1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
|
# mypy: allow-untyped-defs
from __future__ import annotations
import collections
import contextlib
import dataclasses
import functools
import itertools
import logging
import math
import operator
from typing import (
Any,
Callable,
Counter,
Dict,
Iterable,
List,
no_type_check,
Optional,
Sequence,
Tuple,
Union,
)
import sympy
import torch
import torch._logging
from torch.fx.immutable_collections import immutable_dict
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.functions import FloorDiv, Identity, ModularIndexing
from torch.utils._sympy.symbol import (
free_symbol_is_type,
prefix_str,
symbol_is_type,
SymT,
)
from ..._dynamo.utils import counters
from .. import config, ir, scheduler
from ..codecache import code_hash
from ..dependencies import MemoryDep, StarDep, WeakDep
from ..ir import IRNode, TritonTemplateBuffer
from ..optimize_indexing import indexing_dtype_strength_reduction
from ..runtime.runtime_utils import green_text, yellow_text
from ..scheduler import BaseSchedulerNode, BaseScheduling, WhyNoFuse
from ..utils import (
cache_on_self,
expr_fits_within_32bit,
get_dtype_size,
IndentedBuffer,
Placeholder,
sympy_index_symbol,
sympy_product,
sympy_subs,
unique,
)
from ..virtualized import ops, OpsWrapper, V
from .common import CSEVariable, index_prevent_reordering, Kernel, PythonPrinter
from .multi_kernel import MultiKernel
from .simd_kernel_features import (
DisableReduction,
EnableReduction,
NodeScheduleMarker,
SIMDKernelFeatures,
)
log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")
pexpr = PythonPrinter().doprint
def prefix_is_reduction(prefix: str) -> bool:
return prefix[0] == "r"
@dataclasses.dataclass
class IterationRanges:
"""
Each range tree represents multiple sets of iteration indexing
in a single tiled dimension in the output kernel.
If you have two loops ranges one (4, 3, 2) and another (4, 6),
then the range tree will be:
4 (i0)
3 (i1) 6 (i3)
2 (i2)
Where i0 is shared between both loops, but then the split into
different indexing vars. All loop ranges must iterate over
the same number of elements.
"""
def __init__(
self,
name: str,
var_list: List[sympy.Symbol],
var_ranges: Dict[sympy.Symbol, sympy.Expr],
numel: sympy.Expr,
prefix: str,
*,
kernel: SIMDKernel,
divisor=sympy.S.One,
length=sympy.S.One,
root: IterationRangesRoot,
) -> None:
super().__init__()
self.name = name
self.var_list = var_list
self.var_ranges = var_ranges
self.numel = numel
self.prefix = prefix
self.divisor = divisor
self.length = length
self.kernel = kernel
self.root = root
@property
@cache_on_self
@no_type_check # https://github.com/python/mypy/issues/17184
def is_reduction(self) -> bool:
return prefix_is_reduction(self.prefix)
def symbol(self):
return sympy_index_symbol(self.name)
@property
@cache_on_self
@no_type_check
def symt(self) -> SymT:
prefix_to_symt = {prefix: symt for symt, prefix in prefix_str.items()}
return prefix_to_symt[self.prefix]
class IterationRangesRoot(IterationRanges):
def __init__(
self,
name: str,
numel: sympy.Expr,
# TODO: this is probably SymTy.INDEX and SymTy.RINDEX
prefix: str,
index: int,
kernel: SIMDKernel,
pid_cache=None,
*,
is_loop: bool,
tensor_dim: Optional[int],
grid_dim: Optional[int],
has_zdim: bool,
) -> None:
if pid_cache is None:
pid_cache = {}
super().__init__(
name=name,
var_list=[],
var_ranges={},
numel=numel,
prefix=prefix,
kernel=kernel,
root=self,
)
self.index = index
# Store all the nodes in one flat list
self.nodes: Dict[sympy.Expr, IterationRangesEntry] = {}
# This is for re-ordering program ID in triton mm template
# pid_cache["tl.program_id(0)"] = pid_m
self.pid_cache: Dict[str, str] = pid_cache
# True if the dimension is implemented as a single program looping over
# the full dimension (currently only used for non-persistent reduction)
assert not is_loop or (self.is_reduction and grid_dim is None)
self.is_loop = is_loop
# Index of corresponding dimension on triton tensors
self.tensor_dim = tensor_dim
# Index of corresponding dimension in the triton grid
self.grid_dim = grid_dim
self.has_zdim = has_zdim
def __repr__(self) -> str:
return f"IterationRangesRoot({self.name!r}, {self.numel}, ...)"
def cache_clear(self):
for node in self.nodes.values():
node.cache_clear()
def index_sym(self):
return sympy_index_symbol(f"{self.prefix}index")
def lookup(self, divisor, length):
"""
Lookup a given RangeTreeEntry, creating it if needed
"""
if V.graph.sizevars.statically_known_equals(divisor * length, self.numel):
expr = FloorDiv(self.index_sym(), divisor)
else:
expr = ModularIndexing(self.index_sym(), divisor, length)
if expr not in self.nodes:
node = IterationRangesEntry(
f"{self.prefix}{next(V.kernel.iter_vars_count)}",
divisor,
length,
expr,
self,
)
V.kernel.range_tree_nodes[node.symbol()] = node
self.var_list.append(node.symbol())
self.var_ranges[node.symbol()] = length
self.nodes[expr] = node
return self.nodes[expr]
def construct_entries(self, lengths: List[sympy.Expr]):
divisor = sympy.S.One
itervars = []
for length in reversed(lengths):
itervars.append(self.lookup(divisor, length))
divisor = divisor * length
return list(reversed(itervars))
def construct(self, lengths: List[sympy.Expr]):
return [e.symbol() for e in self.construct_entries(lengths)]
def vars_and_sizes(self, index: sympy.Expr):
"""Figure out vars from this tree used in index"""
nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols]
nodes = [n for n in nodes if n and n.prefix == self.prefix]
nodes.sort(
key=lambda x: V.graph.sizevars.size_hint(
x.divisor, fallback=config.unbacked_symint_fallback
)
)
divisor = sympy.S.One
index_vars = []
sizes = []
def add(node):
nonlocal divisor
index_vars.append(node.symbol())
sizes.append(node.length)
divisor = divisor * node.length
for node in nodes:
if not V.graph.sizevars.statically_known_equals(node.divisor, divisor):
# fill in unused index var
add(self.lookup(divisor, FloorDiv(node.divisor, divisor)))
divisor = node.divisor
add(node)
if not V.graph.sizevars.statically_known_equals(self.numel, divisor):
# fill in unused index var
add(self.lookup(divisor, FloorDiv(self.numel, divisor)))
return list(reversed(index_vars)), list(reversed(sizes))
class IterationRangesEntry(IterationRanges):
def __init__(
self,
name: str,
divisor: sympy.Expr,
length: sympy.Expr,
expr: sympy.Expr,
parent: IterationRanges,
) -> None:
super().__init__(
name=name,
numel=parent.numel / length,
var_list=parent.var_list,
var_ranges=parent.var_ranges,
prefix=parent.prefix,
divisor=divisor,
length=length,
kernel=parent.kernel,
root=parent.root,
)
self.parent = parent
self.codegen = functools.lru_cache(None)(self._codegen)
self.expr = expr
def __repr__(self) -> str:
return f"IterationRangesEntry({self.name}, {self.divisor}, {self.length}, {self.expr}, {self.var_ranges})"
def set_name(self, name):
self.codegen = lambda: name # type: ignore[assignment]
self.codegen.cache_clear = lambda: None # type: ignore[method-assign]
self.name = name
def cache_clear(self):
self.codegen.cache_clear()
def _codegen(self):
V.kernel.codegen_iteration_ranges_entry(self)
return self.name
def precomputed_args(self):
# for dynamic shapes, find parts of indexing expressions that have to be precomputed
precomputed_args: List[sympy.Expr] = []
if isinstance(self.expr, sympy.Symbol):
return precomputed_args
assert isinstance(self.expr, (FloorDiv, ModularIndexing)), type(self.expr)
for arg in self.expr.args[1:]:
if not isinstance(arg, (sympy.Integer, sympy.Symbol)):
symbols = arg.free_symbols
if len(symbols) > 0 and all(
symbol_is_type(s, SymT.SIZE) for s in symbols
):
precomputed_args.append(arg)
return precomputed_args
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name
def constant_repr(value):
if value == float("inf"):
return 'float("inf")'
elif value == float("-inf"):
return 'float("-inf")'
elif math.isnan(value):
return 'float("nan")'
return repr(value)
class SIMDKernel(Kernel):
"""
Common base class for Triton/Halide codegen which both use flattened indexing rather than loop nests.
