File: simd.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1727 lines) | stat: -rw-r--r-- 66,647 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
# mypy: allow-untyped-defs
from __future__ import annotations

import collections
import contextlib
import dataclasses
import functools
import itertools
import logging
import math
import operator
from typing import (
    Any,
    Callable,
    Counter,
    Dict,
    Iterable,
    List,
    no_type_check,
    Optional,
    Sequence,
    Tuple,
    Union,
)

import sympy

import torch
import torch._logging
from torch.fx.immutable_collections import immutable_dict
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.functions import FloorDiv, Identity, ModularIndexing
from torch.utils._sympy.symbol import (
    free_symbol_is_type,
    prefix_str,
    symbol_is_type,
    SymT,
)

from ..._dynamo.utils import counters
from .. import config, ir, scheduler
from ..codecache import code_hash
from ..dependencies import MemoryDep, StarDep, WeakDep
from ..ir import IRNode, TritonTemplateBuffer
from ..optimize_indexing import indexing_dtype_strength_reduction
from ..runtime.runtime_utils import green_text, yellow_text
from ..scheduler import BaseSchedulerNode, BaseScheduling, WhyNoFuse
from ..utils import (
    cache_on_self,
    expr_fits_within_32bit,
    get_dtype_size,
    IndentedBuffer,
    Placeholder,
    sympy_index_symbol,
    sympy_product,
    sympy_subs,
    unique,
)
from ..virtualized import ops, OpsWrapper, V
from .common import CSEVariable, index_prevent_reordering, Kernel, PythonPrinter
from .multi_kernel import MultiKernel
from .simd_kernel_features import (
    DisableReduction,
    EnableReduction,
    NodeScheduleMarker,
    SIMDKernelFeatures,
)


log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")


pexpr = PythonPrinter().doprint


def prefix_is_reduction(prefix: str) -> bool:
    return prefix[0] == "r"


@dataclasses.dataclass
class IterationRanges:
    """
    Each range tree represents multiple sets of iteration indexing
    in a single tiled dimension in the output kernel.

    If you have two loops ranges one (4, 3, 2) and another (4, 6),
    then the range tree will be:
            4 (i0)
        3 (i1)  6 (i3)
        2 (i2)
    Where i0 is shared between both loops, but then the split into
    different indexing vars.  All loop ranges must iterate over
    the same number of elements.
    """

    def __init__(
        self,
        name: str,
        var_list: List[sympy.Symbol],
        var_ranges: Dict[sympy.Symbol, sympy.Expr],
        numel: sympy.Expr,
        prefix: str,
        *,
        kernel: SIMDKernel,
        divisor=sympy.S.One,
        length=sympy.S.One,
        root: IterationRangesRoot,
    ) -> None:
        super().__init__()
        self.name = name
        self.var_list = var_list
        self.var_ranges = var_ranges
        self.numel = numel
        self.prefix = prefix
        self.divisor = divisor
        self.length = length
        self.kernel = kernel
        self.root = root

    @property
    @cache_on_self
    @no_type_check  # https://github.com/python/mypy/issues/17184
    def is_reduction(self) -> bool:
        return prefix_is_reduction(self.prefix)

    def symbol(self):
        return sympy_index_symbol(self.name)

    @property
    @cache_on_self
    @no_type_check
    def symt(self) -> SymT:
        prefix_to_symt = {prefix: symt for symt, prefix in prefix_str.items()}
        return prefix_to_symt[self.prefix]


class IterationRangesRoot(IterationRanges):
    def __init__(
        self,
        name: str,
        numel: sympy.Expr,
        # TODO: this is probably SymTy.INDEX and SymTy.RINDEX
        prefix: str,
        index: int,
        kernel: SIMDKernel,
        pid_cache=None,
        *,
        is_loop: bool,
        tensor_dim: Optional[int],
        grid_dim: Optional[int],
        has_zdim: bool,
    ) -> None:
        if pid_cache is None:
            pid_cache = {}
        super().__init__(
            name=name,
            var_list=[],
            var_ranges={},
            numel=numel,
            prefix=prefix,
            kernel=kernel,
            root=self,
        )
        self.index = index
        # Store all the nodes in one flat list
        self.nodes: Dict[sympy.Expr, IterationRangesEntry] = {}
        # This is for re-ordering program ID in triton mm template
        # pid_cache["tl.program_id(0)"] = pid_m
        self.pid_cache: Dict[str, str] = pid_cache

        # True if the dimension is implemented as a single program looping over
        # the full dimension (currently only used for non-persistent reduction)
        assert not is_loop or (self.is_reduction and grid_dim is None)
        self.is_loop = is_loop
        # Index of corresponding dimension on triton tensors
        self.tensor_dim = tensor_dim
        # Index of corresponding dimension in the triton grid
        self.grid_dim = grid_dim
        self.has_zdim = has_zdim

    def __repr__(self) -> str:
        return f"IterationRangesRoot({self.name!r}, {self.numel}, ...)"

    def cache_clear(self):
        for node in self.nodes.values():
            node.cache_clear()

    def index_sym(self):
        return sympy_index_symbol(f"{self.prefix}index")

    def lookup(self, divisor, length):
        """
        Lookup a given RangeTreeEntry, creating it if needed
        """
        if V.graph.sizevars.statically_known_equals(divisor * length, self.numel):
            expr = FloorDiv(self.index_sym(), divisor)
        else:
            expr = ModularIndexing(self.index_sym(), divisor, length)

        if expr not in self.nodes:
            node = IterationRangesEntry(
                f"{self.prefix}{next(V.kernel.iter_vars_count)}",
                divisor,
                length,
                expr,
                self,
            )
            V.kernel.range_tree_nodes[node.symbol()] = node
            self.var_list.append(node.symbol())
            self.var_ranges[node.symbol()] = length
            self.nodes[expr] = node
        return self.nodes[expr]

    def construct_entries(self, lengths: List[sympy.Expr]):
        divisor = sympy.S.One
        itervars = []
        for length in reversed(lengths):
            itervars.append(self.lookup(divisor, length))
            divisor = divisor * length
        return list(reversed(itervars))

    def construct(self, lengths: List[sympy.Expr]):
        return [e.symbol() for e in self.construct_entries(lengths)]

    def vars_and_sizes(self, index: sympy.Expr):
        """Figure out vars from this tree used in index"""
        nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols]
        nodes = [n for n in nodes if n and n.prefix == self.prefix]
        nodes.sort(
            key=lambda x: V.graph.sizevars.size_hint(
                x.divisor, fallback=config.unbacked_symint_fallback
            )
        )
        divisor = sympy.S.One
        index_vars = []
        sizes = []

        def add(node):
            nonlocal divisor
            index_vars.append(node.symbol())
            sizes.append(node.length)
            divisor = divisor * node.length

        for node in nodes:
            if not V.graph.sizevars.statically_known_equals(node.divisor, divisor):
                # fill in unused index var
                add(self.lookup(divisor, FloorDiv(node.divisor, divisor)))
                divisor = node.divisor
            add(node)
        if not V.graph.sizevars.statically_known_equals(self.numel, divisor):
            # fill in unused index var
            add(self.lookup(divisor, FloorDiv(self.numel, divisor)))

        return list(reversed(index_vars)), list(reversed(sizes))


