File: halide.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1692 lines) | stat: -rw-r--r-- 61,778 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
# mypy: allow-untyped-defs
from __future__ import annotations

import dataclasses
import functools
import itertools
import logging
import re
from collections import defaultdict
from math import inf
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Sequence,
    Tuple,
    TYPE_CHECKING,
    Union,
)

import sympy

import torch
import torch._logging

from ..._prims_common import is_integer_dtype
from ...utils._sympy.functions import FloorDiv, ModularIndexing
from ...utils._sympy.symbol import symbol_is_type, SymT
from ...utils._sympy.value_ranges import ValueRanges
from .. import config, ir
from ..codecache import HalideCodeCache
from ..ir import get_reduction_combine_fn
from ..metrics import is_metric_table_enabled, log_kernel_metadata
from ..ops_handler import AddParenHandler, MockHandler
from ..runtime.hints import HalideInputSpec, HalideMeta
from ..utils import (
    get_bounds_index_expr,
    get_kernel_metadata,
    parallel_num_threads,
    sympy_index_symbol,
    sympy_subs,
)
from ..virtualized import _ops as ops, OpsHandler, V
from .common import (
    BackendFeature,
    CSEVariable,
    DeferredLine,
    IndentedBuffer,
    OpOverrides,
    PythonPrinter,
    SizeArg,
    TensorArg,
)
from .cpp import DTYPE_TO_CPP
from .cpp_utils import cexpr
from .simd import constant_repr, SIMDKernel, SIMDScheduling


if TYPE_CHECKING:
    from ..ops_handler import ReductionType, StoreMode

log = logging.getLogger(__name__)


def halide_constant(val):
    if isinstance(val, int) and not (-2147483648 <= val <= 2147483647):
        info = torch.iinfo(torch.int64)
        if val == info.min:
            return "hl.Int(64).min()"
        if val == info.max:
            return "hl.Int(64).max()"
        return f"hl.i64({val!r})"
    if isinstance(val, float):
        return f"hl.f64({constant_repr(val)})"
    return repr(val)


class Unsupported(RuntimeError):
    def __init__(self, thing) -> None:
        super().__init__(f"halide backend does not support: {thing}")


class HalidePrinter(PythonPrinter):
    @staticmethod
    def cast_index(expr):
        return f"hl.cast({V.kernel.index_dtype}, {expr})"

    @staticmethod
    def cast_float(expr):
        return f"hl.cast(hl.Float(32), {expr})"

    def _print_Float(self, expr):
        return f"hl.f32({expr})"

    def _print_ToFloat(self, expr):
        assert len(expr.args) == 1
        return f"hl.f32({self._print(expr.args[0])})"

    def _print_floor(self, expr):
        assert len(expr.args) == 1
        return self.cast_index(f"hl.floor({self._print(expr.args[0])})")

    def _print_Trunc(self, expr):
        assert len(expr.args) == 1
        return self.cast_index(f"hl.trunc({self._print(expr.args[0])})")

    _print_TruncToInt = _print_Trunc

    def _print_ceiling(self, expr):
        assert len(expr.args) == 1
        return self.cast_index(f"hl.ceil({self._print(expr.args[0])})")

    def _helper_sqrt(self, expr):
        return f"hl.sqrt({self.cast_float(self._print(expr))})"

    def _print_Where(self, expr):
        c = self.doprint(expr.args[0])
        p = self.doprint(expr.args[1])
        q = self.doprint(expr.args[2])
        return f"hl.select({c}, {p}, {q})"

    def _print_Min(self, expr):
        if len(expr.args) == 1:
            return self._print(expr.args[0])

        mid = len(expr.args) // 2
        a = self._print(sympy.Min(*expr.args[:mid]))
        b = self._print(sympy.Min(*expr.args[mid:]))
        return f"hl.min({a}, {b})"

    def _print_Max(self, expr):
        if len(expr.args) == 1:
            return self._print(expr.args[0])

        mid = len(expr.args) // 2
        a = self._print(sympy.Max(*expr.args[:mid]))
        b = self._print(sympy.Max(*expr.args[mid:]))

        return f"hl.max({a}, {b})"

    def _print_Abs(self, expr):
        assert len(expr.args) == 1
        return self.cast_index(f"hl.abs({self._print(expr.args[0])})")

    def _print_OpaqueUnaryFn_cos(self, expr):
        assert len(expr.args) == 1
        return f"hl.cos(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_cosh(self, expr):
        assert len(expr.args) == 1
        return f"hl.cosh(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_acos(self, expr):
        assert len(expr.args) == 1
        return f"hl.acos(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sin(self, expr):
        assert len(expr.args) == 1
        return f"hl.sin(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_sinh(self, expr):
        assert len(expr.args) == 1
        return f"hl.sinh(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_asin(self, expr):
        assert len(expr.args) == 1
        return f"hl.asin(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_tan(self, expr):
        assert len(expr.args) == 1
        return f"hl.tan(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_tanh(self, expr):
        assert len(expr.args) == 1
        return f"hl.tanh(({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_atan(self, expr):
        assert len(expr.args) == 1
        return f"hl.atan(({self._print(expr.args[0])})"

    def _print_FloorDiv(self, expr):
        if expr.is_integer:
            return super()._print_FloorDiv(expr)

        x, div = expr.args
        x = self.cast_float(self.doprint(x))
        div = self.cast_float(self.doprint(div))
        return self.cast_index(f"hl.floor({x} / {div})")

    def _print_Round(self, expr):
        assert len(expr.args) == 1
        return self.cast_index(f"hl.round({self._print(expr.args[0])})")

    _print_RoundToInt = _print_Round

    def _print_IntTrueDiv(self, expr):
        a, b = expr.args
        # force a cast to float
        return f"({a}) / ({b}+hl.f32(0))"

    def _print_RoundDecimal(self, expr):
        val, n = expr.args
        val = self._print(val)
        n = int(n)
        return f"hl.f32({10.**(-n)!r})*hl.round(({val})*hl.f32({10.**n!r}))"


texpr = HalidePrinter().doprint
pexpr = PythonPrinter().doprint


_halide_type = {
    torch.bool: "hl.Bool()",
    torch.bfloat16: "hl.BFloat(16)",
    torch.float16: "hl.Float(16)",
    torch.float32: "hl.Float(32)",
    torch.float64: "hl.Float(64)",
    torch.int8: "hl.Int(8)",
    torch.int16: "hl.Int(16)",
    torch.int32: "hl.Int(32)",
    torch.int64: "hl.Int(64)",
    torch.uint8: "hl.UInt(8)",
    torch.uint16: "hl.UInt(16)",
    torch.uint32: "hl.UInt(32)",
    torch.uint64: "hl.UInt(64)",
}


def halide_type(dtype):
    return _halide_type[dtype]


def halide_acc_type(dtype):
    if is_integer_dtype(dtype) and dtype.is_signed and dtype != torch.int64:
        dtype = torch.int32
    if dtype in (torch.float16, torch.bfloat16):
        dtype = torch.float32
    return halide_type(dtype)


class HalideOverrides(OpOverrides):
    @staticmethod
    def to_dtype(
        x,
        dtype: torch.dtype,
        src_dtype: Optional[torch.dtype] = None,
        use_compute_types=True,
    ):
        if dtype == torch.bool:
            return f"({x} != 0)"
        return f"hl.cast({halide_type(dtype)}, {x})"