"""
sexpr = pexpr
kexpr: Callable[[sympy.Expr], str]
allow_block_ptr = False
kernel_name: str
def __init__(
self,
tiling: Dict[str, sympy.Expr],
features: SIMDKernelFeatures,
pid_cache=None,
override_persistent_reduction=None,
override_cooperative_reduction=None,
) -> None:
if pid_cache is None:
pid_cache = {}
super().__init__()
self.features = features
self.mutations = features.get_mutations()
self.body = IndentedBuffer()
self.indexing_code = IndentedBuffer()
self.numels = {
prefix: V.graph.sizevars.simplify(val) for prefix, val in tiling.items()
}
self.range_trees: List[IterationRangesRoot] = []
self.range_tree_nodes: Dict[sympy.Symbol, IterationRangesEntry] = {}
self.iter_vars_count = itertools.count()
self.inside_reduction = self.numels["r"] != 1
self.cooperative_reduction: bool = (
override_cooperative_reduction
if override_cooperative_reduction is not None
else self.should_use_cooperative_reduction()
)
self.persistent_reduction: bool = (
override_persistent_reduction
if override_persistent_reduction is not None
else self.should_use_persistent_reduction()
)
self.no_x_dim = self.want_no_x_dim()
self.code_hash: Optional[str] = None
# define this in a closure to make cache local to object
@functools.lru_cache(None)
def simplify_indexing(index: sympy.Expr):
index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges())
for tree in self.range_trees:
index = self.combine_contiguous_dims(index, tree)
return self.combine_modular_indexing_pairs(index)
self.simplify_indexing = simplify_indexing
self.initialize_range_tree(pid_cache)
def dtype_to_str(self, dtype: torch.dtype) -> str:
raise NotImplementedError
@property
def index_dtype(self) -> str:
return self.dtype_to_str(self.features.select_index_dtype())
def want_no_x_dim(self):
return False
def initialize_range_tree(self, pid_cache):
no_r_dim = not self.inside_reduction or self.numels["r"] == 1
prefixes = "zyxr"
active_prefixes = prefixes[-len(self.numels) :]
grid_dims = "xyz"
if self.no_x_dim:
tensor_dims = "r"
elif no_r_dim:
tensor_dims = "xyz"
else:
tensor_dims = "xyzr"
tensor_dims = "".join(p for p in tensor_dims if p in active_prefixes)
for i, prefix in enumerate(active_prefixes):
is_reduction = prefix_is_reduction(prefix)
tensor_dim = tensor_dims.find(prefix) if prefix in tensor_dims else None
grid_dim = None if is_reduction else grid_dims.find(prefix)
index = i if grid_dim is None else grid_dim
self.range_trees.append(
IterationRangesRoot(
f"{prefix}index",
self.numels[prefix],
prefix,
index,
self,
pid_cache=pid_cache,
is_loop=is_reduction and not self.persistent_reduction,
tensor_dim=tensor_dim,
grid_dim=grid_dim,
has_zdim="z" in active_prefixes,
)
)
def finalize_indexing(self, indices: Sequence[sympy.Expr]):
"""
Hook called right before codegen with every index that will be
used in the fused kernel.
