File: triton.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (3910 lines) | stat: -rw-r--r-- 149,085 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
# mypy: allow-untyped-defs
from __future__ import annotations

import collections
import contextlib
import dataclasses
import functools
import itertools
import logging
import os
import textwrap
from functools import lru_cache
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Iterable,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    Type,
    TYPE_CHECKING,
    Union,
)

import sympy
from sympy.printing.precedence import PRECEDENCE

import torch
import torch._logging
from torch._dynamo.utils import identity, preserve_rng_state
from torch._prims_common import is_integer_dtype
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.functions import CeilDiv, FloorDiv, ModularIndexing
from torch.utils._triton import has_triton_package

from ...utils._sympy.symbol import free_symbol_is_type, prefix_str, symbol_is_type, SymT
from ...utils._sympy.value_ranges import ValueRanges
from .. import config, ir, metrics
from ..codecache import code_hash, get_path, PyCodeCache
from ..runtime.benchmarking import benchmarker
from ..runtime.hints import (
    AutotuneHint,
    DeviceProperties,
    TRITON_MAX_BLOCK,
    TRITON_MAX_RSPLIT,
)
from ..runtime.runtime_utils import get_max_y_grid, next_power_of_2
from ..runtime.triton_heuristics import (
    cooperative_reduction_grid,
    grid as default_grid_fn,
)
from ..scheduler import BaseSchedulerNode, FusedSchedulerNode, Scheduler, SchedulerNode
from ..utils import (
    DelayReplaceLine,
    get_bounds_index_expr,
    get_fused_kernel_name,
    get_kernel_metadata,
    is_welford_reduction,
    Placeholder,
    sympy_subs,
    triton_type,
    upcast_compute_type,
)
from ..virtualized import _ops as ops, OpsHandler, ReductionType, StoreMode, V
from ..wrapper_benchmark import get_kernel_category_by_source_code
from .block_analysis import BlockPatternMatcher
from .common import (
    BackendFeature,
    CSE,
    CSEVariable,
    DeferredLine,
    IndentedBuffer,
    OpOverrides,
    PythonPrinter,
    SizeArg,
    TensorArg,
    WorkspaceArg,
    WorkspaceZeroMode,
)
from .simd import (
    constant_repr,
    IterationRanges,
    IterationRangesEntry,
    IterationRangesRoot,
    pexpr,
    prefix_is_reduction,
    SIMDKernel,
    SIMDScheduling,
)
from .triton_utils import (
    config_of,
    should_unwrap_unspec_arg,
    signature_of,
    signature_to_meta,
)


if TYPE_CHECKING:
    from ..ir import IRNode

log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")


class OpDtypeSupport:
    """
    Some Triton ops such as libdevice and tl.math only support float32 and float64.
    This class records which dtypes are supported by specific IR ops.
    """

    supported_dtypes: Dict[str, Set[torch.dtype]] = {}
    convert_outputs: Dict[str, bool] = {}

    @classmethod
    def register_upcast(cls, func: Callable[..., str], convert_output: bool):
        op_name = func.__name__
        cls.supported_dtypes[op_name] = {torch.float32, torch.float64}
        cls.convert_outputs[op_name] = convert_output


@lru_cache(None)
def gen_attr_descriptor_import():
    """
    import AttrsDescriptor if the triton version is new enough to have this
    class defined.
    """
    if not has_triton_package():
        return ""

    import triton.compiler.compiler

    # Note: this works because triton.compiler.compiler imports AttrsDescriptor from triton.backends.compiler
    # When support for the legacy AttrsDescriptor is removed then this import path should be changed.
    if hasattr(triton.compiler.compiler, "AttrsDescriptor"):
        return "from triton.compiler.compiler import AttrsDescriptor"
    else:
        return ""


@lru_cache(None)
def gen_common_triton_imports():
    imports = IndentedBuffer()
    imports.splice(
        """
        import triton
        import triton.language as tl
        """
    )
    if attr_desc := gen_attr_descriptor_import():
        imports.writeline(attr_desc)

    imports.splice(
        """
        from torch._inductor.runtime import triton_helpers, triton_heuristics
        from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
        from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties
        """
    )
    return imports.getvalue()


class TritonSymbols:
    """
    Stores sympy.Symbol instances and constants associated with triton codegen.
    """

    block_offsets = {
        symt: sympy.Symbol(f"{prefix_str[symt]}offset", integer=True, nonnegative=True)
        for symt in [SymT.XBLOCK, SymT.YBLOCK, SymT.ZBLOCK, SymT.RINDEX]
    }

    block_sizes = {
        symt: sympy.Symbol(
            f"{prefix_str[symt].upper()}BLOCK", integer=True, positive=True
        )
        for symt in [SymT.XBLOCK, SymT.YBLOCK, SymT.ZBLOCK, SymT.RINDEX]
    }

    @classmethod
    def get_block_size(cls, tree: IterationRanges) -> sympy.Symbol:
        return cls.block_sizes[tree.symt]

    @classmethod
    def get_block_offset(cls, tree: IterationRanges) -> sympy.Symbol:
        return cls.block_offsets[tree.symt]


@dataclasses.dataclass
class IndexingOptions:
    index_str: str
    mask_vars: OrderedSet[str]
    mask_str: str
    expand_str: Optional[str]
    _has_rindex: bool
    index: sympy.Expr

    def has_mask(self):
        return bool(self.mask_vars)

    def has_indirect(self):
        return free_symbol_is_type(self.index, SymT.TMP)

    def has_rindex(self):
        return self._has_rindex

    def has_tmpmask(self):
        return "tmp" in self.mask_str

    def has_rmask(self):
        return "rmask" in self.mask_str


@dataclasses.dataclass
class BlockPtrOptions:
    params: BlockParameters
    constant_offset: sympy.Expr
    order: List[int]
    mask_vars: OrderedSet[str]
    broadcast_shape: Sequence[sympy.Expr]
    broadcasting_dims: List[bool]
    final_shape: Sequence[sympy.Expr]
    _boundary_check: Optional[List[int]] = None