    @staticmethod
    def to_dtype_bitcast(x, dtype: torch.dtype, src_dtype: torch.dtype):
        if src_dtype in (torch.float16, torch.bfloat16):
            x = f"hl.cast({halide_type(src_dtype)}, {x})"  # body compute is upcast to fp32
        line = f"hl.reinterpret({halide_type(dtype)}, {x})"
        if dtype in (torch.float16, torch.bfloat16):
            line = f"hl.cast(hl.Float(32), {line})"
        return line

    @classmethod
    def constant(cls, value, dtype):
        return cls.to_dtype(halide_constant(value), dtype)

    @staticmethod
    def abs(x):
        return f"hl.abs({x})"

    @staticmethod
    def exp(x):
        if not hasattr(x, "name"):
            return f"hl.exp({x})"
        return f"hl.fast_exp(hl.cast(hl.Float(32), {x})) if {x.name}.type().bits() <= 32 else hl.exp({x})"

    @staticmethod
    def libdevice_exp(x):
        return f"hl.exp({x})"  # higher precision that ops.exp

    @staticmethod
    def sqrt(x):
        return f"hl.sqrt({x})"

    @staticmethod
    def minimum(a, b):
        # return f"hl.min({a}, {b})"  <== handles nan wrong
        if not hasattr(a, "name"):
            return f"hl.min({a}, {b})"
        b = f"hl.cast({a.name}.type(), {b})"
        return f"hl.select(({a}<{b})|hl.is_nan({a}), {a}, {b}) if {a.name}.type().is_float() else hl.min({a}, {b})"

    @staticmethod
    def maximum(a, b):
        # return f"hl.max({a}, {b})"  <== handles nan wrong
        if not hasattr(a, "name"):
            return f"hl.max({a}, {b})"
        b = f"hl.cast({a.name}.type(), {b})"
        return f"hl.select(({a}>{b})|hl.is_nan({a}), {a}, {b}) if {a.name}.type().is_float() else hl.max({a}, {b})"

    @staticmethod
    def where(a, b, c):
        if hasattr(b, "name"):
            c = f"hl.cast({b.name}.type(), {c})"
        return f"hl.select({a}, {b}, {c})"

    @staticmethod
    def cos(x):
        return f"hl.cos({x})"

    @staticmethod
    def sin(x):
        return f"hl.sin({x})"

    @staticmethod
    def lgamma(x):
        raise Unsupported("lgamma")

    @staticmethod
    def erf(x):
        return f"hl.erf({x})"

    @staticmethod
    def cosh(x):
        return f"hl.cosh({x})"

    @staticmethod
    def sinh(x):
        return f"hl.sinh({x})"

    @staticmethod
    def acos(x):
        return f"hl.acos({x})"

    @staticmethod
    def acosh(x):
        return f"hl.acosh({x})"

    @staticmethod
    def asin(x):
        return f"hl.asin({x})"

    @staticmethod
    def asinh(x):
        return f"hl.asinh({x})"

    @staticmethod
    def atan2(x, y):
        return f"hl.atan2({x}, {y})"

    @staticmethod
    def atan(x):
        return f"hl.atan({x})"

    @staticmethod
    def atanh(x):
        return f"hl.atanh({x})"

    @staticmethod
    def copysign(x, y):
        raise Unsupported("copysign")

    @staticmethod
    def erfinv(x):
        raise Unsupported("erfinv")

    @staticmethod
    def hypot(x, y):
        return f"hl.hypot({x}, {y})"

    @staticmethod
    def nextafter(x, y):
        raise Unsupported("nextafter")

    @staticmethod
    def logical_and(a, b):
        return f"{a} & {b}"

    @staticmethod
    def logical_not(a):
        return f"{a} == 0"

    @staticmethod
    def logical_or(a, b):
        return f"{a} | {b}"

    @staticmethod
    def logical_xor(a, b):
        return f"({a} ^ {b})"

    @staticmethod
    def bitwise_and(a, b):
        return f"{a} & {b}"

    @staticmethod
    def bitwise_not(a):
        return f"~{a}"

    @staticmethod
    def bitwise_or(a, b):
        return f"{a} | {b}"

    @staticmethod
    def bitwise_xor(a, b):
        return f"{a} ^ {b}"

    @staticmethod
    def bitwise_left_shift(a, b):
        return f"{a} << {b}"

    @staticmethod
    def bitwise_right_shift(a, b):
        return f"{a} >> {b}"

    @staticmethod
    def rand(seed, offset):
        return f"halide_helpers.rand({seed}, {offset})"

    @staticmethod
    def randn(seed, offset):
        return f"halide_helpers.randn({seed}, {offset})"

    @staticmethod
    def randint64(seed, offset, low, high):
        return f"halide_helpers.randint64({seed}, {offset}, {low}, {high})"

    @staticmethod
    def load_seed(name, offset):
        return f"{ops.load(name, 0)} + {V.kernel.args.seed_offset('load_seed_offset', offset)}"

    @staticmethod
    def rsqrt(x):
        # return f"hl.fast_inverse_sqrt({x})"  <== accuracy issues
        return f"1./hl.sqrt({x})"

    @staticmethod
    def tan(x):
        return f"hl.tan({x})"

    @staticmethod
    def tanh(x):
        return f"hl.tanh({x})"

    @staticmethod
    def signbit(x):
        return f"(hl.reinterpret(hl.UInt(32), hl.cast(hl.Float(32), {x})) >> 31) != 0"

    @staticmethod
    def fmod(a, b):
        # TODO(jansel): find a better way to do this, builtin % has wrong sign
        return f"{a} - hl.trunc({a}/{b})*{b}"

    @staticmethod
    def pow(a, b):
        return f"hl.pow({a}, {b})"  # hl.fast_pow fails accuracy

    @staticmethod
    def log(x):
        return f"hl.log({x})"  # hl.fast_log fails accuracy

    @staticmethod
    def isinf(x):
        # workaround https://github.com/halide/Halide/issues/8309
        return f"hl.is_inf(hl.cast(hl.Float(32), {x}))"

    @staticmethod
    def isnan(x):
        # workaround https://github.com/halide/Halide/issues/8309
        return f"hl.is_nan(hl.cast(hl.Float(32), {x}))"

    @staticmethod
    def round(x):
        return f"hl.round({x})"

    @staticmethod
    def floor(x):
        return f"hl.floor({x})"

    @staticmethod
    def int_truediv(a, b):
        return f"({a}) / ({b} + hl.f32(0))"

    @staticmethod
    def floordiv(a, b):
        # TODO(jansel): find a better ways to do this, the select-based trick from triton.py didn't work
        return (
            f"hl.floor(hl.cast(hl.Float(max(32, {a.name}.type().bits())), {a}) / {b})"
        )

    @classmethod
    def sign(cls, x):
        left = ops.to_dtype(ops.lt("0", x), torch.int8)
        right = ops.to_dtype(ops.lt(x, "0"), torch.int8)
        sub = ops.sub(left, right)
        return f"hl.cast({x.name}.type(), {sub})"

    @staticmethod
    def trunc(x):
        return f"hl.trunc({x})"

    @staticmethod
    def truncdiv(a, b):
        # this causes crashes with floating point exception, see test_div_zero_dim_cpu
        # return f"hl.div_round_to_zero({a}, {b})"
        return (
            f"hl.trunc(hl.cast(hl.Float(max(32, {a.name}.type().bits())), {a}) / {b})"
        )