"""
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
prior = self.inside_reduction
self.inside_reduction = False
try:
return self.store(name, index, value)
finally:
self.inside_reduction = prior
def should_use_cooperative_reduction(self) -> bool:
return False # defined in subclass
def should_use_persistent_reduction(self) -> bool:
return False # defined in subclass
def var_ranges(self):
return dict(
itertools.chain.from_iterable(
tree.var_ranges.items() for tree in self.range_trees
)
)
def triton_tensor_ndim(self):
return sum(int(tree.tensor_dim is not None) for tree in self.range_trees)
def indexing_size_str(self, i):
sizes = ["None"] * self.triton_tensor_ndim()
sizes[i] = ":"
return f"[{', '.join(sizes)}]"
def dense_size_list(self) -> List[str]:
sizes = ["1"] * self.triton_tensor_ndim()
for tree in self.range_trees:
if tree.tensor_dim is None:
continue
if not tree.is_reduction or self.inside_reduction:
sizes[tree.tensor_dim] = f"{tree.prefix.upper()}BLOCK"
return sizes
def dense_size_str(self):
sizes = self.dense_size_list()
return f"[{', '.join(sizes)}]"
def combine_modular_indexing_pairs(self, index):
if not isinstance(index, ModularIndexing):
return index
x = index.args[0]
if (tree_node := self.range_tree_nodes.get(x)) is None:
return index
new_index = sympy_subs(index, {x: tree_node.expr})
new_index = V.graph.sizevars.combine_modular_indexing_pairs(new_index)
# the index now contains xindex/etc, which is nonstandard, fix it up
return sympy_subs(
new_index,
{
tree_node.root.index_sym(): tree_node.root.lookup(
sympy.S.One, tree_node.root.numel
).symbol()
},
)
def combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
if expand_res := V.graph.sizevars.expand_floor_div(index):
new_index, denominator = expand_res # type: ignore[misc]
return FloorDiv(self._combine_contiguous_dims(new_index, tree), denominator)
else:
return self._combine_contiguous_dims(index, tree)
def _combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
"""
More aggressive simplification to merge contiguous dims
"""
if isinstance(index, (sympy.Integer, sympy.Symbol)):
return index
index_vars, sizes = tree.vars_and_sizes(index)
if len(sizes) <= 1:
return index
new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
index_vars, sizes, index_prevent_reordering([index], index_vars, sizes)
)
if new_sizes == sizes:
return index
new_index_vars = tree.construct(new_sizes)
new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars))))
return new_index
def disable_reduction(self):
should_flush = self.range_trees[-1].is_loop or self.cooperative_reduction
@contextlib.contextmanager
def ctx():
if self.numels["r"] == 1:
assert not self.inside_reduction
yield
return
if should_flush:
# calling codegen_body() will flush all the pending buffers
# and write out a reduction loop
self.codegen_body()
self.inside_reduction = False
try:
yield
if should_flush:
# flush out any code before opening the next loop
self.codegen_body()
finally:
self.inside_reduction = True
return ctx()
def set_ranges(self, *lengths):
assert len(lengths) == len(self.range_trees)
return [
ranges.construct(length)
for length, ranges in zip(lengths, self.range_trees)
]
@staticmethod
def _split_iteration_ranges(
groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]]
):
sv = V.graph.sizevars
new_ranges: List[List[sympy.Expr]] = [[] for _ in groups]
remaining = [sv.simplify(g) for g in groups]
var_count = itertools.count()
def add_range(i, expr):
expr = sv.simplify(expr)
if not sv.statically_known_multiple_of(remaining[i], expr):
raise CantSplit
# guard on the last item out
remaining[i] = FloorDiv(remaining[i], expr)
new_ranges[i].append(expr)
return next(var_count)
def make_combined(size, idx1, idx2):
def getter(flat_vars):
return size * flat_vars[idx1] + flat_vars[idx2]
return getter
return_getters_groups = []
current_group = 0
for length_group in lengths:
return_getters = []
for size in length_group:
if sv.statically_known_equals(size, 1): # type: ignore[arg-type]
return_getters.append(lambda _: sympy.S.Zero)
continue
while current_group < len(remaining) and sv.statically_known_equals(
remaining[current_group], 1 # type: ignore[arg-type]
):
# scroll to next group with remaining elements
current_group += 1
if current_group + 1 < len(remaining) and sv.statically_known_gt(
size, remaining[current_group]
):
# need to break size in two
if not sv.statically_known_multiple_of(
size, remaining[current_group]
):
raise CantSplit
size1 = remaining[current_group]
size2 = FloorDiv(size, remaining[current_group])
return_getters.append(
make_combined(
size2,
add_range(current_group, size1),
add_range(current_group + 1, size2),
)
)
else:
return_getters.append(
operator.itemgetter(add_range(current_group, size))
)
return_getters_groups.append(return_getters)
assert all(
V.graph.sizevars.size_hint(s) == 1 for s in remaining
), f"failed to set ranges {remaining} {lengths}"
return new_ranges, return_getters_groups
@classmethod
def is_compatible(
cls, groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]]
):
try:
cls._split_iteration_ranges(groups, lengths)
return True
except CantSplit:
return False
def split_and_set_ranges(self, lengths: Sequence[Sequence[sympy.Expr]]):
groups = [rt.numel for rt in self.range_trees]
if not self.inside_reduction:
groups[-1] = sympy.S.One
return self.map_kernel_groups_to_node_sizes(groups, lengths, self.set_ranges)
@classmethod
def map_kernel_groups_to_node_sizes(
cls,
groups: Sequence[sympy.Expr],
lengths: Sequence[Sequence[sympy.Expr]],
set_ranges,
) -> List[List[sympy.Expr]]:
"""
We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1).
To do this we need to split up the iteration space of i0 into something like:
for i1 in s0:
for i2 in s1:
i0 = i1*s1 + i2
....
This function matches and resplits lengths to the groups of
this kernel to enable tiled + non-tiled fusions.
"""
if len(lengths) == len(groups) and all(
V.graph.sizevars.simplify(sympy_product(x) - g) == 0
for x, g in zip(lengths, groups)
):
return set_ranges(*lengths)
new_ranges, return_getters_groups = cls._split_iteration_ranges(groups, lengths)
itervars = [*itertools.chain.from_iterable(set_ranges(*new_ranges))]
return [[fn(itervars) for fn in fns] for fns in return_getters_groups]
def is_indirect_indexing(self, index: sympy.Expr):
# tmpX means indirect indexing
return free_symbol_is_type(index, SymT.TMP)
def is_broadcasted(self, index: sympy.Expr):
# Note. This may not be correct when there is indirect indexing
if self.is_indirect_indexing(index):
return False
index_numels = [1] * len(self.numels)
for symbol in index.free_symbols:
if symbol not in self.range_tree_nodes:
# Non-iterated variables, e.g. strides
continue
entry = self.range_tree_nodes[symbol] # type: ignore[index]
assert isinstance(entry.parent, IterationRangesRoot)
index_numels[entry.parent.index] *= entry.length
# If the index variables only iterate over a subset of the kernel
# numels, then it must be broadcasted.
simplify = V.graph.sizevars.simplify
return any(
simplify(idx_range) != simplify(iter_range) # type: ignore[arg-type]
for idx_range, iter_range in zip(index_numels, self.numels.values())
)
def index_to_str(self, index: sympy.Expr) -> str:
"""
Convert an index expr to a string that can be used in output code.
e.g. a sympy expression "s2" may actually appear as "ks1" in the generated kernel.
Index expressions often need to be passed in as arguments to the triton kernel.
Rename_indexing and codegen_indexing keep track of the needed indices and add
new parameters to the function signature.