class IterationRangesEntry(IterationRanges):
    def __init__(
        self,
        name: str,
        divisor: sympy.Expr,
        length: sympy.Expr,
        expr: sympy.Expr,
        parent: IterationRanges,
    ) -> None:
        super().__init__(
            name=name,
            numel=parent.numel / length,
            var_list=parent.var_list,
            var_ranges=parent.var_ranges,
            prefix=parent.prefix,
            divisor=divisor,
            length=length,
            kernel=parent.kernel,
            root=parent.root,
        )
        self.parent = parent
        self.codegen = functools.lru_cache(None)(self._codegen)
        self.expr = expr

    def __repr__(self) -> str:
        return f"IterationRangesEntry({self.name}, {self.divisor}, {self.length}, {self.expr}, {self.var_ranges})"

    def set_name(self, name):
        self.codegen = lambda: name  # type: ignore[assignment]
        self.codegen.cache_clear = lambda: None  # type: ignore[method-assign]
        self.name = name

    def cache_clear(self):
        self.codegen.cache_clear()

    def _codegen(self):
        V.kernel.codegen_iteration_ranges_entry(self)
        return self.name

    def precomputed_args(self):
        # for dynamic shapes, find parts of indexing expressions that have to be precomputed
        precomputed_args: List[sympy.Expr] = []
        if isinstance(self.expr, sympy.Symbol):
            return precomputed_args
        assert isinstance(self.expr, (FloorDiv, ModularIndexing)), type(self.expr)
        for arg in self.expr.args[1:]:
            if not isinstance(arg, (sympy.Integer, sympy.Symbol)):
                symbols = arg.free_symbols
                if len(symbols) > 0 and all(
                    symbol_is_type(s, SymT.SIZE) for s in symbols
                ):
                    precomputed_args.append(arg)
        return precomputed_args

    def __hash__(self):
        return hash(self.name)

    def __eq__(self, other):
        return self.name == other.name


def constant_repr(value):
    if value == float("inf"):
        return 'float("inf")'
    elif value == float("-inf"):
        return 'float("-inf")'
    elif math.isnan(value):
        return 'float("nan")'
    return repr(value)


class SIMDKernel(Kernel):
    """
    Common base class for Triton/Halide codegen which both use flattened indexing rather than loop nests.
    """

    sexpr = pexpr
    kexpr: Callable[[sympy.Expr], str]
    allow_block_ptr = False
    kernel_name: str

    def __init__(
        self,
        tiling: Dict[str, sympy.Expr],
        features: SIMDKernelFeatures,
        pid_cache=None,
        override_persistent_reduction=None,
        override_cooperative_reduction=None,
    ) -> None:
        if pid_cache is None:
            pid_cache = {}
        super().__init__()
        self.features = features
        self.mutations = features.get_mutations()
        self.body = IndentedBuffer()
        self.indexing_code = IndentedBuffer()
        self.numels = {
            prefix: V.graph.sizevars.simplify(val) for prefix, val in tiling.items()
        }
        self.range_trees: List[IterationRangesRoot] = []
        self.range_tree_nodes: Dict[sympy.Symbol, IterationRangesEntry] = {}
        self.iter_vars_count = itertools.count()
        self.inside_reduction = self.numels["r"] != 1
        self.cooperative_reduction: bool = (
            override_cooperative_reduction
            if override_cooperative_reduction is not None
            else self.should_use_cooperative_reduction()
        )
        self.persistent_reduction: bool = (
            override_persistent_reduction
            if override_persistent_reduction is not None
            else self.should_use_persistent_reduction()
        )
        self.no_x_dim = self.want_no_x_dim()
        self.code_hash: Optional[str] = None

        # define this in a closure to make cache local to object
        @functools.lru_cache(None)
        def simplify_indexing(index: sympy.Expr):
            index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges())
            for tree in self.range_trees:
                index = self.combine_contiguous_dims(index, tree)

            return self.combine_modular_indexing_pairs(index)

        self.simplify_indexing = simplify_indexing
        self.initialize_range_tree(pid_cache)

    def dtype_to_str(self, dtype: torch.dtype) -> str:
        raise NotImplementedError

    @property
    def index_dtype(self) -> str:
        return self.dtype_to_str(self.features.select_index_dtype())

    def want_no_x_dim(self):
        return False

    def initialize_range_tree(self, pid_cache):
        no_r_dim = not self.inside_reduction or self.numels["r"] == 1

        prefixes = "zyxr"
        active_prefixes = prefixes[-len(self.numels) :]

        grid_dims = "xyz"
        if self.no_x_dim:
            tensor_dims = "r"
        elif no_r_dim:
            tensor_dims = "xyz"
        else:
            tensor_dims = "xyzr"

        tensor_dims = "".join(p for p in tensor_dims if p in active_prefixes)

        for i, prefix in enumerate(active_prefixes):
            is_reduction = prefix_is_reduction(prefix)
            tensor_dim = tensor_dims.find(prefix) if prefix in tensor_dims else None
            grid_dim = None if is_reduction else grid_dims.find(prefix)
            index = i if grid_dim is None else grid_dim
            self.range_trees.append(
                IterationRangesRoot(
                    f"{prefix}index",
                    self.numels[prefix],
                    prefix,
                    index,
                    self,
                    pid_cache=pid_cache,
                    is_loop=is_reduction and not self.persistent_reduction,
                    tensor_dim=tensor_dim,
                    grid_dim=grid_dim,
                    has_zdim="z" in active_prefixes,
                )
            )

    def finalize_indexing(self, indices: Sequence[sympy.Expr]):
        """
        Hook called right before codegen with every index that will be
        used in the fused kernel.
        """

    def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
        prior = self.inside_reduction
        self.inside_reduction = False
        try:
            return self.store(name, index, value)
        finally:
            self.inside_reduction = prior

    def should_use_cooperative_reduction(self) -> bool:
        return False  # defined in subclass

    def should_use_persistent_reduction(self) -> bool:
        return False  # defined in subclass

    def var_ranges(self):
        return dict(
            itertools.chain.from_iterable(
                tree.var_ranges.items() for tree in self.range_trees
            )
        )

    def triton_tensor_ndim(self):
        return sum(int(tree.tensor_dim is not None) for tree in self.range_trees)

    def indexing_size_str(self, i):
        sizes = ["None"] * self.triton_tensor_ndim()
        sizes[i] = ":"
        return f"[{', '.join(sizes)}]"

    def dense_size_list(self) -> List[str]:
        sizes = ["1"] * self.triton_tensor_ndim()
        for tree in self.range_trees:
            if tree.tensor_dim is None:
                continue

            if not tree.is_reduction or self.inside_reduction:
                sizes[tree.tensor_dim] = f"{tree.prefix.upper()}BLOCK"
        return sizes

    def dense_size_str(self):
        sizes = self.dense_size_list()
        return f"[{', '.join(sizes)}]"

    def combine_modular_indexing_pairs(self, index):
        if not isinstance(index, ModularIndexing):
            return index
        x = index.args[0]
        if (tree_node := self.range_tree_nodes.get(x)) is None:
            return index
        new_index = sympy_subs(index, {x: tree_node.expr})
        new_index = V.graph.sizevars.combine_modular_indexing_pairs(new_index)
        # the index now contains xindex/etc, which is nonstandard, fix it up
        return sympy_subs(
            new_index,
            {
                tree_node.root.index_sym(): tree_node.root.lookup(
                    sympy.S.One, tree_node.root.numel
                ).symbol()
            },
        )

    def combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
        if expand_res := V.graph.sizevars.expand_floor_div(index):
            new_index, denominator = expand_res  # type: ignore[misc]
            return FloorDiv(self._combine_contiguous_dims(new_index, tree), denominator)
        else:
            return self._combine_contiguous_dims(index, tree)

    def _combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
        """
        More aggressive simplification to merge contiguous dims
        """
        if isinstance(index, (sympy.Integer, sympy.Symbol)):
            return index
        index_vars, sizes = tree.vars_and_sizes(index)
        if len(sizes) <= 1:
            return index
        new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
            index_vars, sizes, index_prevent_reordering([index], index_vars, sizes)
        )
        if new_sizes == sizes:
            return index
        new_index_vars = tree.construct(new_sizes)
        new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars))))
        return new_index

    def disable_reduction(self):
        should_flush = self.range_trees[-1].is_loop or self.cooperative_reduction