    @property
    def shape(self) -> List[sympy.Expr]:
        return self.params.shape

    @property
    def block_shape(self) -> List[sympy.Expr]:
        return self.params.block_shape

    @property
    def strides(self) -> List[sympy.Expr]:
        return self.params.strides

    @property
    def offsets(self) -> List[sympy.Expr]:
        return self.params.offsets

    def codegen_broadcast_and_reshape(
        self,
        value: str,
        initial_shape: Sequence[sympy.Expr],
        final_shape: Sequence[sympy.Expr],
        allow_implicit: bool,
    ) -> str:
        """
        Generate a broadcast and a reshape for the block pointer.
        This restores stride-0 dimensions which were removed from the block pointer.
        """

        # Reshape to add singletons.
        pre_broadcast_shape = [
            sympy.S.One if is_broadcasting else dim
            for dim, is_broadcasting in zip(
                self.broadcast_shape, self.broadcasting_dims
            )
        ]
        value = triton_reshape(value, initial_shape, pre_broadcast_shape)

        # Broadcast singletons.
        # For loads, we can often implicitly broadcast singleton dimensions.
        # We need an explicit broadcast for stores, or if the final reshape does more
        # than add singletons.
        sizevars = V.graph.sizevars
        require_broadcast = any(self.broadcasting_dims) and (
            len(pre_broadcast_shape) != len(final_shape)
            or any(
                not (
                    sizevars.statically_known_equals(pre_dim, 1)
                    or sizevars.statically_known_equals(pre_dim, post_dim)
                )
                for pre_dim, post_dim in zip(pre_broadcast_shape, final_shape)
            )
        )

        if not allow_implicit or require_broadcast:
            value = f"tl.broadcast_to({value}, {V.kernel.index_to_str(self.broadcast_shape)})"

        # Reshape to the final shape.
        value = triton_reshape(value, self.broadcast_shape, final_shape)

        return value

    @staticmethod
    def create(
        *,
        params: BlockParameters,
        constant_offset: sympy.Expr,
        range_trees: List[IterationRangesEntry],
        mask_vars: OrderedSet[str],
        get_max_block: Callable[[str], int],
    ) -> BlockPtrOptions:
        """Helper to create a  BlockPtrOptions instance"""

        sizevars = V.graph.sizevars

        def lookup_size(exprs: Iterable[sympy.Expr]) -> List[sympy.Expr]:
            return [sizevars.lookup_precomputed_size(expr) for expr in exprs]

        # Look up precomputed sizes
        params.shape = lookup_size(params.shape)
        params.strides = lookup_size(params.strides)

        # Strip out dimensions of stride 0.
        # These will be restored with tl.broadcast_to.
        broadcasting_dims = [
            sizevars.statically_known_equals(stride, 0) for stride in params.strides
        ]

        # Strip out dimensions of size 1.
        # These will be restored by tl.reshape.
        singleton_dims = [
            sizevars.statically_known_equals(dim, 1) for dim in params.block_shape
        ]
        if all(singleton_dims):
            # Handle a pure singletons, e.g. [1, 1]
            singleton_dims[-1] = False

        # Record the post-broadcast shape before broadcasting dims are removed.
        # The pre-broadcast shape is identical to this, except broadcasting dims are
        # replaced with 1.
        broadcast_shape = [
            dim
            for dim, is_singleton in zip(params.block_shape, singleton_dims)
            if not is_singleton
        ]

        # Combine all removable dims.
        removable_dims = [any(dims) for dims in zip(singleton_dims, broadcasting_dims)]

        def remove_dims(it):
            """Removes any broadcasting or singleton dims from a given sequence"""
            return [
                item
                for item, is_removable in zip(it, removable_dims)
                if not is_removable
            ]

        # Drop removable dimensions from the input.
        params = BlockParameters(
            **{key: remove_dims(val) for key, val in dataclasses.asdict(params).items()}
        )

        # Compute the final shape, adjusting for special kernel types.
        final_shape = [TritonSymbols.get_block_size(tree) for tree in range_trees]
        if V.kernel.no_x_dim:
            assert range_trees[0].prefix == "x"
            final_shape.pop(0)

        if (
            not V.kernel.inside_reduction
            and len(params.strides) == len(V.kernel.numels) - 1
            and V.kernel.numels["r"] != 1
        ):
            # Need to expand rank by 1 to match rank when self.inside_reduction=True
            final_shape.append(sympy.S.One)

        result = BlockPtrOptions(
            params=params,
            constant_offset=V.graph.sizevars.lookup_precomputed_size(constant_offset),
            order=list(reversed(range(len(params.shape)))),
            mask_vars=mask_vars,
            final_shape=final_shape,
            broadcast_shape=broadcast_shape,
            broadcasting_dims=broadcasting_dims,
        )
        result.compute_boundary_check(get_max_block)
        return result

    def replace_roffset(self, expr: sympy.Expr, replacement: sympy.Expr) -> sympy.Expr:
        """
        Replaces instances of roffset with the new expression.
        """
        roffset = TritonSymbols.block_offsets[SymT.RINDEX]
        return sympy_subs(expr, {roffset: replacement})

    def format(self, name: str, roffset=True) -> str:
        """
        Codegen a call to tl.make_block_ptr()