    @staticmethod
    def ceil(x):
        return f"hl.ceil({x})"

    @staticmethod
    def relu(x):
        return f"hl.max({x}, 0)"

    @classmethod
    def index_expr(cls, expr, dtype):
        index = V.kernel.prepare_indexing(expr)
        var = V.kernel.genfunc(
            V.kernel.index_to_str(index),
            V.kernel.used_dims_from_index(index),
            bounds=get_bounds_index_expr(expr),
        )
        if dtype not in {torch.int32, torch.int64}:
            return ops.to_dtype(var, dtype)
        return var

    @classmethod
    def indirect_indexing(cls, index_var, size, check=True, wrap_neg=True):
        # TODO(jansel): Halide only supports 32-bit indexing, we should error on overflow
        index_var = ops.to_dtype(index_var, torch.int32)
        index_var = ops.halide_clamp(index_var, size, check)
        index_var.indirect_indexing_size = size
        return sympy_index_symbol(str(index_var))

    @classmethod
    def halide_clamp(cls, value, size, check):
        end = V.kernel.kexpr(V.kernel.rename_indexing(size) - 1)
        if not isinstance(size, (int, sympy.Integer)):
            end = f"hl.cast({value.name}.type(), {end})"
        # Skip unsafe_promise_clamped to workaround: https://github.com/halide/Halide/issues/8261#issuecomment-2148835692
        # return f"hl.unsafe_promise_clamped({value}, 0, {end})"
        return f"hl.clamp({value}, 0, {end})"

    @staticmethod
    def masked(mask, body, other):
        with V.kernel.mask_loads(mask, other) as new_mask:
            result = body()

        if result.bounds.is_bool:
            other = bool(other)

        # Take dtype from result to prevent accidental promotion
        other = V.kernel.genfunc(
            f"hl.cast({result.name}.type(), {halide_constant(other)})",
            [],
            bounds=ValueRanges.wrap(other),
        )
        # TODO(jansel): look into removing the where in the same places triton does
        return ops.where(new_mask, result, other)


# Use mypy to check protocol implemented correctly
def _typecheck_HalideOverrides(h: HalideOverrides) -> OpsHandler[str]:
    return h


class HalideCSEVariable(CSEVariable):
    undefined_re = re.compile(r"\b(tmp\d+)\[\?\]")

    def __init__(
        self,
        name,
        bounds: ValueRanges[Any],
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__(name, bounds, dtype)
        self.used_dims: Optional[List[sympy.Symbol]] = None

    def update_on_args(self, name, args, kwargs):
        used = set(self.used_dims or ())
        for arg in itertools.chain(args, kwargs.values()):
            if isinstance(arg, HalideCSEVariable):
                assert arg.used_dims is not None, (name, arg, args)
                used.update(arg.used_dims)
        self.used_dims = V.kernel.sort_used_dims(used)

    def index_str(self, dims):
        if len(dims) == 0:
            return f"{self.name}[()]"
        # Reversed since Halide is column major
        return f"{self.name}[{', '.join(map(str, dims))}]"

    def __str__(self) -> str:
        if self.used_dims is None:
            # This will get recomputed and replaced in codegen_kernel()
            return f"{self.name}[?]"
        return self.index_str(self.used_dims)

    def subs_str(self, replacements):
        assert self.used_dims is not None and all(
            isinstance(x, sympy.Expr) for x in self.used_dims
        )
        return self.index_str([replacements.get(n, n) for n in self.used_dims])


@dataclasses.dataclass
class DimensionInfo:
    expr: Optional[sympy.Expr]
    size: sympy.Expr
    stride: sympy.Expr

    def __init__(self, expr, size, stride) -> None:
        super().__init__()
        if V.graph.sizevars.statically_known_lt(stride, 0):
            stride = -stride
            expr = -expr
        self.expr = expr
        self.size = size
        self.stride = stride

    def index_str(self, replacements=None, zero_vars=False):
        assert self.expr is not None
        expr = self.expr
        if zero_vars and expr == 0:
            return "hl.Var()"
        if replacements:
            replacements = {**replacements}
            for sym in expr.free_symbols:
                if symbol_is_type(sym, SymT.TMP):
                    assert isinstance(sym, sympy.Symbol)
                    var = V.kernel.lookup_cse_var(sym.name)
                    assert isinstance(var, HalideCSEVariable)
                    replacements[sym] = sympy_index_symbol(var.subs_str(replacements))
            expr = sympy_subs(expr, replacements)
        return V.kernel.index_to_str(expr)


def eq(left, right):
    if V.graph.sizevars.statically_known_equals(left, right):
        return True
    try:
        a = V.graph.sizevars.size_hint(left)
        b = V.graph.sizevars.size_hint(right)
    except TypeError:  # unbacked symints
        return False
    if a == b:
        V.graph.sizevars.guard_equals(left, right)
    return a == b


def lt(left, right):
    if V.graph.sizevars.statically_known_lt(left, right):
        return True
    try:
        a = V.graph.sizevars.size_hint(left)
        b = V.graph.sizevars.size_hint(right)
    except TypeError:  # unbacked symints
        gcd = sympy.gcd(left, right)
        if gcd == left:
            return left != right
        return False
    if a < b:
        V.graph.sizevars.guard_lt(left, right)
    return a < b


class HalideKernel(SIMDKernel):
    overrides = HalideOverrides  # type: ignore[assignment]
    kexpr: Callable[[sympy.Expr], str] = texpr

    def __init__(
        self,
        tiling: Dict[str, sympy.Expr],
        **kwargs,
    ) -> None:
        super().__init__(tiling, **kwargs)
        # For halide, we just write directly to the body
        self.compute = self.body
        self.loads = self.body
        self.stores = self.body
        self.indexing_code_dom = IndentedBuffer()
        self.needs_dom_indexing = self.inside_reduction
        self.has_reduction = self.inside_reduction
        self.buffer_dimensions: Dict[str, List[DimensionInfo]] = {}
        self.buffer_offsets: Dict[str, sympy.Expr] = {}
        # {h0: size1, h1: size2, ...}
        self.halide_vars: Dict[sympy.Symbol, sympy.Expr] = {}
        # {x0: h0, x1: h1+10*h2, ...}
        self.index_replacements: Dict[sympy.Expr, sympy.Expr] = {}
        # {h1: hr1, ...}
        self.reduction_renames: Dict[sympy.Symbol, sympy.Symbol] = {}
        # {"i": {h0: hi0}, "o": ...}
        self.dom_renames: Dict[str, Dict[sympy.Symbol, sympy.Symbol]] = {}
        # {"in_ptr0": ["in_ptr0_view0"], ...}
        self.buffer_aliases: Dict[str, List[str]] = defaultdict(list)
        self.has_indirect_indexing = False

    def dtype_to_str(self, dtype: torch.dtype) -> str:
        return halide_type(dtype)

    def create_cse_var(self, name, bounds=None, dtype=None):
        self.body.writeline(f"{name} = hl.Func({name!r})")
        return HalideCSEVariable(name, bounds, dtype)

    def finalize_indexing(self, indices: Sequence[sympy.Expr]):
        """
        Hook called right before codegen with every index that will be
        used in the fused kernel.