        @contextlib.contextmanager
        def ctx():
            if self.numels["r"] == 1:
                assert not self.inside_reduction
                yield
                return
            if should_flush:
                # calling codegen_body() will flush all the pending buffers
                # and write out a reduction loop
                self.codegen_body()
            self.inside_reduction = False
            try:
                yield
                if should_flush:
                    # flush out any code before opening the next loop
                    self.codegen_body()
            finally:
                self.inside_reduction = True

        return ctx()

    def set_ranges(self, *lengths):
        assert len(lengths) == len(self.range_trees)
        return [
            ranges.construct(length)
            for length, ranges in zip(lengths, self.range_trees)
        ]

    @staticmethod
    def _split_iteration_ranges(
        groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]]
    ):
        sv = V.graph.sizevars
        new_ranges: List[List[sympy.Expr]] = [[] for _ in groups]
        remaining = [sv.simplify(g) for g in groups]
        var_count = itertools.count()

        def add_range(i, expr):
            expr = sv.simplify(expr)
            if not sv.statically_known_multiple_of(remaining[i], expr):
                raise CantSplit
            # guard on the last item out
            remaining[i] = FloorDiv(remaining[i], expr)
            new_ranges[i].append(expr)
            return next(var_count)

        def make_combined(size, idx1, idx2):
            def getter(flat_vars):
                return size * flat_vars[idx1] + flat_vars[idx2]

            return getter

        return_getters_groups = []
        current_group = 0
        for length_group in lengths:
            return_getters = []
            for size in length_group:
                if sv.statically_known_equals(size, 1):  # type: ignore[arg-type]
                    return_getters.append(lambda _: sympy.S.Zero)
                    continue

                while current_group < len(remaining) and sv.statically_known_equals(
                    remaining[current_group], 1  # type: ignore[arg-type]
                ):
                    # scroll to next group with remaining elements
                    current_group += 1

                if current_group + 1 < len(remaining) and sv.statically_known_gt(
                    size, remaining[current_group]
                ):
                    # need to break size in two
                    if not sv.statically_known_multiple_of(
                        size, remaining[current_group]
                    ):
                        raise CantSplit
                    size1 = remaining[current_group]
                    size2 = FloorDiv(size, remaining[current_group])
                    return_getters.append(
                        make_combined(
                            size2,
                            add_range(current_group, size1),
                            add_range(current_group + 1, size2),
                        )
                    )
                else:
                    return_getters.append(
                        operator.itemgetter(add_range(current_group, size))
                    )
            return_getters_groups.append(return_getters)

        assert all(
            V.graph.sizevars.size_hint(s) == 1 for s in remaining
        ), f"failed to set ranges {remaining} {lengths}"

        return new_ranges, return_getters_groups

    @classmethod
    def is_compatible(
        cls, groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]]
    ):
        try:
            cls._split_iteration_ranges(groups, lengths)
            return True
        except CantSplit:
            return False

    def split_and_set_ranges(self, lengths: Sequence[Sequence[sympy.Expr]]):
        groups = [rt.numel for rt in self.range_trees]
        if not self.inside_reduction:
            groups[-1] = sympy.S.One

        return self.map_kernel_groups_to_node_sizes(groups, lengths, self.set_ranges)

    @classmethod
    def map_kernel_groups_to_node_sizes(
        cls,
        groups: Sequence[sympy.Expr],
        lengths: Sequence[Sequence[sympy.Expr]],
        set_ranges,
    ) -> List[List[sympy.Expr]]:
        """
        We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1).

        To do this we need to split up the iteration space of i0 into something like:
            for i1 in s0:
              for i2 in s1:
                i0 = i1*s1 + i2
                ....

        This function matches and resplits lengths to the groups of
        this kernel to enable tiled + non-tiled fusions.
        """
        if len(lengths) == len(groups) and all(
            V.graph.sizevars.simplify(sympy_product(x) - g) == 0
            for x, g in zip(lengths, groups)
        ):
            return set_ranges(*lengths)

        new_ranges, return_getters_groups = cls._split_iteration_ranges(groups, lengths)
        itervars = [*itertools.chain.from_iterable(set_ranges(*new_ranges))]
        return [[fn(itervars) for fn in fns] for fns in return_getters_groups]

    def is_indirect_indexing(self, index: sympy.Expr):
        # tmpX  means indirect indexing
        return free_symbol_is_type(index, SymT.TMP)

    def is_broadcasted(self, index: sympy.Expr):
        # Note. This may not be correct when there is indirect indexing
        if self.is_indirect_indexing(index):
            return False

        index_numels = [1] * len(self.numels)
        for symbol in index.free_symbols:
            if symbol not in self.range_tree_nodes:
                # Non-iterated variables, e.g. strides
                continue
            entry = self.range_tree_nodes[symbol]  # type: ignore[index]
            assert isinstance(entry.parent, IterationRangesRoot)
            index_numels[entry.parent.index] *= entry.length

        # If the index variables only iterate over a subset of the kernel
        # numels, then it must be broadcasted.
        simplify = V.graph.sizevars.simplify
        return any(
            simplify(idx_range) != simplify(iter_range)  # type: ignore[arg-type]
            for idx_range, iter_range in zip(index_numels, self.numels.values())
        )

    def index_to_str(self, index: sympy.Expr) -> str:
        """
        Convert an index expr to a string that can be used in output code.
        e.g. a sympy expression "s2" may actually appear as "ks1" in the generated kernel.