        Args:
            name: variable name for pointer
            roffset: should roffset be included in offsets=..., for use with tl.advance()

        Returns:
            "tl.make_block_ptr(...)"
        """
        f = V.kernel.index_to_str
        offsets = [*self.offsets]
        if not roffset:
            offsets = [self.replace_roffset(offset, sympy.S.Zero) for offset in offsets]
        args = [
            (
                f"{name} + ({f(self.constant_offset)})"
                if self.constant_offset != 0
                else name
            ),
            f"shape={f(self.shape)}",
            f"strides={f(self.strides)}",
            f"block_shape={f(self.block_shape)}",
            f"order={f(self.order)}",
            f"offsets={f(offsets)}",
        ]
        return f"tl.make_block_ptr({', '.join(args)})"

    def compute_boundary_check(self, get_max_block: Callable[[str], int]) -> None:
        """List of indices to pass to tl.load(boundary_check=...)"""
        sizevars = V.graph.sizevars

        # Substitute maximum block sizes in shape expressions.
        # This works in multiple_of checks because block sizes are powers of 2.
        block_to_max: Dict[sympy.Expr, Any] = {
            block_size: get_max_block(prefix_str[symt])
            for symt, block_size in TritonSymbols.block_sizes.items()
        }

        self._boundary_check = [
            idx
            for idx in range(len(self.shape))
            if (
                not sizevars.statically_known_equals(self.strides[idx], sympy.S.Zero)
                and not sizevars.statically_known_multiple_of(
                    self.shape[idx], self.block_shape[idx]
                )
                and not sizevars.statically_known_multiple_of(
                    self.shape[idx], sympy_subs(self.block_shape[idx], block_to_max)
                )
                and not (
                    V.kernel.no_x_dim
                    and self.block_shape[idx] == TritonSymbols.block_sizes[SymT.XBLOCK]
                )
            )
        ]

    def boundary_check(self):
        assert self._boundary_check is not None
        return self._boundary_check

    def advance_roffset(self):
        """
        Codegen string to pass to tl.advance(name, ...).

        Advance is the difference between offsets in each loop iteration.
        To compute it, we replace roffset with multiples of RBLOCK.
        Since we expect roffset to vary in range(0, rnumel, RBLOCK), the first
        iteration has roffset=0, while the second has roffset=RBLOCK.
        """
        rblock = TritonSymbols.block_sizes[SymT.RINDEX]
        advance = [
            (
                self.replace_roffset(offset, rblock)
                - self.replace_roffset(offset, sympy.S.Zero)
            )
            for offset in self.offsets
        ]
        return V.kernel.index_to_str(advance)

    def has_indirect(self):
        return False  # block_ptr can't do indirect indexing

    def has_rindex(self) -> bool:
        return any(free_symbol_is_type(expr, SymT.RINDEX) for expr in self.block_shape)

    def has_rmask(self):
        return self.has_rindex()

    def has_tmpmask(self):
        return False  # block_ptr can't do indirect indexing

    def has_mask(self):
        return bool(self.boundary_check())


def triton_reshape(
    value: str, old_shape: Sequence[sympy.Expr], new_shape: Sequence[sympy.Expr]
):
    """Workaround https://github.com/openai/triton/issues/2836"""
    assert isinstance(old_shape, list) and isinstance(new_shape, list)

    old_shape_str = [V.kernel.index_to_str(shape) for shape in old_shape]
    new_shape_str = [V.kernel.index_to_str(shape) for shape in new_shape]

    if old_shape_str == new_shape_str:
        return value
    if [s for s in new_shape_str if s != "1"] != old_shape_str:
        return f"tl.reshape({value}, [{', '.join(new_shape_str)}])"
    # rewrite to [:, None] syntax, which is less buggy
    idx = 0
    expand = []
    for size in new_shape_str:
        if idx < len(old_shape_str) and size == old_shape_str[idx]:
            expand.append(":")
            idx += 1
        else:
            assert size == "1"
            expand.append("None")
    assert idx == len(old_shape_str)
    return f"{value}[{', '.join(expand)}]"


# NB: Inheriting from PythonPrinter is somewhat dangerous, because there are a
# number of operators which Triton "implements", but in a way that is
# inconsistent with Python semantics (and consistent with C semantics).  We
# must override all of these, or it is potential silent correctness problem
class TritonPrinter(PythonPrinter):
    def _print_TruncToInt(self, expr):
        assert len(expr.args) == 1
        return (
            f"libdevice.trunc({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
        )

    def _print_Float(self, expr):
        if config.is_fbcode() and torch.version.hip:
            ret = f"{expr}"
        else:
            ret = f"tl.full([], {expr}, tl.float64)"
        return ret

    def _print_ToFloat(self, expr):
        assert len(expr.args) == 1
        s = self.parenthesize(expr.args[0], PRECEDENCE["Atom"] - 0.5)
        return f"{s}.to(tl.float64)"

    def _print_PythonMod(self, expr):
        quot, div = expr.args
        if quot.is_nonnegative and div.is_nonnegative:
            return self.stringify(expr.args, " % ", PRECEDENCE["Atom"] - 0.5)
        quot_s = self._print(quot)
        div_s = self._print(div)
        return f"triton_helpers.remainder_integer({quot_s}, {div_s})"

    def _print_FloorDiv(self, expr):
        assert expr.is_integer
        quot, div = expr.args
        if quot.is_nonnegative and div.is_nonnegative:
            return self.stringify(expr.args, " // ", PRECEDENCE["Atom"] - 0.5)
        quot_s = self._print(quot)
        div_s = self._print(div)
        return f"triton_helpers.div_floor_integer({quot_s},  {div_s})"