        This populates self.halide_vars/index_replacements/reduction_renames which is an alternate indexing
        scheme that avoids using divide and modulus.  Instead of xindex/yindex/rindex
        we base indexing on a larger number of vars whose product combines to those.

        This function populates self.halide_vars, self.index_replacements, and self.reduction_renames
        """
        assert not (
            self.index_replacements or self.halide_vars or self.reduction_renames
        )
        size_hint = functools.partial(V.graph.sizevars.size_hint, fallback=inf)  # type: ignore[arg-type]
        indices = dict.fromkeys(map(super().prepare_indexing, indices))
        all_used_symbols = set()
        sym_to_node = {
            n.symbol(): n
            for n in itertools.chain.from_iterable(
                [tree.nodes.values() for tree in self.range_trees]
            )
        }

        def simplify(expr):
            return sympy.simplify(
                V.graph.sizevars.remove_precomputed_replacements(expr)
            )

        def visit_modular_indexing(base, divisor, modulus):
            if base in sym_to_node:
                node = sym_to_node[base]
                all_used_symbols.add(
                    node.root.lookup(
                        node.divisor * divisor,
                        V.graph.sizevars.evaluate_min(
                            modulus, FloorDiv(node.length, divisor)
                        ),
                    ).symbol()
                )

        def visit_floor_div(base, divisor):
            if base in sym_to_node:
                node = sym_to_node[base]
                all_used_symbols.add(
                    node.root.lookup(
                        node.divisor * divisor,
                        FloorDiv(node.length, divisor),
                    ).symbol()
                )

        # first figure out all_used_symbols to do dead symbol elimination
        for index in indices:
            if index.has(ModularIndexing):
                index.replace(
                    ModularIndexing(
                        sympy.Wild("base"),
                        sympy.Wild("divisor"),
                        sympy.Wild("modulus"),
                    ),
                    visit_modular_indexing,
                )
            if index.has(FloorDiv):
                index.replace(
                    FloorDiv(
                        sympy.Wild("base"),
                        sympy.Wild("divisor"),
                    ),
                    visit_floor_div,
                )
            all_used_symbols.update(super().prepare_indexing(index).free_symbols)

        self.has_indirect_indexing = any(
            symbol_is_type(sym, SymT.INDIRECT) for sym in all_used_symbols
        )

        had_fallback = False
        for tree in reversed(self.range_trees):
            nodes = [n for n in tree.nodes.values() if n.symbol() in all_used_symbols]
            nodes.sort(key=lambda n: size_hint(n.divisor))
            if not nodes:
                nodes.append(tree.lookup(1, tree.numel))
            handled_count = 0
            divisor = sympy.S.One
            added_sym_size = []
            # decide on a minimal set of symbols and put them in self.halide_vars
            while handled_count < len(nodes) and not eq(tree.numel, divisor):
                sizes_to_add = [
                    simplify(n.length) for n in nodes if eq(n.divisor, divisor)
                ]
                handled_count += len(sizes_to_add)
                assert sizes_to_add, nodes
                end = divisor * functools.reduce(
                    V.graph.sizevars.evaluate_max, sizes_to_add
                )
                sizes_to_add.extend(
                    [
                        simplify(n.divisor / divisor)
                        for n in nodes
                        if lt(divisor, n.divisor) and lt(n.divisor, end)
                    ]
                )
                while sizes_to_add:
                    next_size = functools.reduce(sympy.gcd, sizes_to_add)
                    if eq(next_size, 1):
                        # sizes share no common factors, e.g [2, 21, 42, 441, 889056]
                        # TODO(jansel): we should just prevent fusion in cases that hit this
                        next_size = simplify(tree.numel / divisor)
                        assert not eq(next_size, 1)
                        sizes_to_add = []
                        handled_count = len(nodes)
                        had_fallback = True
                    sym = sympy_index_symbol(f"h{len(self.halide_vars)}")
                    if tree.is_reduction:
                        self.reduction_renames[sym] = sympy_index_symbol(
                            f"hr{len(self.halide_vars)}"
                        )
                    self.halide_vars[sym] = next_size
                    added_sym_size.append((sym, next_size))
                    divisor *= next_size
                    new_sizes = [n.length for n in nodes if eq(n.divisor, divisor)]
                    handled_count += len(new_sizes)
                    prior_len = len(sizes_to_add)
                    sizes_to_add = [
                        sympy.simplify(s / next_size)
                        for s in sizes_to_add
                        if not eq(s, next_size)
                    ]
                    assert len(sizes_to_add) < prior_len or prior_len == 0
                    sizes_to_add.extend(new_sizes)

            # create a mapping to the new set of symbols in self.index_replacements
            for node in nodes:
                try:
                    idx = 0
                    divisor = 1
                    while not eq(node.divisor, divisor):
                        sym, size = added_sym_size[idx]
                        idx += 1
                        divisor *= size
                    length = 1
                    expr = sympy.S.Zero
                    while not eq(node.length, length):
                        sym, size = added_sym_size[idx]
                        idx += 1
                        expr += length * sym
                        length *= size
                    self.index_replacements[node.symbol()] = expr
                except IndexError:
                    assert had_fallback
                    full_index = sympy.S.Zero
                    stride = sympy.S.One
                    for sym, size in added_sym_size:
                        full_index += stride * sym
                        stride *= size
                    self.index_replacements[
                        node.symbol()
                    ] = V.graph.sizevars.simplify_with_ranges(
                        ModularIndexing(full_index, node.divisor, node.length),
                        self.halide_vars,  # type: ignore[arg-type]
                    )

        # codegen the variable definitions
        for sym in self.halide_vars:
            self.indexing_code.writeline(f"{sym} = hl.Var({sym.name!r})")
        if self.reduction_renames:
            self.codegen_rdom(
                "rdom",
                {rv: self.halide_vars[v] for v, rv in self.reduction_renames.items()},
            )

    def setup_dom_indexing(self):
        """RDom based indexing uses explicit iteration ranges for Func updates"""
        prefix = "i" if self.inside_reduction else "o"
        if prefix in self.dom_renames:
            return self.dom_renames[prefix]

        renames = {}
        for var in self.halide_vars.keys():
            if not self.inside_reduction and var in self.reduction_renames:
                continue
            m = re.match(r"^h(\d+)$", var.name)
            assert m
            renames[var] = sympy_index_symbol(f"h{prefix}{m.group(1)}")

        self.codegen_rdom(
            f"{prefix}dom", {rv: self.halide_vars[v] for v, rv in renames.items()}
        )

        self.dom_renames[prefix] = renames
        return renames

    def codegen_rdom(self, name, vars):
        rsizes = [
            f"hl.Range(0, {self.kexpr(self.rename_indexing(size))})"
            for size in vars.values()
        ]
        self.indexing_code.writeline(f"{name} = hl.RDom([{', '.join(rsizes)}])")
        for i, rsym in enumerate(vars.keys()):
            self.indexing_code.writeline(f"{rsym} = {name}[{i}]")

    def prepare_indexing(
        self,
        index: sympy.Expr,
    ):
        index = super().prepare_indexing(index)
        index = sympy_subs(index, self.index_replacements)
        return V.graph.sizevars.simplify_with_ranges(index, self.halide_vars)  # type: ignore[arg-type]

    def sym_size(self, sym):
        """The size of an index symbol"""
        if symbol_is_type(sym, SymT.TMP):
            return self.lookup_cse_var(sym.name).indirect_indexing_size
        return self.halide_vars[sym]

    def indexing_to_dimensions(self, var: str, index: sympy.Expr, is_store: bool):
        """Convert address-based indexing into dimensions using self.halide_vars"""
        symbols = []
        for sym in sorted(index.free_symbols, key=lambda x: x.name):  # type: ignore[attr-defined]
            if symbol_is_type(sym, (SymT.HALIDE, SymT.TMP)):
                symbols.append(sym)
            else:
                assert symbol_is_type(
                    sym,
                    (
                        SymT.UNBACKED_INT,
                        SymT.SIZE,
                        SymT.PRECOMPUTED_SIZE,
                    ),
                ), sym