        Index expressions often need to be passed in as arguments to the triton kernel.
        Rename_indexing and codegen_indexing keep track of the needed indices and add
        new parameters to the function signature.
        """
        if isinstance(index, list):
            return f"[{', '.join(map(self.index_to_str, index))}]"
        return self.kexpr(self.rename_indexing(index))  # type: ignore[call-arg]

    def prepare_indexing(
        self,
        index: sympy.Expr,
    ):
        index = self.simplify_indexing(index)
        index = sympy_subs(index, V.graph.sizevars.precomputed_replacements)
        # if simple replacements didn't get rid of floor/ceil, try full subs
        if len(index.atoms(sympy.floor)) or len(index.atoms(sympy.ceiling)):
            index = index.subs(V.graph.sizevars.precomputed_replacements)
        # last resort, if no range vars are in the expr, hoist it
        # TODO instead of trying to blindly find complicated exprs, we should hoist the
        # inputs/outputs sizes and strides, but at the time indexing is generated
        # kernel inputs and outputs are not set yet, we'd need a deeper refactor
        # to do it this way

        if len(index.atoms(sympy.ceiling)):
            for a in index.atoms(sympy.ceiling):
                # for nested exprs, atoms yields top level first (?)
                # so if everything goes fine, lower level replacements will come up empty
                symbols = a.free_symbols
                if len(symbols) > 0 and all(
                    symbol_is_type(s, (SymT.SIZE, SymT.PRECOMPUTED_SIZE))
                    for s in symbols
                ):
                    replacements = {a: V.graph.sizevars.lookup_precomputed_size(a)}
                    index = sympy_subs(index, replacements)

        simp_index = self.simplify_indexing(index)

        # Now that we are done simplifying we can unwrap Identity so that downstream handling
        # for its contained expression will work. previously, tl.full wrapping of sympy.Integer
        # would not occur
        simp_index = (
            simp_index if not isinstance(simp_index, Identity) else simp_index.args[0]
        )

        return self.codegen_indexing(simp_index)

    def active_range_trees(self, reorder=False):
        trees = [
            t for t in self.range_trees if not t.is_reduction or self.inside_reduction
        ]
        if reorder and len(trees) > 1:
            count = sum(t.prefix in "xyz" for t in trees)
            assert "".join(t.prefix for t in trees[:count]) == "zyx"[-count:], [
                t.prefix for t in trees[:count]
            ]
            trees[:count] = reversed(trees[:count])
        return trees

    def codegen_indexing(self, expr: sympy.Expr):
        expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges())
        for sym in sorted(expr.free_symbols, key=str):
            if sym in self.range_tree_nodes:
                # if indexing expression is complicated, we precompute it on the host side
                # and send the result as a kernel argument
                replacements = {}
                for ps in self.range_tree_nodes[sym].precomputed_args():  # type: ignore[index]
                    replacements[ps] = V.graph.sizevars.lookup_precomputed_size(ps)
                if len(replacements) > 0:
                    self.range_tree_nodes[sym].expr = sympy_subs(  # type: ignore[index]
                        self.range_tree_nodes[sym].expr, replacements  # type: ignore[index]
                    )
                self.range_tree_nodes[sym].codegen()  # type: ignore[index]
        return expr

    def codegen_nan_check(self) -> None:
        raise NotImplementedError("NYI: codegen_nan_check")

    def call_kernel(self, name: str, node: Optional[IRNode] = None) -> None:
        raise NotImplementedError("NYI: call_kernel")

    @contextlib.contextmanager
    def mask_loads(self, mask, value):
        """Context manager to add an additional mask to tl.load/store"""
        prior = self._load_mask
        prior_val = self._load_other
        if prior:
            mask = ops.logical_and(mask, prior)

        mask = OpsWrapper._unwrap(mask)
        self._load_mask = mask
        self._load_other = value
        try:
            # TODO(jansel): do we need a reshape here?
            yield mask
        finally:
            self._load_mask = prior
            self._load_other = prior_val

    def get_strides_of_load(self, index: sympy.Expr):
        """
        This gets the stride of the index for each of the tiling variables
        (technically, it does it at index 0)

        For example, if
        xindex = x0 + 512*x1 + 1024*r0
        x0 = (xindex//512)
        x1 = (xindex % 512)
        r0 = rindex // 1024

        this function would return
        {xindex: 512, rindex: 1024}
        """
        index_to_tile_indexes = {k: v.expr for k, v in self.range_tree_nodes.items()}
        index_in_tile_vars = sympy_subs(index, index_to_tile_indexes)  # type: ignore[arg-type]
        strides = {}
        for range_tree in self.range_trees:
            s = sympy_index_symbol(range_tree.name)
            strides[s] = sympy_subs(index_in_tile_vars, {s: 1}) - sympy_subs(
                index_in_tile_vars, {s: 0}
            )
        return strides

    @staticmethod
    def _map_tuple_or_scalar(fn, value):
        if isinstance(value, tuple):
            return tuple(map(fn, value))
        return fn(value)

    def estimate_kernel_num_bytes(self):
        """
        Try the best to estimate the total size (in bytes) of the
        kernel's inputs and outputs, which is used for estimating the memory
        throughput of this kernel. This information is used for checking how
        far we are from the peak memory bandwidth. It's important that
        we want to avoid overestimating the sizes of the inputs and outputs,
        because it can wrongfully give us a very large memory traffic value,
        which may be even larger than the theoretical bandwidth and thus
        become very misleading. This is particularly problematic for cases
        where we slice some inputs. In those cases, we should only count
        the size of the "slices" instead of the original inputs, because
        only the slices contribute to the real memory traffic.
        """
        nbytes = []
        ninplace_args = len(unique(self.args.inplace_buffers.values()))
        _, call_args, _, _ = self.args.python_argdefs()
        buf_accesses = self.features.buf_accesses()

        # For pointwise and reduction kernels, this is the upper-bound numels
        # for the output buffer.
        # FIXME: This is not exactly right for cases like below:
        #    def foo(tensor0, tensor1):
        #        x0 = narrow(tensor0)
        #        return cat(x0, tensor1)
        # For this example, we will end up overestimate the size for the
        # slice s0. Potentially, we could have precise inputs information
        # if we maintained the original inputs of the Pointwise kernel created
        # for the "cat". However, I think it might be a bit overwhelming that
        # we add such complexity only for handling some particular cases for
        # benchmarking.
        out_numel = V.graph.sizevars.size_hint(sympy_product(self.numels.values()))
        for i, arg in enumerate(call_args):
            # "buf" may be narrowed. In this case, the number of memory accesses
            # should be estimated based on the reinterpreted layout.
            # On the other hand, buf may be broadcasted. In this case,
            # counting the size of the underline storage would give us
            # a better estimation in terms of memory accesses.
            if arg not in buf_accesses:
                nbytes.append(0)
                continue
            arg_numel = V.graph.get_numel(arg)
            buf_size = V.graph.sizevars.size_hint(arg_numel)
            if buf_size > out_numel:
                # This arg points to a buf that has been sliced.
                # We need to count each individual slice to have
                # a better estimation.
                indices: OrderedSet[Any] = OrderedSet()
                no_index_dep_count = 0
                for dep in buf_accesses[arg]:
                    if isinstance(dep, (StarDep, WeakDep)):
                        indices.add(f"no_index_dep_{no_index_dep_count}")
                        no_index_dep_count += 1
                    else:
                        indices.add(dep.index)
                numel = len(indices) * out_numel
            else:
                numel = buf_size
            dtype = V.graph.get_dtype(arg)
            dtype_size = get_dtype_size(dtype)
            nbytes.append(numel * dtype_size * (1 + int(i < ninplace_args)))
        return sum(nbytes)

    def warn_mix_layout(self, kernel_name):
        """
        Print message if the kernel have mixed layout inputs.
        Only care about 4D tensor for now.
        """
        if (
            len(self.args.input_buffers) == 1
            and len(self.args.output_buffers) == 1
            and len(self.args.inplace_buffers) == 0
        ):
            # even if input buffer and output buffer have different layout,
            # this can be a layout conversion kernel. No need to warn for
            # the mix layouts.
            return

