkeys(
[
BackendFeature.TUPLE_REDUCTION,
BackendFeature.PREFER_STORE_LOOP_ORDER,
BackendFeature.REDUCE_TO_SINGLE_ELEMENT,
]
)
if config.halide.scan_kernels:
result[BackendFeature.SCAN] = None
return result
def define_kernel(self, src_code, node_schedule, kernel):
"""Codegen kernel definition to go in output wrapper code"""
wrapper = V.graph.wrapper_code
if src_code in wrapper.src_to_kernel:
kernel_name = wrapper.src_to_kernel[src_code]
else:
kernel_name = f"halide_kernel_{wrapper.next_kernel_suffix()}"
wrapper.src_to_kernel[src_code] = kernel_name
wrapper.add_import_once(
"from torch._inductor.runtime.hints import HalideMeta, HalideInputSpec"
)
compile_wrapper = IndentedBuffer()
compile_wrapper.writeline(
f"async_compile.halide({kernel.halide_kernel_meta()!r}, '''"
)
compile_wrapper.splice(src_code, strip=True)
compile_wrapper.writeline("''')")
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
metadata_comment = f"{origins}\n{detailed_origins}"
wrapper.define_kernel(
kernel_name, compile_wrapper.getvalue(), metadata_comment
)
if is_metric_table_enabled("kernel_metadata"):
log_kernel_metadata(kernel_name, "", src_code)
return kernel_name
|