        # group the expression by variables used
        offset = sympy.S.Zero
        split_expr = {s: sympy.S.Zero for s in symbols}
        split_failed: List[Tuple[List[sympy.Symbol], sympy.Expr]] = []
        index = sympy.expand(self.rename_indexing(index))
        for part in index.args if isinstance(index, sympy.Add) else [index]:
            part_vars = [v for v in part.free_symbols if v in split_expr]
            if len(part_vars) == 0:
                offset += part
            elif len(part_vars) == 1:
                split_expr[part_vars[0]] += part
            else:
                new_split_failed = []
                for i in range(len(split_failed)):
                    assert split_failed[i] is not None
                    other_vars, other_part = split_failed[i]
                    if set(other_vars) & set(part_vars):
                        part_vars.extend([v for v in other_vars if v not in part_vars])
                        part += other_part
                    else:
                        new_split_failed.append((other_vars, other_part))
                split_failed = [*new_split_failed, (part_vars, part)]

        def expr_to_dimension(expr, syms):
            expr = sympy.factor(expr)
            if len(syms) == 1:
                stride_wild = sympy.Wild("wild", exclude=symbols)
                m = expr.match(stride_wild * syms[0])
                if m:
                    return DimensionInfo(
                        syms[0], self.sym_size(syms[0]), m[stride_wild]
                    )
            assert not is_store, expr
            length = sympy.simplify(
                sympy_subs(expr, {sym: self.sym_size(sym) - 1 for sym in syms}) + 1
            )
            stride = sympy.S.One
            if isinstance(expr, sympy.Mul):
                for term in expr.args:
                    if isinstance(term, sympy.Integer):
                        stride *= term
                        expr = sympy.simplify(expr / term)
                        length = sympy.simplify(sympy.ceiling(length / term))
            return DimensionInfo(expr, length, stride)

        # try to turn each group into a strided access
        dims = []
        for syms, expr in split_failed:
            for v in syms:
                expr += split_expr.pop(v)
            dims.append(expr_to_dimension(expr, syms))
        for sym, expr in split_expr.items():
            dims.append(expr_to_dimension(expr, [sym]))
        dims.sort(key=lambda d: V.graph.sizevars.size_hint(d.stride, fallback=inf))  # type: ignore[arg-type]

        if not dims:  # scalar load/store
            if self.has_indirect_indexing:
                # workaround https://github.com/halide/Halide/issues/8338
                dims.append(DimensionInfo(sympy.S.Zero, 1, 1))
        elif not V.graph.sizevars.statically_known_equals(dims[0].stride, 1):
            # Halide assumes dimension 0 is stride == 1, so add a dummy dimension
            dims.insert(
                0, DimensionInfo(sympy.S.Zero, 1 if is_store else dims[0].stride, 1)
            )

        if dims and not is_store:
            if var in self.buffer_offsets and V.graph.sizevars.statically_known_geq(
                offset, self.buffer_offsets[var]
            ):
                # reuse the existing offset to avoid needing an input alias
                self.apply_offset_to_dimension(dims, offset - self.buffer_offsets[var])
                offset = self.buffer_offsets[var]
            elif V.graph.sizevars.statically_known_gt(
                offset, 0
            ):  # TODO(jansel): negative offsets
                # roll the offset into the dimensions for cleaner indexing
                self.apply_offset_to_dimension(dims, offset)
                offset = 0

        orig_var = var
        for i in itertools.count():
            if self.install_dims(var, dims, offset, is_store):
                return var, dims
            assert not is_store
            var = f"{orig_var}_view{i}"
            if var not in self.buffer_aliases[orig_var]:
                self.buffer_aliases[orig_var].append(var)

    def install_dims(self, var, dims, offset, is_store):
        """Try to set self.buffer_dimensions[var], return True on success"""
        if var not in self.buffer_dimensions:
            self.buffer_dimensions[var] = dims
            self.buffer_offsets[var] = offset
            return True
        if self.buffer_offsets[var] != offset or len(
            self.buffer_dimensions[var]
        ) != len(dims):
            return False
        if is_store:
            return self.buffer_dimensions[var] == dims
        for old, new in zip(self.buffer_dimensions[var], dims):
            if old.stride != new.stride:
                return False
            if old.size != new.size or old.expr != new.expr:
                old.size = V.graph.sizevars.evaluate_max(old.size, new.size)
                old.expr = None
        return True

    def apply_offset_to_dimension(self, dims, offset):
        if offset == 0:
            return
        for i in reversed(range(len(dims))):
            if dims[i].stride == 1 or V.graph.sizevars.statically_known_geq(
                offset, dims[i].stride
            ):
                part = FloorDiv(offset, dims[i].stride)
                offset -= part * dims[i].stride
                dims[i].expr += part
        assert offset == 0

    def used_dims_from_index(self, index: sympy.Expr):
        """Detect which range trees are used to populate HalideCSEVariable.used_dims"""
        used_dims = set()
        for sym in index.free_symbols:
            assert isinstance(sym, sympy.Symbol)
            if symbol_is_type(sym, SymT.TMP):
                # indirect indexing
                cse_var = self.lookup_cse_var(sym.name)
                assert (
                    isinstance(cse_var, HalideCSEVariable)
                    and cse_var.used_dims is not None
                )
                used_dims.update(cse_var.used_dims)
            elif symbol_is_type(sym, SymT.HALIDE):
                used_dims.add(sym)
            elif symbol_is_type(
                sym, (SymT.UNBACKED_INT, SymT.SIZE, SymT.PRECOMPUTED_SIZE, SymT.INDEX)
            ):
                pass
            else:
                raise NotImplementedError(f"unhandled symbol {sym}")
        return self.sort_used_dims(used_dims)

    def sort_used_dims(self, used_dims):
        assert all(isinstance(x, sympy.Expr) for x in used_dims)
        ordered = [
            sym
            for sym in itertools.chain(
                self.halide_vars, self.reduction_renames.values()
            )
            if sym in used_dims
        ]
        assert len(ordered) == len(used_dims)
        return ordered

    def make_index_str(self, dims, replacements=None, zero_vars=False):
        index_str = ", ".join(d.index_str(replacements, zero_vars) for d in dims)
        if len(dims) == 0:
            index_str = "()"
        elif len(dims) == 1:
            # workaround for https://github.com/halide/Halide/issues/8299
            index_str = f"{index_str},"
        return index_str

    def load(self, name: str, index: sympy.Expr):
        """Codegen a load from an InputBuffer"""
        var = self.args.input(name)
        index = self.prepare_indexing(index)
        var, dims = self.indexing_to_dimensions(var, index, False)
        line = f"{var}[{self.make_index_str(dims)}]"
        dtype = V.graph.get_dtype(name)
        if dtype in (torch.float16, torch.bfloat16):
            dtype = torch.float32
            line = f"hl.cast(hl.Float(32), {line})"