"""
if isinstance(index, list):
return f"[{', '.join(map(self.index_to_str, index))}]"
return self.kexpr(self.rename_indexing(index)) # type: ignore[call-arg]
def prepare_indexing(
self,
index: sympy.Expr,
):
index = self.simplify_indexing(index)
index = sympy_subs(index, V.graph.sizevars.precomputed_replacements)
# if simple replacements didn't get rid of floor/ceil, try full subs
if len(index.atoms(sympy.floor)) or len(index.atoms(sympy.ceiling)):
index = index.subs(V.graph.sizevars.precomputed_replacements)
# last resort, if no range vars are in the expr, hoist it
# TODO instead of trying to blindly find complicated exprs, we should hoist the
# inputs/outputs sizes and strides, but at the time indexing is generated
# kernel inputs and outputs are not set yet, we'd need a deeper refactor
# to do it this way
if len(index.atoms(sympy.ceiling)):
for a in index.atoms(sympy.ceiling):
# for nested exprs, atoms yields top level first (?)
# so if everything goes fine, lower level replacements will come up empty
symbols = a.free_symbols
if len(symbols) > 0 and all(
symbol_is_type(s, (SymT.SIZE, SymT.PRECOMPUTED_SIZE))
for s in symbols
):
replacements = {a: V.graph.sizevars.lookup_precomputed_size(a)}
index = sympy_subs(index, replacements)
simp_index = self.simplify_indexing(index)
# Now that we are done simplifying we can unwrap Identity so that downstream handling
# for its contained expression will work. previously, tl.full wrapping of sympy.Integer
# would not occur
simp_index = (
simp_index if not isinstance(simp_index, Identity) else simp_index.args[0]
)
return self.codegen_indexing(simp_index)
def active_range_trees(self, reorder=False):
trees = [
t for t in self.range_trees if not t.is_reduction or self.inside_reduction
]
if reorder and len(trees) > 1:
count = sum(t.prefix in "xyz" for t in trees)
assert "".join(t.prefix for t in trees[:count]) == "zyx"[-count:], [
t.prefix for t in trees[:count]
]
trees[:count] = reversed(trees[:count])
return trees
def codegen_indexing(self, expr: sympy.Expr):
expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges())
for sym in sorted(expr.free_symbols, key=str):
if sym in self.range_tree_nodes:
# if indexing expression is complicated, we precompute it on the host side
# and send the result as a kernel argument
replacements = {}
for ps in self.range_tree_nodes[sym].precomputed_args(): # type: ignore[index]
replacements[ps] = V.graph.sizevars.lookup_precomputed_size(ps)
if len(replacements) > 0:
self.range_tree_nodes[sym].expr = sympy_subs( # type: ignore[index]
self.range_tree_nodes[sym].expr, replacements # type: ignore[index]
)
self.range_tree_nodes[sym].codegen() # type: ignore[index]
return expr
def codegen_nan_check(self) -> None:
raise NotImplementedError("NYI: codegen_nan_check")
def call_kernel(self, name: str, node: Optional[IRNode] = None) -> None:
raise NotImplementedError("NYI: call_kernel")
@contextlib.contextmanager
def mask_loads(self, mask, value):
"""Context manager to add an additional mask to tl.load/store"""
prior = self._load_mask
prior_val = self._load_other
if prior:
mask = ops.logical_and(mask, prior)
mask = OpsWrapper._unwrap(mask)
self._load_mask = mask
self._load_other = value
try:
# TODO(jansel): do we need a reshape here?
yield mask
finally:
self._load_mask = prior
self._load_other = prior_val
def get_strides_of_load(self, index: sympy.Expr):
"""
This gets the stride of the index for each of the tiling variables
(technically, it does it at index 0)
For example, if
xindex = x0 + 512*x1 + 1024*r0
x0 = (xindex//512)
x1 = (xindex % 512)
r0 = rindex // 1024
this function would return
{xindex: 512, rindex: 1024}
"""
index_to_tile_indexes = {k: v.expr for k, v in self.range_tree_nodes.items()}
index_in_tile_vars = sympy_subs(index, index_to_tile_indexes) # type: ignore[arg-type]
strides = {}
for range_tree in self.range_trees:
s = sympy_index_symbol(range_tree.name)
strides[s] = sympy_subs(index_in_tile_vars, {s: 1}) - sympy_subs(
index_in_tile_vars, {s: 0}
)
return strides
@staticmethod
def _map_tuple_or_scalar(fn, value):
if isinstance(value, tuple):
return tuple(map(fn, value))
return fn(value)
def estimate_kernel_num_bytes(self):
"""
Try the best to estimate the total size (in bytes) of the
kernel's inputs and outputs, which is used for estimating the memory
throughput of this kernel. This information is used for checking how
far we are from the peak memory bandwidth. It's important that
we want to avoid overestimating the sizes of the inputs and outputs,
because it can wrongfully give us a very large memory traffic value,
which may be even larger than the theoretical bandwidth and thus
become very misleading. This is particularly problematic for cases
where we slice some inputs. In those cases, we should only count
the size of the "slices" instead of the original inputs, because
only the slices contribute to the real memory traffic.
"""
nbytes = []
ninplace_args = len(unique(self.args.inplace_buffers.values()))
_, call_args, _, _ = self.args.python_argdefs()
buf_accesses = self.features.buf_accesses()
# For pointwise and reduction kernels, this is the upper-bound numels
# for the output buffer.
# FIXME: This is not exactly right for cases like below:
# def foo(tensor0, tensor1):
# x0 = narrow(tensor0)
# return cat(x0, tensor1)
# For this example, we will end up overestimate the size for the
# slice s0. Potentially, we could have precise inputs information
# if we maintained the original inputs of the Pointwise kernel created
# for the "cat". However, I think it might be a bit overwhelming that
# we add such complexity only for handling some particular cases for
# benchmarking.
out_numel = V.graph.sizevars.size_hint(sympy_product(self.numels.values()))
for i, arg in enumerate(call_args):
# "buf" may be narrowed. In this case, the number of memory accesses
# should be estimated based on the reinterpreted layout.
# On the other hand, buf may be broadcasted. In this case,
# counting the size of the underline storage would give us
# a better estimation in terms of memory accesses.
if arg not in buf_accesses:
nbytes.append(0)
continue
arg_numel = V.graph.get_numel(arg)
buf_size = V.graph.sizevars.size_hint(arg_numel)
if buf_size > out_numel:
# This arg points to a buf that has been sliced.
# We need to count each individual slice to have
# a better estimation.
indices: OrderedSet[Any] = OrderedSet()
no_index_dep_count = 0
for dep in buf_accesses[arg]:
if isinstance(dep, (StarDep, WeakDep)):
indices.add(f"no_index_dep_{no_index_dep_count}")
no_index_dep_count += 1
else:
indices.add(dep.index)
numel = len(indices) * out_numel
else:
numel = buf_size
dtype = V.graph.get_dtype(arg)
dtype_size = get_dtype_size(dtype)
nbytes.append(numel * dtype_size * (1 + int(i < ninplace_args)))
return sum(nbytes)
def warn_mix_layout(self, kernel_name):
"""
Print message if the kernel have mixed layout inputs.
Only care about 4D tensor for now.