    # TODO: This is wrong, when lhs, rhs > 2**53, Python does a higher
    # precision algorithm, which we would need to replicate here
    def _print_IntTrueDiv(self, expr):
        return self.stringify(expr.args, " / ", PRECEDENCE["Atom"] - 0.5)

    # NB: sympy.floor/ceiling produce integers, so we have to do the
    # conversion to index dtype
    def _print_floor(self, expr):
        assert len(expr.args) == 1
        return (
            f"libdevice.floor({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
        )

    def _print_FloorToInt(self, expr):
        assert len(expr.args) == 1
        return (
            f"libdevice.floor({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
        )

    def _print_ceiling(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.ceil({self._print(expr.args[0])}).to({V.kernel.index_dtype})"

    def _print_CeilToInt(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.ceil({self._print(expr.args[0])}).to({V.kernel.index_dtype})"

    def _helper_sqrt(self, expr):
        return f"libdevice.sqrt(({self._print(expr)}).to(tl.float32))"

    def _print_FloatPow(self, expr):
        return (
            f"libdevice.pow({self._print(expr.args[0])}, {self._print(expr.args[1])})"
        )

    _print_PowByNatural = _print_FloatPow

    def _print_Where(self, expr):
        c = self.doprint(expr.args[0])
        p = self.doprint(expr.args[1])
        q = self.doprint(expr.args[2])
        return f"tl.where({c}, {p}, {q})"

    def _print_min_max_helper(self, expr: sympy.Expr, cmp: str) -> str:
        """
        Helper for max/min code genereration.
        cmp: > or <
        """
        nargs = len(expr.args)
        if len(expr.args) == 1:
            return self._print(expr.args[0])

        mid = len(expr.args) // 2
        cls = type(expr)
        a = self._print(cls(*expr.args[:mid]))
        b = self._print(cls(*expr.args[mid:]))

        # Use a macro so we can propagate constexprs.
        # https://github.com/triton-lang/triton/issues/3815
        a, b = tuple(f"({x})" for x in (a, b))
        assert cmp in (">", "<"), f"Unexpected comparator: '{cmp}'"
        return f"({a} * ({a} {cmp}= {b}) + {b} * ({b} {cmp} {a}))"

    def _print_Min(self, expr):
        return self._print_min_max_helper(expr, "<")

    def _print_Max(self, expr):
        return self._print_min_max_helper(expr, ">")

    def _print_Abs(self, expr):
        assert len(expr.args) == 1
        return f"tl_math.abs({self._print(expr.args[0])})"

    def _print_OpaqueUnaryFn_cos(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.cos(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_cosh(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.cosh(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_acos(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.acos(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_sin(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.sin(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_sinh(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.sinh(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_asin(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.asin(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_tan(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.tan(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_tanh(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.tanh(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_OpaqueUnaryFn_atan(self, expr):
        assert len(expr.args) == 1
        return f"libdevice.atan(({self._print(expr.args[0])}).to(tl.float32))"

    def _print_RoundToInt(self, expr):
        assert len(expr.args) == 1
        return (
            f"libdevice.llrint({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
        )

    def _print_RoundDecimal(self, expr):
        assert len(expr.args) == 2
        number, ndigits = expr.args
        if number.is_integer:
            # ndigits < 0 should have been filtered by the sympy function
            assert ndigits < 0
            raise ValueError(
                f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
            )

        number_str = self.parenthesize(number, PRECEDENCE["Mul"])
        return f"libdevice.nearbyint(1e{ndigits} * {number_str}) * 1e{-ndigits}"


texpr = TritonPrinter().doprint


def triton_compute_type(dtype: torch.dtype) -> str:
    """Convert torch.dtype to triton type and upcast [b]float16 to float32"""
    return triton_type(upcast_compute_type(dtype))


def _get_primitive_bitwidth(dtype: torch.dtype) -> int:
    """Number of bits of triton_compute_type()"""
    dtype = upcast_compute_type(dtype)
    itemsize = getattr(dtype, "itemsize", None)
    if itemsize:
        return itemsize * 8
    else:
        return -1


def triton_store_type(dtype: torch.dtype) -> str:
    """Convert torch.dtype to triton type, with fix for storing tl.bool"""
    if dtype == torch.bool:
        dtype = torch.int8
    return triton_type(dtype)


def upcast_acc_dtype(dtype: torch.dtype) -> torch.dtype:
    """Implicit upcasts used for Triton reduction types"""
    if is_integer_dtype(dtype) and dtype.is_signed and dtype.itemsize <= 4:
        return torch.int32
    return upcast_compute_type(dtype)


def triton_acc_type(dtype: torch.dtype) -> str:
    """Convert torch.dtype to triton type, with reduction upcasts"""
    return triton_compute_type(upcast_acc_dtype(dtype))


class TritonCSEVariable(CSEVariable):
    def __init__(self, name, bounds: ValueRanges[Any], dtype: torch.dtype) -> None:
        super().__init__(name, bounds, dtype)
        # We'll use this to track which masks the variable needs when used for indirect indexing
        self.mask_vars: OrderedSet[str] = OrderedSet()
        assert dtype is not None, "TritonCSEVariable must have dtype"

    def update_on_args(self, name, args, kwargs):
        for arg in args:
            if isinstance(arg, TritonCSEVariable):
                self.mask_vars.update(arg.mask_vars)
            elif isinstance(arg, sympy.Symbol) and arg.name[0] in "xyr":
                # most of the time index vars don't need masks associated with them
                # however, when index vars are used to compute indices for indirect reads
                # those reads should subsequently be masked,
                self.mask_vars.update({f"{arg.name[0]}mask"})