        if self._load_mask:
            assert (
                isinstance(self._load_mask, HalideCSEVariable)
                and self._load_mask.used_dims is not None
            )
            used_dims = {*self.used_dims_from_index(index), *self._load_mask.used_dims}
            result = self.newfunc(self.sort_used_dims(used_dims))
            if result.used_dims:
                self.body.writeline(f"{result.name}_mask = hl.RDom([hl.Range(0, 1)])")
                self.body.writeline(f"{result.name}_mask.where({self._load_mask})")
                other = self.kexpr(self._load_other or 0)  # type: ignore[arg-type]
                self.body.writeline(
                    f"{result} = hl.cast({halide_type(dtype)}, {other})"
                )
                self.body.writeline(
                    f"{result} = {line} + hl.cast({halide_type(dtype)}, {result.name}_mask)"
                )
            else:
                # scalar case
                self.body.writeline(
                    f"{result} = hl.select({self._load_mask}, {line}, hl.cast({halide_type(dtype)}, 0))"
                )
            return result
        else:
            return self.genfunc(line, self.used_dims_from_index(index))

    def lookup_cse_var(self, name: str):
        return self.cse.varname_map[re.sub(r"\[.*", "", name)]

    def store(
        self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
    ) -> None:
        """Codegen a store to an OutputBuffer"""
        assert isinstance(value, HalideCSEVariable)
        var = self.args.output(name)
        index = self.prepare_indexing(index)
        var, dims = self.indexing_to_dimensions(var, index, True)
        if self.is_indirect_indexing(index) or mode is not None:
            replacements = self.setup_dom_indexing()
            index_str = self.make_index_str(dims, replacements)
            value_str = value.subs_str(replacements)
            undef_dims = (", ".join(["hl.Var()"] * len(dims))) or "()"
            self.body.writeline(
                DeferredLine(name, f"{var}[{undef_dims}] = hl.undef({var}.type())")
            )
        else:
            index_str = self.make_index_str(dims, zero_vars=True)
            value_str = str(value)

        dtype = V.graph.get_dtype(name)
        if mode is None:
            line = f"{var}[{index_str}] = hl.cast({halide_type(dtype)}, {value_str})"
        elif mode == "atomic_add":
            line = f"{var}[{index_str}] += hl.cast({halide_type(dtype)}, {value_str})"
        else:
            raise NotImplementedError(f"store mode={mode}")
        self.body.writeline(DeferredLine(name, line))

    def reduction(
        self,
        dtype: torch.dtype,
        src_dtype: torch.dtype,
        reduction_type: ReductionType,
        value: Union[CSEVariable, Tuple[CSEVariable, ...]],
    ) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
        """Codegen a reduction operation"""
        assert self.inside_reduction
        assert not self._load_mask
        cache_key = (src_dtype, reduction_type, value)
        if cache_key in self.cse.reduction_cache:
            return self.cse.reduction_cache[cache_key]

        if isinstance(value, tuple):
            assert reduction_type == "welford_combine"
            self.cse.reduction_cache[
                cache_key
            ] = result_tuple = self.welford_combine_impl(*value)
            return result_tuple

        assert isinstance(value, HalideCSEVariable) and value.used_dims is not None
        reduction_vars = {*self.reduction_renames}
        result_var = self.newfunc(
            [v for v in value.used_dims if v not in reduction_vars]
        )
        if reduction_vars - {*value.used_dims}:
            value = self.genfunc(
                f"{value}", self.sort_used_dims({*value.used_dims, *reduction_vars})
            )
        value_str = value.subs_str(self.reduction_renames)
        default = ir.Reduction.default_accumulator(reduction_type, src_dtype)
        acc_type = halide_acc_type(dtype)

        if reduction_type in ("argmax", "argmin"):
            index = f"{result_var.name}_{reduction_type}"
            self.body.writeline(f"{index} = hl.{reduction_type}(rdom, {value_str})")
            # turn the N-D argmax index into a 1-D one
            parts = []
            stride = 1
            for i, sym in enumerate(self.reduction_renames):
                parts.append(f"{index}[{i}]")
                if stride != 1:
                    parts[-1] += f"*{stride}"
                stride *= self.halide_vars[sym]
            self.body.writeline(f"{result_var} = {' + '.join(parts)}")
        elif reduction_type == "welford_reduce":
            # TODO(jansel): implement welford_reduce without fallback
            result_var = self.welford_reduce_fallback(dtype, value)
        else:
            combine_fn = get_reduction_combine_fn(reduction_type, acc_type)
            with V.set_ops_handler(AddParenHandler(HalideOverrides(MockHandler()))):
                combine_str = combine_fn(result_var, value_str)  # type: ignore[arg-type]
            default_str = f"hl.cast({acc_type}, {halide_constant(default)})"
            self.body.writeline(f"{result_var} = {default_str}")
            self.body.writeline(f"{result_var} = {combine_str}")

        self.cse.reduction_cache[cache_key] = result_var
        return result_var

    def welford_combine_impl(self, mean, m2, weight):
        assert isinstance(mean, HalideCSEVariable) and mean.used_dims is not None
        assert isinstance(m2, HalideCSEVariable) and m2.used_dims is not None
        assert isinstance(weight, HalideCSEVariable) and weight.used_dims is not None
        used_dims = {*mean.used_dims, *m2.used_dims, *weight.used_dims} or {
            *self.halide_vars
        }
        used_dims -= {*self.reduction_renames}
        result_var = self.newfunc(self.sort_used_dims(used_dims))
        default = [f"hl.cast({x.name}.type(), 0)" for x in (mean, m2, weight)]
        pfx = result_var.name
        self.body.writeline(f"{result_var} = hl.Tuple([{', '.join(default)}])")
        self.body.writeline(f"{pfx}_mean_1 = {result_var}[0]")
        self.body.writeline(f"{pfx}_m2_1 = {result_var}[1]")
        self.body.writeline(f"{pfx}_weight_1 = {result_var}[2]")
        self.body.writeline(f"{pfx}_mean_2 = {mean.subs_str(self.reduction_renames)}")
        self.body.writeline(f"{pfx}_m2_2 = {m2.subs_str(self.reduction_renames)}")
        self.body.writeline(
            f"{pfx}_weight_2 = {weight.subs_str(self.reduction_renames)}"
        )
        self.body.writeline(f"{pfx}_delta = {pfx}_mean_2 - {pfx}_mean_1")
        self.body.writeline(f"{pfx}_new_weight = {pfx}_weight_1 + {pfx}_weight_2")
        self.body.writeline(
            f"{pfx}_w2_over_w = hl.select({pfx}_new_weight == 0.0, 0.0, {pfx}_weight_2 / {pfx}_new_weight)"
        )
        update = [
            f"{pfx}_mean_1 + {pfx}_delta * {pfx}_w2_over_w",
            f"{pfx}_m2_1 + {pfx}_m2_2 + {pfx}_delta * {pfx}_delta * {pfx}_weight_1 * {pfx}_w2_over_w",
            f"{pfx}_new_weight",
        ]
        self.body.writeline(f"{result_var} = hl.Tuple([{', '.join(update)}])")