"""
if (
len(self.args.input_buffers) == 1
and len(self.args.output_buffers) == 1
and len(self.args.inplace_buffers) == 0
):
# even if input buffer and output buffer have different layout,
# this can be a layout conversion kernel. No need to warn for
# the mix layouts.
return
argdefs, call_args, signature, _ = self.args.python_argdefs()
uniform_stride_order = None
for arg_name in call_args:
buf = V.graph.try_get_buffer(arg_name)
if not buf:
continue
layout = buf.get_layout()
if len(layout.size) == 4:
# ignore the tensor if only 1 dimension is non-zero
if len([x for x in layout.size if x == 1]) == 3:
continue
stride_order = ir.get_stride_order(layout.stride)
if uniform_stride_order is None:
uniform_stride_order = stride_order
elif uniform_stride_order != stride_order:
msg = yellow_text(
f"Expected stride order {uniform_stride_order}, but found stride order"
+ f" {stride_order} for kernel {kernel_name}"
)
log.warning(msg)
stride_order_list = [
ir.get_stride_order(
V.graph.get_buffer(name).get_layout().stride
)
if V.graph.try_get_buffer(name)
else None
for name in call_args
]
size_list = [
V.graph.get_buffer(name).get_layout().size
if V.graph.try_get_buffer(name)
else None
for name in call_args
]
source_list = [
"GraphInput"
if name in V.graph.graph_inputs
else "IntermediateBuffer"
if name in V.graph.name_to_buffer
else None
for name in call_args
]
msg = yellow_text(
f" param names {argdefs}\n buf names {call_args}\n strides {stride_order_list}"
+ f"\n sizes {size_list}\n sources {source_list}\n"
)
log.warning(msg)
return
msg = green_text(
f"All the inputs for the triton kernel {kernel_name} have uniform layout"
)
log.warning(msg)
def welford_reduce_fallback(self, dtype, value):
sum_ = ops.reduction(dtype, dtype, "sum", value)
self.inside_reduction = False
rnumel = ops.index_expr(self.numels["r"], dtype)
mean = ops.truediv(sum_, rnumel)
self.inside_reduction = True
dx = ops.sub(value, mean)
dx2 = ops.mul(dx, dx)
m2 = ops.reduction(dtype, dtype, "sum", dx2)
return OpsWrapper._unwrap((mean, m2, rnumel))
def codegen_kernel(self):
raise NotImplementedError
def codegen_body(self):
pass
def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry):
pass
class SIMDScheduling(BaseScheduling):
kernel_type = SIMDKernel # override in subclass
def __init__(self, scheduler) -> None:
super().__init__()
self.scheduler = scheduler
def group_fn(self, sizes):
return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)
def can_fuse(self, node1, node2):
"""
Hook called by Scheduler to determine if the Triton backend
can fuse node1 and node2. These nodes might already be
FusedSchedulerNodes.
"""
if isinstance(node1, scheduler.ForeachKernelSchedulerNode) or isinstance(
node2, scheduler.ForeachKernelSchedulerNode
):
return scheduler.ForeachKernelSchedulerNode.can_fuse(node1, node2)
_, (numel1, rnumel1) = node1.group
_, (numel2, rnumel2) = node2.group
why = WhyNoFuse(node1, node2)
if node1.is_split_scan() and not node2.is_split_scan():
if node2.is_reduction():
why("Split scan cannot fuse with reductions")
elif node2.is_split_scan() and not node1.is_split_scan():
if node1.is_reduction():
why("Split scan cannot fuse with reductions")
if node1.is_reduction() and node2.is_reduction():
reduction_can_fuse = numel1 == numel2 and rnumel1 == rnumel2
if not reduction_can_fuse:
why(
"numel/rnumel mismatch (reduce) (%s, %s), (%s, %s)",
numel1,
numel2,
rnumel1,
rnumel2,
)
return reduction_can_fuse
if not node1.is_reduction() and not node2.is_reduction():
if not (numel1 == numel2 and rnumel1 == rnumel2):
why(
"numel/rnumel mismatch (non-reduce) (%s, %s), (%s, %s)",
numel1,
numel2,
rnumel1,
rnumel2,
)
return False
if node1.is_template():
# Only allow fusion for TritonTemplates for now.
# Fusion for CUDATemplates are not supported.
is_triton_template = isinstance(node1.node, TritonTemplateBuffer)
if not is_triton_template:
why("node1 is not TritonTemplateBuffer")
return is_triton_template
# check for a bad combined tiling
tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1)
tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1)
tiling3 = self.select_tiling(
node1.get_nodes() + node2.get_nodes(), numel1, rnumel1
)
if config.triton.tiling_prevents_pointwise_fusion:
cond = True
if len(tiling1) > 2:
if len(tiling2) > 2:
cond = tiling1 == tiling2 == tiling3
else:
cond = tiling1 == tiling3
elif len(tiling2) > 2:
cond = tiling2 == tiling3
if not cond:
why(
"tiling mismatch (%s, %s, %s)",
tiling1,
tiling2,
tiling3,
)
return False
return True
if not node1.is_reduction() and node2.is_reduction():
assert rnumel1 == 1 and rnumel2 != 1
if numel1 == numel2 * rnumel2:
if not all(
SIMDKernel.is_compatible((numel2, rnumel2), n.get_ranges())
for n in node1.get_nodes()
):
why("nodes numel/rnumel incompatibility")
return False
if (
config.triton.tiling_prevents_reduction_fusion
and not node1.is_template()
):
is_reduction_tiling_valid = tuple(
self.select_tiling(node1.get_nodes(), numel1).values()
) in (
(numel1, 1),
(numel2, rnumel2, 1),
)
if not is_reduction_tiling_valid:
why("invalid tiling for reduction")
return is_reduction_tiling_valid
return True
if numel1 != numel2:
why("nodes numel incompatibility")
return numel1 == numel2
assert node1.is_reduction() and not node2.is_reduction()
# swap args to hit the case above
return self.can_fuse_horizontal(node2, node1)
can_fuse_vertical = can_fuse
can_fuse_horizontal = can_fuse
def generate_node_schedule(self, nodes, numel, rnumel):
node_schedule: List[Any] = []
done: OrderedSet[scheduler.BaseSchedulerNode] = OrderedSet()
# Writes with a reduced shape, meaning they are only present once the
# reduction loop has ended
not_ready_yet_nodes: OrderedSet[str] = OrderedSet()
current_loop_buffer_usage: OrderedSet[str] = OrderedSet()
maybe_split_index: Optional[int] = None
def fits_in_main_body(n):
_, (node_numel, node_rnumel) = n.group
return (node_numel == numel and node_rnumel == rnumel) or (
node_numel == numel * rnumel and node_rnumel == 1
)
def fits_outside_reduction(n):
_, (node_numel, node_rnumel) = n.group
return node_numel == numel and node_rnumel == 1 and rnumel != 1
def expect_improved_memory_usage(n):
for read in n.read_writes.reads:
if read.name in current_loop_buffer_usage:
return True
return False