        argdefs, call_args, signature, _ = self.args.python_argdefs()
        uniform_stride_order = None
        for arg_name in call_args:
            buf = V.graph.try_get_buffer(arg_name)
            if not buf:
                continue
            layout = buf.get_layout()
            if len(layout.size) == 4:
                # ignore the tensor if only 1 dimension is non-zero
                if len([x for x in layout.size if x == 1]) == 3:
                    continue
                stride_order = ir.get_stride_order(layout.stride)
                if uniform_stride_order is None:
                    uniform_stride_order = stride_order
                elif uniform_stride_order != stride_order:
                    msg = yellow_text(
                        f"Expected stride order {uniform_stride_order}, but found stride order"
                        + f" {stride_order} for kernel {kernel_name}"
                    )
                    log.warning(msg)

                    stride_order_list = [
                        ir.get_stride_order(
                            V.graph.get_buffer(name).get_layout().stride
                        )
                        if V.graph.try_get_buffer(name)
                        else None
                        for name in call_args
                    ]
                    size_list = [
                        V.graph.get_buffer(name).get_layout().size
                        if V.graph.try_get_buffer(name)
                        else None
                        for name in call_args
                    ]
                    source_list = [
                        "GraphInput"
                        if name in V.graph.graph_inputs
                        else "IntermediateBuffer"
                        if name in V.graph.name_to_buffer
                        else None
                        for name in call_args
                    ]

                    msg = yellow_text(
                        f"  param names {argdefs}\n  buf names {call_args}\n  strides {stride_order_list}"
                        + f"\n  sizes {size_list}\n  sources {source_list}\n"
                    )
                    log.warning(msg)
                    return
        msg = green_text(
            f"All the inputs for the triton kernel {kernel_name} have uniform layout"
        )
        log.warning(msg)

    def welford_reduce_fallback(self, dtype, value):
        sum_ = ops.reduction(dtype, dtype, "sum", value)
        self.inside_reduction = False
        rnumel = ops.index_expr(self.numels["r"], dtype)
        mean = ops.truediv(sum_, rnumel)

        self.inside_reduction = True
        dx = ops.sub(value, mean)
        dx2 = ops.mul(dx, dx)
        m2 = ops.reduction(dtype, dtype, "sum", dx2)
        return OpsWrapper._unwrap((mean, m2, rnumel))

    def codegen_kernel(self):
        raise NotImplementedError

    def codegen_body(self):
        pass

    def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry):
        pass


class SIMDScheduling(BaseScheduling):
    kernel_type = SIMDKernel  # override in subclass

    def __init__(self, scheduler) -> None:
        super().__init__()
        self.scheduler = scheduler

    def group_fn(self, sizes):
        return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)

    def can_fuse(self, node1, node2):
        """
        Hook called by Scheduler to determine if the Triton backend
        can fuse node1 and node2.  These nodes might already be
        FusedSchedulerNodes.
        """
        if isinstance(node1, scheduler.ForeachKernelSchedulerNode) or isinstance(
            node2, scheduler.ForeachKernelSchedulerNode
        ):
            return scheduler.ForeachKernelSchedulerNode.can_fuse(node1, node2)

        _, (numel1, rnumel1) = node1.group
        _, (numel2, rnumel2) = node2.group
        why = WhyNoFuse(node1, node2)

        if node1.is_split_scan() and not node2.is_split_scan():
            if node2.is_reduction():
                why("Split scan cannot fuse with reductions")
        elif node2.is_split_scan() and not node1.is_split_scan():
            if node1.is_reduction():
                why("Split scan cannot fuse with reductions")

        if node1.is_reduction() and node2.is_reduction():
            reduction_can_fuse = numel1 == numel2 and rnumel1 == rnumel2
            if not reduction_can_fuse:
                why(
                    "numel/rnumel mismatch (reduce) (%s, %s), (%s, %s)",
                    numel1,
                    numel2,
                    rnumel1,
                    rnumel2,
                )
            return reduction_can_fuse

        if not node1.is_reduction() and not node2.is_reduction():
            if not (numel1 == numel2 and rnumel1 == rnumel2):
                why(
                    "numel/rnumel mismatch (non-reduce) (%s, %s), (%s, %s)",
                    numel1,
                    numel2,
                    rnumel1,
                    rnumel2,
                )
                return False

            if node1.is_template():
                # Only allow fusion for TritonTemplates for now.
                # Fusion for CUDATemplates are not supported.
                is_triton_template = isinstance(node1.node, TritonTemplateBuffer)
                if not is_triton_template:
                    why("node1 is not TritonTemplateBuffer")
                return is_triton_template

            # check for a bad combined tiling
            tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1)
            tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1)
            tiling3 = self.select_tiling(
                node1.get_nodes() + node2.get_nodes(), numel1, rnumel1
            )
            if config.triton.tiling_prevents_pointwise_fusion:
                cond = True
                if len(tiling1) > 2:
                    if len(tiling2) > 2:
                        cond = tiling1 == tiling2 == tiling3
                    else:
                        cond = tiling1 == tiling3
                elif len(tiling2) > 2:
                    cond = tiling2 == tiling3
                if not cond:
                    why(
                        "tiling mismatch (%s, %s, %s)",
                        tiling1,
                        tiling2,
                        tiling3,
                    )
                    return False

            return True

        if not node1.is_reduction() and node2.is_reduction():
            assert rnumel1 == 1 and rnumel2 != 1
            if numel1 == numel2 * rnumel2:
                if not all(
                    SIMDKernel.is_compatible((numel2, rnumel2), n.get_ranges())
                    for n in node1.get_nodes()
                ):
                    why("nodes numel/rnumel incompatibility")
                    return False
                if (
                    config.triton.tiling_prevents_reduction_fusion
                    and not node1.is_template()
                ):
                    is_reduction_tiling_valid = tuple(
                        self.select_tiling(node1.get_nodes(), numel1).values()
                    ) in (
                        (numel1, 1),
                        (numel2, rnumel2, 1),
                    )
                    if not is_reduction_tiling_valid:
                        why("invalid tiling for reduction")
                    return is_reduction_tiling_valid
                return True

            if numel1 != numel2:
                why("nodes numel incompatibility")
            return numel1 == numel2

        assert node1.is_reduction() and not node2.is_reduction()
        # swap args to hit the case above
        return self.can_fuse_horizontal(node2, node1)

    can_fuse_vertical = can_fuse
    can_fuse_horizontal = can_fuse

    def generate_node_schedule(self, nodes, numel, rnumel):
        node_schedule: List[Any] = []
        done: OrderedSet[scheduler.BaseSchedulerNode] = OrderedSet()
        # Writes with a reduced shape, meaning they are only present once the
        # reduction loop has ended
        not_ready_yet_nodes: OrderedSet[str] = OrderedSet()
        current_loop_buffer_usage: OrderedSet[str] = OrderedSet()
        maybe_split_index: Optional[int] = None

        def fits_in_main_body(n):
            _, (node_numel, node_rnumel) = n.group
            return (node_numel == numel and node_rnumel == rnumel) or (
                node_numel == numel * rnumel and node_rnumel == 1
            )

        def fits_outside_reduction(n):
            _, (node_numel, node_rnumel) = n.group
            return node_numel == numel and node_rnumel == 1 and rnumel != 1

        def expect_improved_memory_usage(n):
            for read in n.read_writes.reads:
                if read.name in current_loop_buffer_usage:
                    return True
            return False

        def schedule_node_in_loop(n):
            done.add(n)
            node_schedule.append(n)
            current_loop_buffer_usage.update([x.name for x in n.read_writes.reads])