        unpacked = []
        for i in range(3):
            unpacked.append(self.newfunc(result_var.used_dims))
            self.body.writeline(f"{unpacked[-1]} = {result_var}[{i}]")
        return tuple(unpacked)

    def scan(
        self,
        dtypes: Tuple[torch.dtype, ...],
        combine_fn: Callable[
            [Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]], Tuple[CSEVariable, ...]
        ],
        values_orig: Tuple[CSEVariable, ...],
    ) -> Tuple[CSEVariable, ...]:
        assert self.inside_reduction
        assert len(dtypes) == len(values_orig)
        values: List[HalideCSEVariable] = []
        all_used_dims = set()
        for value in values_orig:
            assert isinstance(value, HalideCSEVariable) and value.used_dims is not None
            if set(value.used_dims) & set(self.reduction_renames):
                values.append(value)
            else:
                values.append(
                    self.genfunc(
                        f"{value}", [*value.used_dims, [*self.reduction_renames][:1]]
                    )
                )
            all_used_dims.update(value.used_dims)
        result_var = self.newfunc(self.sort_used_dims(all_used_dims))
        assert result_var.used_dims and set(result_var.used_dims) & set(
            self.reduction_renames
        )
        initial = [
            f"hl.cast({halide_acc_type(dtype)}, {value})"
            for dtype, value in zip(dtypes, values)
        ]

        length = self.kexpr(self.rename_indexing(self.range_trees[-1].numel))
        scan_dom = f"{result_var.name}_rdom"
        scan = f"{scan_dom}.x"
        self.body.writeline(f"{scan_dom} = hl.RDom([hl.Range(1, {length})])")

        assert (
            len(self.reduction_renames) == 1
        ), "multi-dimensional scan not implemented"
        (scan_var,) = [*self.reduction_renames]  # type: ignore[misc]
        scan_renames_cur = {scan_var: sympy_index_symbol(scan)}
        scan_renames_pri = {scan_var: sympy_index_symbol(scan) - 1}

        if len(values) == 1:

            def maybe_tuple(x):
                return x[0]

            read_left = [result_var.subs_str(scan_renames_pri)]
            read_right = [result_var.subs_str(scan_renames_cur)]
        else:

            def maybe_tuple(x):
                return f"hl.Tuple([{', '.join(x)}])"

            read_left = [
                result_var.subs_str(scan_renames_pri) + f"[{i}]"
                for i in range(len(values))
            ]
            read_right = [
                result_var.subs_str(scan_renames_cur) + f"[{i}]"
                for i in range(len(values))
            ]

        self.body.writeline(f"{result_var} = {maybe_tuple(initial)}")

        # Disable CSE for update fn
        with V.set_ops_handler(AddParenHandler(HalideOverrides(MockHandler()))):
            combine_str = combine_fn(read_left, read_right)  # type: ignore[arg-type]
        self.body.writeline(
            f"{result_var.subs_str(scan_renames_cur)} = {maybe_tuple(combine_str)}"
        )

        if len(values) == 1:
            return (result_var,)

        unpack_vars = [self.newfunc(self.sort_used_dims(all_used_dims)) for _ in values]
        for i, v in enumerate(unpack_vars):
            self.body.writeline(f"{v} = {result_var}[{i}]")
        return tuple(unpack_vars)

    def genfunc(
        self, line, used_dims, *, bounds=ValueRanges.unknown()
    ) -> HalideCSEVariable:
        var = self.cse.generate(self.body, line, bounds=bounds)
        assert isinstance(var, HalideCSEVariable)
        var.used_dims = used_dims
        return var

    def newfunc(self, used_dims) -> HalideCSEVariable:
        var = self.cse.newvar()
        assert isinstance(var, HalideCSEVariable)
        var.used_dims = used_dims
        return var

    def halide_buffer_numel(self, name: str):
        """
        We map all tensors to 1D buffers in Halide since Halide has trouble representing some strides that PyTorch
        supports.  If there are gaps in the underlying layout the numel we pass to Halide includes the gaps while
        PyTorch's numel excludes them.
        """
        return V.graph.get_buffer(name).get_layout().storage_size()

    def halide_argdefs(self):
        """
        Halide requires scalar inputs before outputs, so need to reorder args.
        """

        def arg_order(arg_tuple):
            call_str, arg = arg_tuple
            if isinstance(arg, SizeArg):
                return 1  # this would normally be at the end, move it to middle
            elif "out_ptr" in arg.name:
                return 2
            else:
                assert "in_ptr" in arg.name
                return 0

        result = []
        _, a, b, _ = self.args.python_argdefs()
        for call_str, arg in sorted(zip(a, b), key=arg_order):
            result.append((call_str, arg))
            if isinstance(arg, TensorArg):
                assert arg.offset == 0 and arg.alias_of is None
                result.extend(
                    (
                        None,
                        TensorArg(
                            alias,
                            arg.buffer,
                            arg.dtype,
                            arg.offset,
                            alias_of=arg.name,
                        ),
                    )
                    for alias in self.buffer_aliases.get(arg.name, ())
                )
        return result

    def halide_kernel_meta(self) -> HalideMeta:
        """Compute metadata required by codecache.py"""
        argtypes = []
        for _, arg in self.halide_argdefs():
            if isinstance(arg, SizeArg):
                shape = None
                stride = None
                offset = None
                dtype = "long"
            else:
                shape = [
                    cexpr(self.rename_indexing(x.size))
                    for x in self.buffer_dimensions[arg.name]
                ]
                stride = [
                    cexpr(self.rename_indexing(x.stride))
                    for x in self.buffer_dimensions[arg.name]
                ]
                assert len(shape) == len(stride)
                offset = cexpr(self.buffer_offsets[arg.name])
                dtype = f"{DTYPE_TO_CPP[arg.dtype]}*"
            argtypes.append(
                HalideInputSpec(
                    dtype,
                    arg.name,
                    shape=shape,
                    stride=stride,
                    offset=offset,
                    alias_of=arg.alias_of,
                )
            )

        current_device = V.graph.get_current_device_or_throw()
        if current_device.type == "cpu":
            target = [config.halide.cpu_target]
            schduler = config.halide.scheduler_cpu
            scheduler_flags = {
                "parallelism": parallel_num_threads(),
            }
            cuda_device = None
        else:
            assert current_device.type == "cuda", "only cpu/cuda supported"
            assert current_device.index <= 0, "only default device supported"
            target = [config.halide.gpu_target]
            schduler = config.halide.scheduler_cuda
            capability = torch.cuda.get_device_properties(current_device)
            if "cuda_capability" not in target[0]:
                for major, minor in [(8, 6), (8, 0), (7, 5), (7, 0), (6, 1)]:
                    if capability.major >= major and capability.minor >= minor:
                        target.append(f"cuda_capability_{major}{minor}")
                        break
            target.append("user_context")
            scheduler_flags = {
                "parallelism": capability.multi_processor_count,
                # TODO(jansel): explore other flags, see:
                # grep parser.parse ~/Halide/src/autoschedulers/anderson2021/AutoSchedule.cpp
            }
            cuda_device = max(0, current_device.index)