def maybe_upcast_float32(convert_output: bool = True):
    """
    Codegen helper to upcast arguments to float32, depending on the config and dtype.
    This decorates tl.math/libdevice codegen functions.
    """

    def needs_upcast(var) -> bool:
        return (
            not config.triton.codegen_upcast_to_fp32
            and isinstance(var, CSEVariable)
            and var.dtype
            in {
                torch.float16,
                torch.bfloat16,
            }
        )

    def maybe_upcast_arg(var) -> str:
        upcast_string = ".to(tl.float32)" if needs_upcast(var) else ""
        return f"{var}{upcast_string}"

    def decorator(func: Callable[..., Any]) -> Callable[..., Any]:
        # Record that this function only supports float32 and float64.
        OpDtypeSupport.register_upcast(func, convert_output)

        def wrapped(*args, **kwargs) -> str:
            # Optionally upcast args to float32.
            upcast_args = [maybe_upcast_arg(arg) for arg in args]
            upcast_kwargs = {key: maybe_upcast_arg(val) for key, val in kwargs.items()}

            # Infer the output dtype from the inputs.
            # This promotes to the largest input type.
            all_args = args + tuple(kwargs.values())
            input_dtypes = [
                var.dtype
                for var in all_args
                if isinstance(var, CSEVariable) and var.dtype is not None
            ]
            result_dtype = (
                functools.reduce(torch.promote_types, input_dtypes)
                if len(input_dtypes) > 0
                else None
            )

            # Call the decorated function, optionally downcasting the result.
            result = func(*upcast_args, **upcast_kwargs)
            needs_downcast = (
                convert_output
                and any(needs_upcast(var) for var in all_args)
                and result_dtype not in {torch.float32, None}
            )
            downcast_string = (
                f".to({triton_type(result_dtype)})"
                if needs_downcast and result_dtype is not None
                else ""
            )
            return f"{result}{downcast_string}"

        return wrapped

    return decorator


class TritonOverrides(OpOverrides):
    """Map element-wise ops to Triton"""

    @staticmethod
    def to_dtype(
        x,
        dtype: torch.dtype,
        src_dtype: Optional[torch.dtype] = None,
        use_compute_types=True,
    ):
        def _get_min_elements_per_thread(
            src_dtype: torch.dtype, dst_dtype: torch.dtype
        ) -> int:
            if src_dtype == dst_dtype:
                # No data type conversion is needed. No requirements on min_elem_per_thread.
                return 0

            # fp8 data type conversions has min_elem_per_thread requirements.
            # Refer to Triton implementations here:
            # https://github.com/openai/triton/blob/10f59d8ce04052521c1bc0cb3a3f8b98918fc7e3/lib/Conversion/TritonGPUToLLVM/ElementwiseOpToLLVM.cpp#L10.
            fp8_dtypes = (
                torch.float8_e4m3fn,
                torch.float8_e5m2,
            )
            # Triton doesn't support type conversions between fp8_e4m3 and fp8_e5m2.
            assert not (
                src_dtype in fp8_dtypes
                and dst_dtype in fp8_dtypes
                and src_dtype != dst_dtype
            ), "Conversions between float8_e5m2 and float8_e4m3fn is not supported!"
            if src_dtype == torch.float8_e5m2 or dst_dtype == torch.float8_e5m2:
                return 4
            if src_dtype == torch.float8_e4m3fn or dst_dtype == torch.float8_e4m3fn:
                return 2
            # No requirements on min_elem_per_thread.
            return 0

        if src_dtype is not None:
            # Both dtype and src_dtype are set. This is used by torch to(dtype=dtype).
            # It takes the maximum min_elem_per_thread if there are multiple fp8 conversions
            # in the same kernel.
            V.kernel.min_elem_per_thread = max(
                _get_min_elements_per_thread(src_dtype, dtype),
                V.kernel.min_elem_per_thread,
            )

        if dtype == torch.bool:
            return f"({x} != 0)"
        elif dtype == torch.uint8:
            # to work around llvm uint conversion semantics
            # that produces 0's for negative values
            return f"{x}.to(tl.int8).to(tl.uint8)"

        if use_compute_types:
            out_dtype = triton_compute_type(dtype)
        else:
            out_dtype = triton_store_type(dtype)

        return f"{x}.to({out_dtype})"

    @staticmethod
    def to_dtype_bitcast(x, dtype: torch.dtype, src_dtype: torch.dtype):
        triton_dtype = triton_compute_type(dtype)
        # We may promote float16 or bfloat16 to float32 and cause the
        # bitwidth of dtype to be different from the input tensor (i.e. float32).
        # In such as case, we will have to convert the input tensor to
        # its src_type, perform bitcast, and then convert the bit-casted
        # tensor back to float to ensure we use values with the right precision.
        if (
            src_dtype in (torch.float16, torch.bfloat16)
            and config.triton.codegen_upcast_to_fp32
        ):
            triton_src_dtype = str(src_dtype).split(".")[-1]
            cast_x = f"{x}.to(tl.{triton_src_dtype})"
            if dtype in (torch.float16, torch.bfloat16):
                triton_type_name = str(dtype).split(".")[-1]
                triton_dtype = f"tl.{triton_type_name}"
            cast_x = f"{cast_x}.to({triton_dtype}, bitcast=True)"
            if dtype in (torch.float16, torch.bfloat16):
                return f"{cast_x}.to(tl.float32)"
            return cast_x
        else:
            src_dtype_bitwidth = _get_primitive_bitwidth(src_dtype)
            target_dtype_bitwidth = _get_primitive_bitwidth(dtype)
            bitcast = "True" if src_dtype_bitwidth == target_dtype_bitwidth else "False"
            return f"{x}.to({triton_dtype}, bitcast={bitcast})"