            # A scan is modelled as a reduction in the scheduler but has a
            # full sized output that can be used inside the loop body
            if (
                n.is_reduction()
                and isinstance(n, scheduler.SchedulerNode)
                and isinstance(n.node, ir.ComputedBuffer)
                and not isinstance(n.node.data, ir.Scan)
            ):
                not_ready_yet_nodes.add(n.get_name())
            else:  # this node is available within the loop
                current_loop_buffer_usage.update([x.name for x in n.read_writes.writes])

        @contextlib.contextmanager
        def end_current_reduction_loop():
            nonlocal maybe_split_index
            if node_schedule and node_schedule[-1] is EnableReduction:
                node_schedule.pop()
            else:
                node_schedule.append(DisableReduction)
            if maybe_split_index:
                node_schedule.insert(maybe_split_index, DisableReduction)
                node_schedule.insert(maybe_split_index + 1, EnableReduction)
                maybe_split_index = None
            yield
            node_schedule.append(EnableReduction)
            not_ready_yet_nodes.clear()
            current_loop_buffer_usage.clear()

        def requires_closing_previous_reduction(node, node_schedule):
            if rnumel == 1:
                return False
            if not not_ready_yet_nodes & node.ancestors:
                return False
            assert node_schedule and not isinstance(
                node_schedule[-1], (EnableReduction, DisableReduction)
            )
            return bool(not_ready_yet_nodes)

        for index, node in enumerate(nodes):
            if node in done:
                continue
            done.add(node)

            if fits_in_main_body(node):
                if requires_closing_previous_reduction(node, node_schedule):
                    with end_current_reduction_loop():
                        pass  # need to start a new reduction loop

                if current_loop_buffer_usage and not expect_improved_memory_usage(node):
                    # If we don't improve memory usage, then it is better to split into two loops
                    maybe_split_index = maybe_split_index or len(node_schedule)
                else:
                    # Memory usage got improved, cancel the loop split
                    maybe_split_index = None

                schedule_node_in_loop(node)
            elif fits_outside_reduction(node):
                with end_current_reduction_loop():
                    node_schedule.append(node)
            else:
                raise NotImplementedError(
                    f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}"
                )

        return node_schedule

    def codegen_node(
        self, node: Union[scheduler.FusedSchedulerNode, scheduler.SchedulerNode]
    ):
        """
        Given a set of pre-fused nodes, generate a Triton kernel.
        """

        nodes: List[scheduler.SchedulerNode] = node.get_nodes()  # type: ignore[assignment]

        _, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group

        node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
        schedule_log.debug("Schedule:\n %s", node_schedule)

        return self.codegen_node_schedule(
            SIMDKernelFeatures(node_schedule, numel, rnumel)
        )

    @staticmethod
    def can_use_32bit_indexing(
        numel: sympy.Expr, buffers: Iterable[Union[ir.Buffer, ir.TensorBox]]
    ) -> bool:
        int_max = torch.iinfo(torch.int32).max

        if not expr_fits_within_32bit(numel):
            return False

        # Any use of a MultiOutputLayout will create a buffer with a
        # Layout whose sizes are accounted for
        buf_sizes = [
            buf.get_layout().storage_size()
            for buf in buffers
            if buf.has_tensor_output()
        ]

        if not all(expr_fits_within_32bit(size) for size in buf_sizes):
            return False

        # Only install guards for 32-bit indexing as there is no correctness
        # issue with using 64-bit for everything
        V.graph.sizevars.guard_leq(numel, int_max)  # type: ignore[arg-type]
        for size in buf_sizes:
            V.graph.sizevars.guard_leq(size, int_max)  # type: ignore[arg-type]
        return True

    def codegen_node_schedule(self, kernel_features: SIMDKernelFeatures):
        node_schedule = kernel_features.node_schedule
        tiling = self.select_tiling(
            node_schedule, kernel_features.numel, kernel_features.reduction_numel
        )
        kernels = self.create_kernel_choices(
            kernel_features, [tiling], {"features": kernel_features}
        )
        for kernel in kernels:
            self.codegen_node_schedule_with_kernel(node_schedule, kernel)
        MultiKernel.merge_workspaces_inplace(kernels)
        for kernel in kernels:
            with V.set_kernel_handler(kernel):
                src_code = kernel.codegen_kernel()
            kernel_name = self.define_kernel(src_code, node_schedule, kernel)
            log.debug("Generating kernel code with kernel_name: %s", kernel_name)
            kernel.kernel_name = kernel_name
            kernel.code_hash = code_hash(src_code)
        del kernel

        final_kernel: Union[SIMDKernel, MultiKernel]
        if len(kernels) > 1:
            final_kernel = MultiKernel(kernels)
        else:
            (final_kernel,) = kernels

        with V.set_kernel_handler(final_kernel):
            for node in kernel_features.scheduler_nodes():
                node.mark_run()

        self.codegen_comment(node_schedule)
        final_kernel.call_kernel(final_kernel.kernel_name)

        if config.nan_asserts:
            final_kernel.codegen_nan_check()
        if config.warn_mix_layout:
            final_kernel.warn_mix_layout(kernels[0].kernel_name)

        V.graph.removed_buffers |= final_kernel.removed_buffers
        V.graph.inplaced_to_remove |= final_kernel.inplaced_to_remove

        if (
            V.graph.wrapper_code.supports_intermediate_hooks
            and config.generate_intermediate_hooks
        ):
            # Not every node in the schedule will actually be live on output;
            # we can't check dead buffers.
            live_outs = kernels[0].args.live_output_buffers()
            for node in kernel_features.scheduler_nodes():
                name = node.get_name()
                if name not in live_outs:
                    continue
                assert node.node is not None
                origin_node = node.node.get_origin_node()
                if origin_node is not None:
                    counters["inductor"]["intermediate_hooks"] += 1
                    V.graph.wrapper_code.writeline(
                        f"run_intermediate_hooks({origin_node.name!r}, {name})"
                    )

        self.scheduler.free_buffers()

    def create_kernel_choices(
        self, kernel_features: SIMDKernelFeatures, kernel_args, kernel_kwargs
    ) -> List[SIMDKernel]:
        return [
            self.kernel_type(
                *kernel_args,
                **kernel_kwargs,
            )
        ]

    def codegen_node_schedule_with_kernel(self, node_schedule, kernel):
        with kernel:
            stack = contextlib.ExitStack()
            all_indexing = {}

            # First pass to collect indexing and decide inplace updates
            for node in node_schedule:
                if node is DisableReduction:
                    stack.enter_context(kernel.disable_reduction())
                elif node is EnableReduction:
                    stack.close()
                else:
                    node.decide_inplace_update()
                    index_vars = kernel.split_and_set_ranges(node.get_ranges())
                    all_indexing.update(
                        dict.fromkeys(
                            node._body.indexing_from_args(index_vars).values()
                        )
                    )

            kernel.finalize_indexing(all_indexing.keys())