        # strict_float is requires for correctness
        target.append("strict_float")

        # without this we will initialize cuda once per kernel and hit errors
        target.append("no_runtime")

        if not config.halide.asserts:
            target.append("no_asserts")

        if config.halide.debug:
            target.append("debug")

        if "64" in self.index_dtype:
            # TODO(jansel): it is unclear if this does anything, since input sizes are still int32
            target.append("large_buffers")

        return HalideMeta(
            argtypes,
            target="-".join(target),
            scheduler=schduler,
            scheduler_flags=scheduler_flags,
            cuda_device=cuda_device,
        )

    def codegen_kernel(self, name=None):
        """Called at the end to generate a final kernel string"""
        if self.args.inplace_buffers:
            raise Unsupported("inplace_buffers")
        meta = self.halide_kernel_meta()  # ensure needed args are added early
        code = IndentedBuffer()
        code.splice(
            """
            import halide as hl
            from torch._inductor.runtime import halide_helpers
            from math import inf, nan

            @hl.generator(name="kernel")
            class Kernel:
        """,
            strip=True,
        )
        code.do_indent()
        for _, arg in self.halide_argdefs():
            if isinstance(arg, SizeArg):
                code.writeline(f"{arg.name} = hl.InputScalar({self.index_dtype})")
            else:
                assert arg.buffer, arg
                argcls = "hl.OutputBuffer" if "out" in arg.name else "hl.InputBuffer"
                argtype = halide_type(arg.dtype)
                ndim = len(self.buffer_dimensions[arg.name])
                code.writeline(f"{arg.name} = {argcls}({argtype}, {ndim})")
        code.splice(
            """
            def generate(g):
        """
        )
        code.do_indent()
        for _, arg in self.halide_argdefs():
            code.writeline(f"{arg.name} = g.{arg.name}")
        for old, new in self.args.aliases():
            code.writeline(f"{old} = {new}")
        code.splice(self.indexing_code)

        def update_index(m):
            var = self.cse.varname_map[m.group(1)]
            assert var.used_dims is not None, var
            return str(var)

        for line in self.body._lines:
            if isinstance(line, str):
                # fill in missing indices
                line = HalideCSEVariable.undefined_re.sub(update_index, line)
            code.writeline(line)
        code.writeline("")
        code.writeline("assert g.using_autoscheduler()")

        for _, arg in self.halide_argdefs():
            # fallback=1 below because halide requires buffers to be at least as large as the estimates
            # This causes crashes if our estimate is greater than the vector length
            # https://github.com/halide/Halide/issues/3103
            if isinstance(arg, SizeArg):
                hint = V.graph.sizevars.size_hint(arg.expr, fallback=1)
                code.writeline(f"{arg.name}.set_estimate({hint})")
            else:
                dims = self.buffer_dimensions[arg.name]
                range_hints = []
                for i, dim in enumerate(dims):
                    hint = self._autoscheduler_workarounds(
                        V.graph.sizevars.size_hint(dim.size, fallback=1), dims
                    )
                    range_hints.append(f"hl.Range(0, {hint})")
                    if "out" not in arg.name:
                        code.writeline(f"{arg.name}.dim({i}).set_min(0)")
                        try:
                            code.writeline(
                                f"{arg.name}.dim({i}).set_stride({int(dim.stride)})"
                            )
                        except TypeError:
                            pass  # not integer
                        try:
                            code.writeline(
                                f"{arg.name}.dim({i}).set_extent({int(dim.size)})"
                            )
                        except TypeError:
                            pass  # not integer
                code.writeline(f"{arg.name}.set_estimates([{', '.join(range_hints)}])")

        code.do_unindent(2)
        code.splice(
            """
            if __name__ == "__main__":
                hl.main()
            """.rstrip(),
        )
        if meta.scheduler:
            code.splice(
                f"""
                else:
                    hl.load_plugin({HalideCodeCache.find_libautoschedule(meta.scheduler)!r})
                    target = hl.Target({meta.target!r})
                    autoscheduler = hl.AutoschedulerParams({meta.scheduler!r}, {meta.scheduler_flags!r})
                    with hl.GeneratorContext(target, autoscheduler):
                        gen = Kernel()
                        pipeline = gen._build_pipeline()
                        # gen.compile_to_callable() does not run the autoscheduler
                        pipeline.apply_autoscheduler(target, autoscheduler)
                        kernel = pipeline.compile_to_callable([
                                gen._get_input_parameter(a.name)._to_argument()
                                for a in gen._get_arginfos()
                                if a.dir == hl.ArgInfoDirection.Input
                            ], target)
                """,
                strip=True,
            )
        else:
            code.splice(
                f"""
                  else:
                      with hl.GeneratorContext(hl.Target({meta.target!r})):
                          kernel = Kernel().compile_to_callable()
                  """,
                strip=True,
            )
        return code.getvalue()

    @staticmethod
    def _autoscheduler_workarounds(n, dims):
        if (
            len(dims) == 1
            and config.halide.scheduler_cuda == "Anderson2021"
            and V.graph.get_current_device_or_throw().type == "cuda"
        ):
            # workaround https://github.com/halide/Halide/issues/8246
            n = max(2, n)
        return n

    def call_kernel(self, name: str, node=None):
        """Codegen a call to this kernel"""
        wrapper = V.graph.wrapper_code
        call_args = [f"{n}" for n, arg in self.halide_argdefs() if arg.alias_of is None]
        current_device = V.graph.get_current_device_or_throw()
        if current_device.type == "cuda":
            stream_name = wrapper.write_get_raw_stream(current_device.index, V.graph)
            call_args.append(stream_name)
        wrapper.generate_kernel_call(
            name,
            call_args,
            gpu=False,  # grid/stream is handled internally in halide
            triton=False,
        )

    def generate_assert(self, check):
        return False  # TODO(jansel): support asserts

    def check_bounds(
        self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
    ):
        pass  # TODO(jansel): support asserts


class HalideScheduling(SIMDScheduling):
    kernel_type = HalideKernel  # type: ignore[arg-type,assignment]

    @classmethod
    def get_backend_features(cls, device: torch.device):
        result = dict.fromkeys(
            [
                BackendFeature.TUPLE_REDUCTION,
                BackendFeature.PREFER_STORE_LOOP_ORDER,
                BackendFeature.REDUCE_TO_SINGLE_ELEMENT,
            ]
        )
        if config.halide.scan_kernels:
            result[BackendFeature.SCAN] = None
        return result

    def define_kernel(self, src_code, node_schedule, kernel):
        """Codegen kernel definition to go in output wrapper code"""
        wrapper = V.graph.wrapper_code
        if src_code in wrapper.src_to_kernel:
            kernel_name = wrapper.src_to_kernel[src_code]
        else:
            kernel_name = f"halide_kernel_{wrapper.next_kernel_suffix()}"
            wrapper.src_to_kernel[src_code] = kernel_name
            wrapper.add_import_once(
                "from torch._inductor.runtime.hints import HalideMeta, HalideInputSpec"
            )

            compile_wrapper = IndentedBuffer()
            compile_wrapper.writeline(
                f"async_compile.halide({kernel.halide_kernel_meta()!r}, '''"
            )
            compile_wrapper.splice(src_code, strip=True)
            compile_wrapper.writeline("''')")

            origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
            metadata_comment = f"{origins}\n{detailed_origins}"
            wrapper.define_kernel(
                kernel_name, compile_wrapper.getvalue(), metadata_comment
            )
            if is_metric_table_enabled("kernel_metadata"):
                log_kernel_metadata(kernel_name, "", src_code)

        return kernel_name