    @staticmethod
    def _shaped_constant(value, dtype, shape):
        type_ = torch._prims_common.dtype_to_type(dtype)
        triton_val = constant_repr(type_(value))
        triton_type = triton_compute_type(dtype)

        if triton_type == "tl.float32":
            # Float constants are always f32 in triton
            return triton_val

        # NOTE: We use a tensor here in order to get the expected type.
        # Otherwise, e.g. float64 constants would be trunctated to float32.
        return f"tl.full({shape}, {triton_val}, {triton_type})"

    @classmethod
    def constant(cls, value, dtype):
        return cls._shaped_constant(value, dtype, shape=[])

    @staticmethod
    @maybe_upcast_float32()
    def abs(x):
        return f"tl_math.abs({x})"

    @staticmethod
    @maybe_upcast_float32()
    def libdevice_abs(x):
        return f"libdevice.abs({x})"

    @staticmethod
    @maybe_upcast_float32()
    def exp(x):
        return f"tl_math.exp({x})"

    @staticmethod
    @maybe_upcast_float32()
    def libdevice_exp(x):
        return f"libdevice.exp({x})"

    @staticmethod
    @maybe_upcast_float32()
    def exp2(x):
        return f"libdevice.exp2({x})"

    @staticmethod
    @maybe_upcast_float32()
    def expm1(x):
        return f"libdevice.expm1({x})"

    @staticmethod
    @maybe_upcast_float32()
    def sqrt(x):
        return f"libdevice.sqrt({x})"

    @staticmethod
    @maybe_upcast_float32()
    def libdevice_sqrt(x):
        return f"libdevice.sqrt({x})"

    @staticmethod
    def relu(x):
        bug = config.triton.inject_relu_bug_TESTING_ONLY
        if bug == "compile_error":
            return "compile error!"
        elif bug == "runtime_error":
            # NB: this only triggers runtime error as long as input
            # is not all zero
            return f'triton_helpers.device_assert_then({x} == 0, "injected assert fail", {x})'
        elif bug == "accuracy":
            return f"{x} + 1"
        elif bug is None:
            return ops.maximum(ops.constant(0, torch.int32), x)
        else:
            raise AssertionError(
                f"unrecognized config triton.inject_relu_bug_TESTING_ONLY = {bug!r}"
            )

    @staticmethod
    def minimum(a, b):
        return f"triton_helpers.minimum({a}, {b})"

    @staticmethod
    def maximum(a, b):
        return f"triton_helpers.maximum({a}, {b})"

    @staticmethod
    def where(a, b, c):
        return f"tl.where({a}, {b}, {c})"

    @staticmethod
    def inline_asm_elementwise(
        *inputs, asm, constraints=None, dtype=torch.float32, is_pure=True, pack=1
    ):
        triton_type = triton_compute_type(dtype)
        input_refs = ", ".join([str(i) for i in inputs])
        if constraints is None:
            constraints = ", ".join(["=r"] + ["r" for _ in inputs])
        return f"tl.inline_asm_elementwise('{asm}', '{constraints}', [{input_refs}], dtype={triton_type}, is_pure={is_pure}, pack={pack})"  # noqa: B950

    @staticmethod
    @maybe_upcast_float32()
    def cos(x):
        return f"tl_math.cos({x})"

    @staticmethod
    @maybe_upcast_float32()
    def libdevice_cos(x):
        return f"libdevice.cos({x})"

    @staticmethod
    @maybe_upcast_float32()
    def sin(x):
        return f"tl_math.sin({x})"

    @staticmethod
    @maybe_upcast_float32()
    def libdevice_sin(x):
        return f"libdevice.sin({x})"

    @classmethod
    def index_expr(cls, expr, dtype):
        raise NotImplementedError("ops.index_expr not implemented outside a kernel")

    @staticmethod
    def masked(mask, body, other):
        raise NotImplementedError("ops.masked not implemented outside a kernel")

    @staticmethod
    @maybe_upcast_float32()
    def lgamma(x):
        return f"libdevice.lgamma({x})"

    @staticmethod
    @maybe_upcast_float32()
    def erf(x):
        return f"libdevice.erf({x})"

    @staticmethod
    @maybe_upcast_float32()
    def cosh(x):
        return f"libdevice.cosh({x})"

    @staticmethod
    @maybe_upcast_float32()
    def sinh(x):
        return f"libdevice.sinh({x})"

    @staticmethod
    @maybe_upcast_float32()
    def acos(x):
        return f"libdevice.acos({x})"

    @staticmethod
    @maybe_upcast_float32()
    def acosh(x):
        return f"libdevice.acosh({x})"

    @staticmethod
    @maybe_upcast_float32()
    def asin(x):
        return f"libdevice.asin({x})"

    @staticmethod
    @maybe_upcast_float32()
    def asinh(x):
        return f"libdevice.asinh({x})"

    @staticmethod
    @maybe_upcast_float32()
    def atan2(x, y):
        return f"libdevice.atan2({x}, {y})"

    @staticmethod
    @maybe_upcast_float32()
    def atan(x):
        return f"libdevice.atan({x})"

    @staticmethod
    @maybe_upcast_float32()
    def atanh(x):
        return f"libdevice.atanh({x})"