def schedule_node_in_loop(n):
done.add(n)
node_schedule.append(n)
current_loop_buffer_usage.update([x.name for x in n.read_writes.reads])
# A scan is modelled as a reduction in the scheduler but has a
# full sized output that can be used inside the loop body
if (
n.is_reduction()
and isinstance(n, scheduler.SchedulerNode)
and isinstance(n.node, ir.ComputedBuffer)
and not isinstance(n.node.data, ir.Scan)
):
not_ready_yet_nodes.add(n.get_name())
else: # this node is available within the loop
current_loop_buffer_usage.update([x.name for x in n.read_writes.writes])
@contextlib.contextmanager
def end_current_reduction_loop():
nonlocal maybe_split_index
if node_schedule and node_schedule[-1] is EnableReduction:
node_schedule.pop()
else:
node_schedule.append(DisableReduction)
if maybe_split_index:
node_schedule.insert(maybe_split_index, DisableReduction)
node_schedule.insert(maybe_split_index + 1, EnableReduction)
maybe_split_index = None
yield
node_schedule.append(EnableReduction)
not_ready_yet_nodes.clear()
current_loop_buffer_usage.clear()
def requires_closing_previous_reduction(node, node_schedule):
if rnumel == 1:
return False
if not not_ready_yet_nodes & node.ancestors:
return False
assert node_schedule and not isinstance(
node_schedule[-1], (EnableReduction, DisableReduction)
)
return bool(not_ready_yet_nodes)
for index, node in enumerate(nodes):
if node in done:
continue
done.add(node)
if fits_in_main_body(node):
if requires_closing_previous_reduction(node, node_schedule):
with end_current_reduction_loop():
pass # need to start a new reduction loop
if current_loop_buffer_usage and not expect_improved_memory_usage(node):
# If we don't improve memory usage, then it is better to split into two loops
maybe_split_index = maybe_split_index or len(node_schedule)
else:
# Memory usage got improved, cancel the loop split
maybe_split_index = None
schedule_node_in_loop(node)
elif fits_outside_reduction(node):
with end_current_reduction_loop():
node_schedule.append(node)
else:
raise NotImplementedError(
f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}"
)
return node_schedule
def codegen_node(
self, node: Union[scheduler.FusedSchedulerNode, scheduler.SchedulerNode]
):
"""
Given a set of pre-fused nodes, generate a Triton kernel.
"""
nodes: List[scheduler.SchedulerNode] = node.get_nodes() # type: ignore[assignment]
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
schedule_log.debug("Schedule:\n %s", node_schedule)
return self.codegen_node_schedule(
SIMDKernelFeatures(node_schedule, numel, rnumel)
)
@staticmethod
def can_use_32bit_indexing(
numel: sympy.Expr, buffers: Iterable[Union[ir.Buffer, ir.TensorBox]]
) -> bool:
int_max = torch.iinfo(torch.int32).max
if not expr_fits_within_32bit(numel):
return False
# Any use of a MultiOutputLayout will create a buffer with a
# Layout whose sizes are accounted for
buf_sizes = [
buf.get_layout().storage_size()
for buf in buffers
if buf.has_tensor_output()
]
if not all(expr_fits_within_32bit(size) for size in buf_sizes):
return False
# Only install guards for 32-bit indexing as there is no correctness
# issue with using 64-bit for everything
V.graph.sizevars.guard_leq(numel, int_max) # type: ignore[arg-type]
for size in buf_sizes:
V.graph.sizevars.guard_leq(size, int_max) # type: ignore[arg-type]
return True
def codegen_node_schedule(self, kernel_features: SIMDKernelFeatures):
node_schedule = kernel_features.node_schedule
tiling = self.select_tiling(
node_schedule, kernel_features.numel, kernel_features.reduction_numel
)
kernels = self.create_kernel_choices(
kernel_features, [tiling], {"features": kernel_features}
)
for kernel in kernels:
self.codegen_node_schedule_with_kernel(node_schedule, kernel)
MultiKernel.merge_workspaces_inplace(kernels)
for kernel in kernels:
with V.set_kernel_handler(kernel):
src_code = kernel.codegen_kernel()
kernel_name = self.define_kernel(src_code, node_schedule, kernel)
log.debug("Generating kernel code with kernel_name: %s", kernel_name)
kernel.kernel_name = kernel_name
kernel.code_hash = code_hash(src_code)
del kernel
final_kernel: Union[SIMDKernel, MultiKernel]
if len(kernels) > 1:
final_kernel = MultiKernel(kernels)
else:
(final_kernel,) = kernels
with V.set_kernel_handler(final_kernel):
for node in kernel_features.scheduler_nodes():
node.mark_run()
self.codegen_comment(node_schedule)
final_kernel.call_kernel(final_kernel.kernel_name)
if config.nan_asserts:
final_kernel.codegen_nan_check()
if config.warn_mix_layout:
final_kernel.warn_mix_layout(kernels[0].kernel_name)
V.graph.removed_buffers |= final_kernel.removed_buffers
V.graph.inplaced_to_remove |= final_kernel.inplaced_to_remove
if (
V.graph.wrapper_code.supports_intermediate_hooks
and config.generate_intermediate_hooks
):
# Not every node in the schedule will actually be live on output;
# we can't check dead buffers.
live_outs = kernels[0].args.live_output_buffers()
for node in kernel_features.scheduler_nodes():
name = node.get_name()
if name not in live_outs:
continue
assert node.node is not None
origin_node = node.node.get_origin_node()
if origin_node is not None:
counters["inductor"]["intermediate_hooks"] += 1
V.graph.wrapper_code.writeline(
f"run_intermediate_hooks({origin_node.name!r}, {name})"
)
self.scheduler.free_buffers()
def create_kernel_choices(
self, kernel_features: SIMDKernelFeatures, kernel_args, kernel_kwargs
) -> List[SIMDKernel]:
return [
self.kernel_type(
*kernel_args,
**kernel_kwargs,
)
]
def codegen_node_schedule_with_kernel(self, node_schedule, kernel):
with kernel:
stack = contextlib.ExitStack()
all_indexing = {}
# First pass to collect indexing and decide inplace updates
for node in node_schedule:
if node is DisableReduction:
stack.enter_context(kernel.disable_reduction())
elif node is EnableReduction:
stack.close()
else:
node.decide_inplace_update()
index_vars = kernel.split_and_set_ranges(node.get_ranges())
all_indexing.update(
dict.fromkeys(
node._body.indexing_from_args(index_vars).values()
)
)
kernel.finalize_indexing(all_indexing.keys())
# Second pass to do codegen
for i, node in enumerate(node_schedule):
if node is DisableReduction:
stack.enter_context(kernel.disable_reduction())
elif node is EnableReduction:
stack.close()
else:
# TODO - use split ranges ?
indexing_dtype_strength_reduction(node._body)
index_vars = kernel.split_and_set_ranges(node.get_ranges())
node.codegen(index_vars)
def codegen_template(
self, template_node, epilogue_nodes, only_gen_src_code=False
) -> Optional[str]:
"""
Codegen a triton template
If `only_gen_src_code` the src code will be returned instead of codegen'd into the wrapper
"""
_, (numel, rnumel) = template_node.group
assert rnumel == 1
kernel, render = template_node.node.make_kernel_render(template_node.node)
with kernel:
if not only_gen_src_code:
for node in [template_node, *epilogue_nodes]:
node.mark_run()
partial_code = render()
with kernel.set_subgraph_body("<STORE_OUTPUT>"):
for node in epilogue_nodes:
node.codegen(kernel.split_and_set_ranges(node.get_ranges()))
if not isinstance(partial_code, str):
partial_code.finalize_hook("<DEF_KERNEL>")
partial_code.finalize_hook("<ARGDEFS>", strict=False)
# finalize must be called after adding epilogue above
with V.set_kernel_handler(kernel):
# TODO: Maybe unify CUDATemplateKernel to also use PartialRender for flexible epilogue fusion.
with kernel.set_subgraph_body("<STORE_OUTPUT>"):
if isinstance(partial_code, str):
src_code = partial_code
else:
partial_code.finalize_hook("<STORE_OUTPUT>")
src_code = partial_code.code
node_schedule = [template_node, *epilogue_nodes]
if config.benchmark_kernel:
num_gb = kernel.estimate_kernel_num_bytes() / 1e9
grid_args = V.graph.sizevars.size_hints(kernel.call_sizes)
assert kernel.meta is not None, "meta is None"
grid = kernel.grid_fn(*grid_args, kernel.meta)
src_code = (
f"{kernel.imports_for_benchmark_kernel()}\n"
f"{src_code}\n"
f"{kernel.codegen_kernel_benchmark(num_gb, grid).getvalue()}"
)
if only_gen_src_code:
return src_code
kernel_name = self.define_kernel(src_code, node_schedule, kernel)
self.codegen_comment(node_schedule)
kernel.call_kernel(kernel_name, template_node.node)
V.graph.removed_buffers |= kernel.removed_buffers
V.graph.inplaced_to_remove |= kernel.inplaced_to_remove
self.scheduler.free_buffers()
return None
def codegen_sync(self):
V.graph.wrapper_code.writeline(V.graph.device_ops.synchronize())
def generate_combo_kernel_code(
self,
subkernel_nodes: List[BaseSchedulerNode],
custom_part_algorithm: bool,
enable_autotune: bool,
mixed_sizes: bool,
only_gen_src_code: bool = False,
) -> List[Tuple[str, Any, Any]]:
from .triton_combo_kernel import ComboKernel
fused_node_lists = [node.get_nodes() for node in subkernel_nodes]
subkernel_map, node_schedule_map = {}, {}
for pn, nodes in zip(subkernel_nodes, fused_node_lists):
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
tiling = self.select_tiling(node_schedule, numel, rnumel)
node_schedule_map[pn] = node_schedule, tiling, numel, rnumel
subkernel_map[pn] = ComboKernel.create_triton_kernel(
tiling,
features=SIMDKernelFeatures(node_schedule, numel, rnumel),
optimize_mask=not mixed_sizes,
)
partitions = ComboKernel.horizontal_partition(
nodes=subkernel_nodes,
triton_scheduling=self,
custom_algorithm=custom_part_algorithm,
kernel_map=subkernel_map,
node_info_map=node_schedule_map,
)
log.debug(
"ComboKernels: %d nodes partitioned into %s groups",
len(subkernel_nodes),
[len(p) for p in partitions],
)
kernel_code_list = []
for node_group in partitions:
fused_node_lists = [node.get_nodes() for node in node_group]
kernel = ComboKernel(
enable_autotune=enable_autotune,
mixed_sizes=mixed_sizes,
)
for pn, nodes in zip(node_group, fused_node_lists):
self.codegen_node_schedule_with_kernel(
node_schedule_map[pn][0],
kernel.create_sub_kernel(subkernel_map[pn]),
)
subkernel = subkernel_map[pn]
node_schedule = node_schedule_map[pn][0]
if not only_gen_src_code:
with V.set_kernel_handler(subkernel): # type: ignore[call-arg]
for node in NodeScheduleMarker.only_nodes(node_schedule):
node.mark_run()
V.graph.removed_buffers |= subkernel.removed_buffers
V.graph.inplaced_to_remove |= subkernel.inplaced_to_remove
src_code = kernel.codegen_kernel()
kernel_code_list.append((src_code, kernel, node_group))
return kernel_code_list
def codegen_combo_kernel(self, combo_kernel_node):
subkernel_nodes = combo_kernel_node.get_subkernel_nodes()
custom_part_algorithm = combo_kernel_node.use_custom_partition_algo
enable_autotune = combo_kernel_node.enable_autotune
mixed_sizes = config.combo_kernel_allow_mixed_sizes > 1 or (
config.combo_kernel_allow_mixed_sizes == 1 and custom_part_algorithm
)
kernel_code_list = self.generate_combo_kernel_code(
subkernel_nodes, custom_part_algorithm, enable_autotune, mixed_sizes
)
for src_code, kernel, _ in kernel_code_list:
kernel_name = self.define_kernel(src_code, [combo_kernel_node], kernel)
self.codegen_comment([combo_kernel_node])
log.debug("ComboKernels: generated kernel %s.", kernel_name)
kernel.call_kernel(V.graph.wrapper_code, kernel_name)
self.scheduler.free_buffers()
@staticmethod
@functools.lru_cache(32)
def candidate_tilings(node):
ranges, reduction_ranges = node.get_ranges()
if len(ranges) <= 1:
return ()
rw = node.pointwise_read_writes()
assert len(rw.range_vars) == len(ranges), f"{rw.range_vars=} {ranges=}"
# isinstance(dep, MemoryDep): this filters out StarDeps. StarDeps refer to reads
# that need to access the entire tensor; they don't contribute read indexing
# information (and practically, they don't have dep.index so they can't be used
# for stride_hints below
dep_sources = [rw.reads, rw.writes]
assert all(
isinstance(dep, (MemoryDep, StarDep))
for dep in itertools.chain.from_iterable(dep_sources)
)
deps = [
dep
for dep in itertools.chain.from_iterable(dep_sources)
if dep.name not in V.graph.removed_buffers and isinstance(dep, MemoryDep)
]
write_names = {dep.name for dep in rw.writes}
tilings: List[CandidateTiling] = []
for dep in deps:
strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars)
assert len(strides) == len(ranges)
try:
split = strides.index(1) + 1
if split == len(ranges):
continue
if all(s == 0 for s in strides[split:]):
# if this is a broadcasted tensor and all dimensions after split are broadcast,
# this is not a real split
continue
except ValueError:
continue
tiled_groups = (
V.graph.sizevars.simplify(sympy_product(ranges[:split])),
V.graph.sizevars.simplify(sympy_product(ranges[split:])),
)
# score by number of elements
score = V.graph.sizevars.size_hint(
sympy_product(
size for size, stride in zip(ranges, strides) if stride != 0
)
)
if dep.name in write_names:
# ngimel said contiguous writes is more important than reads
score *= 2
if CandidateTiling.is_good_size(tiled_groups[0]):
score *= 2
if CandidateTiling.is_good_size(tiled_groups[1]):
score *= 2
if (
V.graph.sizevars.size_hint(
score - sympy_product(itertools.chain(ranges, reduction_ranges))
)
>= 0
):
tilings.append(CandidateTiling(tiled_groups, score, dep.name))
return tilings
@classmethod
def create_tiling(
cls, pw_tiling: Sequence[sympy.Expr], reduction_tiling: Sequence[sympy.Expr]
) -> Dict[str, sympy.Expr]:
"""
Create a tiling dict from pointwise and reduction splits.