            # Second pass to do codegen
            for i, node in enumerate(node_schedule):
                if node is DisableReduction:
                    stack.enter_context(kernel.disable_reduction())
                elif node is EnableReduction:
                    stack.close()
                else:
                    # TODO - use split ranges ?
                    indexing_dtype_strength_reduction(node._body)
                    index_vars = kernel.split_and_set_ranges(node.get_ranges())
                    node.codegen(index_vars)

    def codegen_template(
        self, template_node, epilogue_nodes, only_gen_src_code=False
    ) -> Optional[str]:
        """
        Codegen a triton template

        If `only_gen_src_code` the src code will be returned instead of codegen'd into the wrapper
        """
        _, (numel, rnumel) = template_node.group
        assert rnumel == 1
        kernel, render = template_node.node.make_kernel_render(template_node.node)
        with kernel:
            if not only_gen_src_code:
                for node in [template_node, *epilogue_nodes]:
                    node.mark_run()
            partial_code = render()
            with kernel.set_subgraph_body("<STORE_OUTPUT>"):
                for node in epilogue_nodes:
                    node.codegen(kernel.split_and_set_ranges(node.get_ranges()))

        if not isinstance(partial_code, str):
            partial_code.finalize_hook("<DEF_KERNEL>")
            partial_code.finalize_hook("<ARGDEFS>", strict=False)
        # finalize must be called after adding epilogue above
        with V.set_kernel_handler(kernel):
            # TODO: Maybe unify CUDATemplateKernel to also use PartialRender for flexible epilogue fusion.
            with kernel.set_subgraph_body("<STORE_OUTPUT>"):
                if isinstance(partial_code, str):
                    src_code = partial_code
                else:
                    partial_code.finalize_hook("<STORE_OUTPUT>")
                    src_code = partial_code.code
            node_schedule = [template_node, *epilogue_nodes]

            if config.benchmark_kernel:
                num_gb = kernel.estimate_kernel_num_bytes() / 1e9
                grid_args = V.graph.sizevars.size_hints(kernel.call_sizes)
                assert kernel.meta is not None, "meta is None"
                grid = kernel.grid_fn(*grid_args, kernel.meta)
                src_code = (
                    f"{kernel.imports_for_benchmark_kernel()}\n"
                    f"{src_code}\n"
                    f"{kernel.codegen_kernel_benchmark(num_gb, grid).getvalue()}"
                )

            if only_gen_src_code:
                return src_code

            kernel_name = self.define_kernel(src_code, node_schedule, kernel)

        self.codegen_comment(node_schedule)
        kernel.call_kernel(kernel_name, template_node.node)

        V.graph.removed_buffers |= kernel.removed_buffers
        V.graph.inplaced_to_remove |= kernel.inplaced_to_remove
        self.scheduler.free_buffers()
        return None

    def codegen_sync(self):
        V.graph.wrapper_code.writeline(V.graph.device_ops.synchronize())

    def generate_combo_kernel_code(
        self,
        subkernel_nodes: List[BaseSchedulerNode],
        custom_part_algorithm: bool,
        enable_autotune: bool,
        mixed_sizes: bool,
        only_gen_src_code: bool = False,
    ) -> List[Tuple[str, Any, Any]]:
        from .triton_combo_kernel import ComboKernel

        fused_node_lists = [node.get_nodes() for node in subkernel_nodes]
        subkernel_map, node_schedule_map = {}, {}
        for pn, nodes in zip(subkernel_nodes, fused_node_lists):
            _, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
            node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
            tiling = self.select_tiling(node_schedule, numel, rnumel)
            node_schedule_map[pn] = node_schedule, tiling, numel, rnumel
            subkernel_map[pn] = ComboKernel.create_triton_kernel(
                tiling,
                features=SIMDKernelFeatures(node_schedule, numel, rnumel),
                optimize_mask=not mixed_sizes,
            )

        partitions = ComboKernel.horizontal_partition(
            nodes=subkernel_nodes,
            triton_scheduling=self,
            custom_algorithm=custom_part_algorithm,
            kernel_map=subkernel_map,
            node_info_map=node_schedule_map,
        )
        log.debug(
            "ComboKernels: %d nodes partitioned into %s groups",
            len(subkernel_nodes),
            [len(p) for p in partitions],
        )
        kernel_code_list = []
        for node_group in partitions:
            fused_node_lists = [node.get_nodes() for node in node_group]
            kernel = ComboKernel(
                enable_autotune=enable_autotune,
                mixed_sizes=mixed_sizes,
            )

            for pn, nodes in zip(node_group, fused_node_lists):
                self.codegen_node_schedule_with_kernel(
                    node_schedule_map[pn][0],
                    kernel.create_sub_kernel(subkernel_map[pn]),
                )
                subkernel = subkernel_map[pn]
                node_schedule = node_schedule_map[pn][0]
                if not only_gen_src_code:
                    with V.set_kernel_handler(subkernel):  # type: ignore[call-arg]
                        for node in NodeScheduleMarker.only_nodes(node_schedule):
                            node.mark_run()
                V.graph.removed_buffers |= subkernel.removed_buffers
                V.graph.inplaced_to_remove |= subkernel.inplaced_to_remove

            src_code = kernel.codegen_kernel()
            kernel_code_list.append((src_code, kernel, node_group))
        return kernel_code_list

    def codegen_combo_kernel(self, combo_kernel_node):
        subkernel_nodes = combo_kernel_node.get_subkernel_nodes()
        custom_part_algorithm = combo_kernel_node.use_custom_partition_algo
        enable_autotune = combo_kernel_node.enable_autotune
        mixed_sizes = config.combo_kernel_allow_mixed_sizes > 1 or (
            config.combo_kernel_allow_mixed_sizes == 1 and custom_part_algorithm
        )

        kernel_code_list = self.generate_combo_kernel_code(
            subkernel_nodes, custom_part_algorithm, enable_autotune, mixed_sizes
        )

        for src_code, kernel, _ in kernel_code_list:
            kernel_name = self.define_kernel(src_code, [combo_kernel_node], kernel)
            self.codegen_comment([combo_kernel_node])
            log.debug("ComboKernels: generated kernel %s.", kernel_name)
            kernel.call_kernel(V.graph.wrapper_code, kernel_name)

        self.scheduler.free_buffers()

    @staticmethod
    @functools.lru_cache(32)
    def candidate_tilings(node):
        ranges, reduction_ranges = node.get_ranges()
        if len(ranges) <= 1:
            return ()

        rw = node.pointwise_read_writes()
        assert len(rw.range_vars) == len(ranges), f"{rw.range_vars=} {ranges=}"