    @staticmethod
    @maybe_upcast_float32()
    def copysign(x, y):
        return f"libdevice.copysign({x}, {y})"

    @staticmethod
    @maybe_upcast_float32()
    def erfc(x):
        return f"libdevice.erfc({x})"

    @staticmethod
    @maybe_upcast_float32()
    def erfinv(x):
        return f"libdevice.erfinv({x})"

    @staticmethod
    @maybe_upcast_float32()
    def hypot(x, y):
        return f"libdevice.hypot({x}, {y})"

    @staticmethod
    @maybe_upcast_float32()
    def log10(x):
        return f"libdevice.log10({x})"

    @staticmethod
    @maybe_upcast_float32()
    def log2(x):
        return f"libdevice.log2({x})"

    @staticmethod
    @maybe_upcast_float32()
    def nextafter(x, y):
        return f"libdevice.nextafter({x}, {y})"

    @staticmethod
    def logical_and(a, b):
        return f"{a} & {b}"

    @staticmethod
    def logical_not(a):
        return f"{a} == 0"

    @staticmethod
    def logical_or(a, b):
        return f"{a} | {b}"

    @staticmethod
    def logical_xor(a, b):
        return f"({a} ^ {b})"

    @staticmethod
    def bitwise_and(a, b):
        return f"{a} & {b}"

    @staticmethod
    def bitwise_not(a):
        return f"~{a}"

    @staticmethod
    def bitwise_or(a, b):
        return f"{a} | {b}"

    @staticmethod
    def bitwise_xor(a, b):
        return f"{a} ^ {b}"

    @staticmethod
    def bitwise_left_shift(a, b):
        return f"{a} << {b}"

    @staticmethod
    def bitwise_right_shift(a, b):
        return f"{a} >> {b}"

    @staticmethod
    def rand(seed, offset):
        offset = f"({offset}).to(tl.uint32)"
        return f"tl.rand({seed}, {offset})"

    @staticmethod
    def randn(seed, offset):
        offset = f"({offset}).to(tl.uint32)"
        return f"tl.randn({seed}, {offset})"

    @staticmethod
    def randint64(seed, offset, low, high):
        offset = f"({offset}).to(tl.uint32)"
        return f"triton_helpers.randint64({seed}, {offset}, {low}, {high})"

    @staticmethod
    def load_seed(name, offset):
        raise NotImplementedError("ops.load_seed not implemented outside a kernel")

    @staticmethod
    @maybe_upcast_float32()
    def rsqrt(x):
        return f"libdevice.rsqrt({x})"

    @staticmethod
    @maybe_upcast_float32()
    def log1p(x):
        return f"libdevice.log1p({x})"

    @staticmethod
    @maybe_upcast_float32()
    def tan(x):
        return f"libdevice.tan({x})"

    @staticmethod
    @maybe_upcast_float32()
    def tanh(x):
        return f"libdevice.tanh({x})"

    @staticmethod
    @maybe_upcast_float32()
    def sigmoid(x):
        return f"tl.sigmoid({x})"

    @staticmethod
    def signbit(x):
        # XX: This is wrong for the value -0.0 in floating point
        return (
            f"(libdevice.signbit({x}) != 0) if ({x}).dtype is tl.float32 else {x} < 0"
        )

    @staticmethod
    @maybe_upcast_float32()
    def fmod(a, b):
        return f"libdevice.fmod({a}, {b})"

    @staticmethod
    @maybe_upcast_float32()
    def pow(a, b):
        return f"libdevice.pow({a}, {b})"

    @staticmethod
    @maybe_upcast_float32()
    def log(x):
        return f"tl_math.log({x})"

    @staticmethod
    @maybe_upcast_float32()
    def libdevice_log(x):
        return f"libdevice.log({x})"

    @staticmethod
    @maybe_upcast_float32(convert_output=False)
    def isinf(x):
        return f"libdevice.isinf({x}).to(tl.int1)"

    @staticmethod
    @maybe_upcast_float32(convert_output=False)
    def isnan(x):
        return f"libdevice.isnan({x}).to(tl.int1)"

    @staticmethod
    @maybe_upcast_float32()
    def round(x):
        return f"libdevice.nearbyint({x})"

    @staticmethod
    @maybe_upcast_float32()
    def floor(x):
        return f"libdevice.floor({x})"

    @staticmethod
    def floordiv(a, b):
        # See the comment in lowering.div_mode. a and b are integer type.
        # Similar to div_floor_kernel_cuda in pytorch core.
        # Notice that // in triton behaves as truncdiv instead of floordiv
        quot = f"{a} // {b}"
        rem = f"{a} % {b}"
        return f"tl.where(({a} < 0) != ({b} < 0), tl.where({rem} != 0, {quot} - 1, {quot}), {quot})"

    @staticmethod
    def sign(x):
        z = ops.constant(0, torch.int32)
        left = ops.to_dtype((ops.lt(z, x)), torch.int8)
        right = ops.to_dtype((ops.lt(x, z)), torch.int8)
        sub = ops.sub(left, right)
        return f"{sub}.to({x}.dtype)"

    @staticmethod
    @maybe_upcast_float32()
    def trunc(x):
        return f"libdevice.trunc({x})"

    @staticmethod
    def truncdiv(a, b):
        # See the comment in lowering.div_mode. a and b are integer type.
        # Notice that // in triton behaves as truncdiv instead of floordiv
        return f"{a} // {b}"

    @staticmethod
    @maybe_upcast_float32()
    def ceil(x):
        return f"libdevice.ceil({x})"


TritonOverrides._initialize_pointwise_overrides("triton")