"""
pw_prefixes = ["z", "y", "x"][-len(pw_tiling) :]
reduction_prefixes = ["r"][: len(reduction_tiling)]
return immutable_dict(
list(zip(pw_prefixes, pw_tiling))
+ list(zip(reduction_prefixes, reduction_tiling))
)
@classmethod
def select_tiling(
cls, node_schedule, numel, reduction_numel=sympy.S.One
) -> Dict[str, sympy.Expr]:
"""
Heuristics to decide how to tile kernels.
Currently, we tile based on stride-1 dimensions.
Returns:
`(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel`
"""
default_tiling = cls.create_tiling([numel], [reduction_numel])
if reduction_numel != 1 or config.triton.max_tiles <= 1:
# TODO(jansel): should we tile reductions?
# do perf hint here if stride-1 dim is not being reduced
if perf_hint_log.level <= logging.WARNING:
for node in EnableReduction.filter(node_schedule):
if len(cls.candidate_tilings(node)) > 0:
perf_hint_log.info("reduction over non-contiguous dims")
break
return default_tiling
seen_names: OrderedSet[str] = OrderedSet()
candidate_tiles: Counter[Any] = collections.Counter()
for node in EnableReduction.filter(node_schedule):
for tiling in cls.candidate_tilings(node):
if tiling.name in seen_names:
continue
seen_names.add(tiling.name)
candidate_tiles[tiling.tiling] += tiling.score
ranked_tilings = [tiling for tiling, score in candidate_tiles.most_common()]
if config.triton.max_tiles >= 3:
# Consider adding a third dimension of tiling, but only
# when a1 is a multiple of b1; otherwise, you have a lot
# of stragglers which is annoying to generate code for.
#
# NB: More than three max tiles is not enabled by default.
# Add one 3D tiling choice
for i in range(1, len(ranked_tilings)):
a0, a1 = ranked_tilings[0]
b0, b1 = ranked_tilings[i]
if V.graph.sizevars.size_hint(a1 - b1) == 0:
continue
if V.graph.sizevars.size_hint(a1 - b1) < 0:
# swap so a0 is bigger
a0, a1 = ranked_tilings[i]
b0, b1 = ranked_tilings[0]
assert V.graph.sizevars.size_hint(a1 - b1) > 0
if V.graph.sizevars.statically_known_multiple_of(a1, b1):
tiling = (a0, FloorDiv(a1, b1), b1)
ranked_tilings = [tiling] + ranked_tilings
break # only 1 choice for now
if len(ranked_tilings) > 1:
perf_hint_log.info("possibly bad tiling: %s", ranked_tilings)
# Optionally, prefer tiling into as many dimensions as possible.
if config.triton.prefer_nd_tiling:
# Get candidate tilings from the node ranges.
node_ranges = [
node.get_ranges()[0]
for node in EnableReduction.filter(node_schedule)
if isinstance(node, scheduler.SchedulerNode)
]
new_tilings: OrderedSet[Tuple[sympy.Expr]] = OrderedSet()
for node_range in node_ranges:
# Collapse leading dims, to fit in the maximum dimensionality.
num_leading_dims = max(0, len(node_range) - config.triton.max_tiles)
first_trailing_dim = num_leading_dims + 1
collapsed_leading_dim = sympy_product(node_range[:first_trailing_dim])
tiling = [collapsed_leading_dim] + list(node_range[first_trailing_dim:])
new_tilings.add(tuple(tiling))
# Rank tilings by the number of dimensions. E.g., prefer 2D to 1D.
# Since this is a stable sort, ties are broken by schedule order.
ranked_new_tilings = sorted(new_tilings, key=len, reverse=True)
ranked_tilings = ranked_new_tilings + ranked_tilings
for tiled_groups in ranked_tilings:
new_groups = (*tiled_groups, reduction_numel)
if all(
SIMDKernel.is_compatible(new_groups, node.get_ranges())
for node in node_schedule
if isinstance(node, scheduler.SchedulerNode)
):
return cls.create_tiling(tiled_groups, [reduction_numel])
return default_tiling
def flush(self):
pass
def ready_to_flush(self) -> bool:
return False
def generate_kernel_code_from_nodes(self, nodes, benchmark_kernel=False):
if not nodes[0].is_template():
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
tiling = self.select_tiling(node_schedule, numel, rnumel)
kernel = self.kernel_type(
tiling,
features=SIMDKernelFeatures(node_schedule, numel, rnumel),
)
self.codegen_node_schedule_with_kernel(node_schedule, kernel)
with config.patch(
"benchmark_kernel", benchmark_kernel
), V.set_kernel_handler(kernel):
src_code = kernel.codegen_kernel()
else:
template_node = nodes[0]
epilogue_nodes = nodes[1:]
with config.patch("benchmark_kernel", benchmark_kernel):
src_code = self.codegen_template(
template_node, epilogue_nodes, only_gen_src_code=True
)
src_code = src_code.replace(str(Placeholder.KERNEL_NAME), "triton_")
return src_code
def codegen_comment(self, node_schedule):
pass
def define_kernel(self, src_code, node_schedule, kernel):
raise NotImplementedError
@dataclasses.dataclass
class CandidateTiling:
tiling: Tuple[sympy.Expr, sympy.Expr]
score: int # higher is better
name: Optional[str] = None
@staticmethod
def is_good_size(s):
"""Somewhat arbitrary heuristic used to boost scores for some sizes"""
s = V.graph.sizevars.size_hint(s)
return s >= 32 and (s % 32 == 0)
class CantSplit(Exception):
pass
|