        # isinstance(dep, MemoryDep): this filters out StarDeps. StarDeps refer to reads
        # that need to access the entire tensor; they don't contribute read indexing
        # information (and practically, they don't have dep.index so they can't be used
        # for stride_hints below
        dep_sources = [rw.reads, rw.writes]
        assert all(
            isinstance(dep, (MemoryDep, StarDep))
            for dep in itertools.chain.from_iterable(dep_sources)
        )
        deps = [
            dep
            for dep in itertools.chain.from_iterable(dep_sources)
            if dep.name not in V.graph.removed_buffers and isinstance(dep, MemoryDep)
        ]
        write_names = {dep.name for dep in rw.writes}

        tilings: List[CandidateTiling] = []

        for dep in deps:
            strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars)
            assert len(strides) == len(ranges)
            try:
                split = strides.index(1) + 1
                if split == len(ranges):
                    continue
                if all(s == 0 for s in strides[split:]):
                    # if this is a broadcasted tensor and all dimensions after split are broadcast,
                    # this is not a real split
                    continue

            except ValueError:
                continue
            tiled_groups = (
                V.graph.sizevars.simplify(sympy_product(ranges[:split])),
                V.graph.sizevars.simplify(sympy_product(ranges[split:])),
            )
            # score by number of elements
            score = V.graph.sizevars.size_hint(
                sympy_product(
                    size for size, stride in zip(ranges, strides) if stride != 0
                )
            )
            if dep.name in write_names:
                # ngimel said contiguous writes is more important than reads
                score *= 2
            if CandidateTiling.is_good_size(tiled_groups[0]):
                score *= 2
            if CandidateTiling.is_good_size(tiled_groups[1]):
                score *= 2

            if (
                V.graph.sizevars.size_hint(
                    score - sympy_product(itertools.chain(ranges, reduction_ranges))
                )
                >= 0
            ):
                tilings.append(CandidateTiling(tiled_groups, score, dep.name))
        return tilings

    @classmethod
    def create_tiling(
        cls, pw_tiling: Sequence[sympy.Expr], reduction_tiling: Sequence[sympy.Expr]
    ) -> Dict[str, sympy.Expr]:
        """
        Create a tiling dict from pointwise and reduction splits.
        """
        pw_prefixes = ["z", "y", "x"][-len(pw_tiling) :]
        reduction_prefixes = ["r"][: len(reduction_tiling)]
        return immutable_dict(
            list(zip(pw_prefixes, pw_tiling))
            + list(zip(reduction_prefixes, reduction_tiling))
        )

    @classmethod
    def select_tiling(
        cls, node_schedule, numel, reduction_numel=sympy.S.One
    ) -> Dict[str, sympy.Expr]:
        """
        Heuristics to decide how to tile kernels.
        Currently, we tile based on stride-1 dimensions.

        Returns:
            `(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel`

        """
        default_tiling = cls.create_tiling([numel], [reduction_numel])
        if reduction_numel != 1 or config.triton.max_tiles <= 1:
            # TODO(jansel): should we tile reductions?
            # do perf hint here if stride-1 dim is not being reduced
            if perf_hint_log.level <= logging.WARNING:
                for node in EnableReduction.filter(node_schedule):
                    if len(cls.candidate_tilings(node)) > 0:
                        perf_hint_log.info("reduction over non-contiguous dims")
                        break
            return default_tiling

        seen_names: OrderedSet[str] = OrderedSet()
        candidate_tiles: Counter[Any] = collections.Counter()
        for node in EnableReduction.filter(node_schedule):
            for tiling in cls.candidate_tilings(node):
                if tiling.name in seen_names:
                    continue
                seen_names.add(tiling.name)
                candidate_tiles[tiling.tiling] += tiling.score

        ranked_tilings = [tiling for tiling, score in candidate_tiles.most_common()]

        if config.triton.max_tiles >= 3:
            # Consider adding a third dimension of tiling, but only
            # when a1 is a multiple of b1; otherwise, you have a lot
            # of stragglers which is annoying to generate code for.
            #
            # NB: More than three max tiles is not enabled by default.

            # Add one 3D tiling choice
            for i in range(1, len(ranked_tilings)):
                a0, a1 = ranked_tilings[0]
                b0, b1 = ranked_tilings[i]
                if V.graph.sizevars.size_hint(a1 - b1) == 0:
                    continue
                if V.graph.sizevars.size_hint(a1 - b1) < 0:
                    # swap so a0 is bigger
                    a0, a1 = ranked_tilings[i]
                    b0, b1 = ranked_tilings[0]
                assert V.graph.sizevars.size_hint(a1 - b1) > 0
                if V.graph.sizevars.statically_known_multiple_of(a1, b1):
                    tiling = (a0, FloorDiv(a1, b1), b1)
                    ranked_tilings = [tiling] + ranked_tilings
                    break  # only 1 choice for now

        if len(ranked_tilings) > 1:
            perf_hint_log.info("possibly bad tiling: %s", ranked_tilings)

        # Optionally, prefer tiling into as many dimensions as possible.
        if config.triton.prefer_nd_tiling:
            # Get candidate tilings from the node ranges.
            node_ranges = [
                node.get_ranges()[0]
                for node in EnableReduction.filter(node_schedule)
                if isinstance(node, scheduler.SchedulerNode)
            ]
            new_tilings: OrderedSet[Tuple[sympy.Expr]] = OrderedSet()
            for node_range in node_ranges:
                # Collapse leading dims, to fit in the maximum dimensionality.
                num_leading_dims = max(0, len(node_range) - config.triton.max_tiles)
                first_trailing_dim = num_leading_dims + 1
                collapsed_leading_dim = sympy_product(node_range[:first_trailing_dim])
                tiling = [collapsed_leading_dim] + list(node_range[first_trailing_dim:])
                new_tilings.add(tuple(tiling))

            # Rank tilings by the number of dimensions. E.g., prefer 2D to 1D.
            # Since this is a stable sort, ties are broken by schedule order.
            ranked_new_tilings = sorted(new_tilings, key=len, reverse=True)
            ranked_tilings = ranked_new_tilings + ranked_tilings

        for tiled_groups in ranked_tilings:
            new_groups = (*tiled_groups, reduction_numel)
            if all(
                SIMDKernel.is_compatible(new_groups, node.get_ranges())
                for node in node_schedule
                if isinstance(node, scheduler.SchedulerNode)
            ):
                return cls.create_tiling(tiled_groups, [reduction_numel])

        return default_tiling

    def flush(self):
        pass

    def ready_to_flush(self) -> bool:
        return False

    def generate_kernel_code_from_nodes(self, nodes, benchmark_kernel=False):
        if not nodes[0].is_template():
            _, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
            node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
            tiling = self.select_tiling(node_schedule, numel, rnumel)
            kernel = self.kernel_type(
                tiling,
                features=SIMDKernelFeatures(node_schedule, numel, rnumel),
            )
            self.codegen_node_schedule_with_kernel(node_schedule, kernel)
            with config.patch(
                "benchmark_kernel", benchmark_kernel
            ), V.set_kernel_handler(kernel):
                src_code = kernel.codegen_kernel()
        else:
            template_node = nodes[0]
            epilogue_nodes = nodes[1:]

            with config.patch("benchmark_kernel", benchmark_kernel):
                src_code = self.codegen_template(
                    template_node, epilogue_nodes, only_gen_src_code=True
                )

        src_code = src_code.replace(str(Placeholder.KERNEL_NAME), "triton_")
        return src_code

    def codegen_comment(self, node_schedule):
        pass

    def define_kernel(self, src_code, node_schedule, kernel):
        raise NotImplementedError


@dataclasses.dataclass
class CandidateTiling:
    tiling: Tuple[sympy.Expr, sympy.Expr]
    score: int  # higher is better
    name: Optional[str] = None

    @staticmethod
    def is_good_size(s):
        """Somewhat arbitrary heuristic used to boost scores for some sizes"""
        s = V.graph.sizevars.size_hint(s)
        return s >= 32 and (s % 32 == 0)


class CantSplit(Exception):
    pass