# Use mypy to check protocol implemented correctly
def _typecheck_TritonOverrides(h: TritonOverrides) -> OpsHandler[str]:
    return h


class TritonKernelOverrides(TritonOverrides):
    """Map element-wise ops to Triton within a TritonKernel

    Unlike TritonOverrides, these assume the code is going to be inserted into
    the body of the main triton kernel and so it may use indexing and mask
    variables which are assumed to already be defined in the current scope.
    """

    @classmethod
    def constant(cls, value, dtype):
        # NOTE: Cannot use shape=[] as it's not supported by triton-rocm
        # We could use shape=[1] instead but starting with the correct
        # ndim avoids extra `tt.expand_dim` ops appearing in the triton IR.
        ndim = V.kernel.triton_tensor_ndim()
        shape = [1] * ndim
        return cls._shaped_constant(value, dtype, shape=shape)

    @classmethod
    def index_expr(cls, expr, dtype):
        indexing = V.kernel.indexing(expr, block_ptr=False)
        assert isinstance(indexing, IndexingOptions)

        # Our sympy expr printing casts to the current kernel index dtype.
        # we only respect non int32-int64 dtypes and otherwise use current kernel indexing dtype
        index_dtype = torch.int32 if V.kernel.index_dtype == "tl.int32" else torch.int64
        dtype = dtype if dtype not in (torch.int32, torch.int64) else index_dtype
        var = V.kernel.cse.generate(
            V.kernel.compute,
            indexing.index_str,
            bounds=get_bounds_index_expr(expr),
            dtype=dtype,
        )

        if dtype not in (torch.int32, torch.int64):
            var = V.kernel.cse.generate(
                V.kernel.compute,
                cls.to_dtype(var, dtype),
                dtype=upcast_compute_type(dtype),
            )
        else:
            # TODO: we are not always consistent in enforcing that the output of the index expr printing
            # results in the indexing dtype. So if we detect that we have an input which might type promote
            # to a dtype other than indexing dtype, add a cast.
            # Trying to avoid
            dtype = index_dtype
            for index_var in expr.free_symbols:
                if symbol_is_type(index_var, SymT.TMP):
                    dtype = torch.promote_types(
                        dtype, V.kernel.cse.varname_map[index_var.name].dtype
                    )

            if dtype != index_dtype:
                var = V.kernel.cse.generate(
                    V.kernel.compute,
                    cls.to_dtype(var, index_dtype),
                    dtype=index_dtype,
                )

        var.mask_vars = indexing.mask_vars
        return var

    @staticmethod
    def masked(mask, body, other):
        if mask is not None and torch.version.hip is not None:
            mask = V.kernel.cse.generate(
                V.kernel.compute,
                f"{mask}.to(tl.int1)",
                dtype=torch.bool,
            )

        nodes = body.graph.find_nodes(op="output")
        assert nodes, "graph for body does not contain an output"

        need_where = False
        for node in nodes:
            for arg in node.args:
                if arg.target != "load" or should_unwrap_unspec_arg(arg.args[0]):
                    need_where = True

        value = None if need_where else other

        with V.kernel.mask_loads(mask, value=value) as new_mask:
            result = body()

        if need_where:
            # Remove once CSEVariables track the dtype
            if result.bounds.is_bool:
                other = bool(other)
            # Take dtype from result to prevent accidental promotion
            other = V.kernel.cse.generate(
                V.kernel.compute,
                f"tl.full({result}.shape, {constant_repr(other)}, {result}.dtype)",
                bounds=ValueRanges.wrap(other),
                dtype=result.dtype,
            )
            ret = ops.where(new_mask, result, other)
        else:
            ret = result

        ret.mask_vars.discard(new_mask)
        return ret

    @staticmethod
    def load_seed(name, offset):
        var = V.kernel.args.input(name)
        return (
            f"tl.load({var} + {V.kernel.args.seed_offset('load_seed_offset', offset)})"
        )

    @staticmethod
    def frexp(x):
        cache_key = f"frexp({x})"
        if cse_val := V.kernel.cse.try_get(cache_key):
            return cse_val

        mantissa = V.kernel.cse.newvar(dtype=x.dtype)
        exponent = V.kernel.cse.newvar(dtype=torch.int32)
        V.kernel.compute.writeline(
            f"{mantissa}, {exponent} = triton_helpers.frexp({x})"
        )
        V.kernel.cse.put(cache_key, (mantissa, exponent))
        return (mantissa, exponent)


# Use mypy to check protocol implemented correctly
def _typecheck_TritonKernelOverrides(h: TritonKernelOverrides) -> OpsHandler[str]:
    return h


class HelperFunctions:
    """An ordered set of helper functions."""

    _templates_seen: Dict[str, str]  # Template code to function name
    finalized_helpers: List[str]

    def __init__(self) -> None:
        self._templates_seen = {}
        self.finalized_helpers = []

    def add(self, template_code: str, *, base_name="_triton_helper_fn") -> str:
        """This accepts a function definition with the function name
        left as a format specifier e.g.

            @triton.jit
            def {name}(arg0, arg1):
                return arg0 + arg1

        We add the templated code to the function set and return the name
        assigned to that function.

        """
        existing_name = self._templates_seen.get(template_code)
        if existing_name is not None:
            # Don't duplicate existing helpers
            return existing_name

        name = f"{base_name}{len(self.finalized_helpers)}"
        self._templates_seen[template_code] = name
        self.finalized_helpers.append(template_code.format(name=name))
        return name

    def __iter__(self):
        return iter(self.finalized_helpers)

    def __getitem__(self, idx):
        return self.finalized_helpers[idx]


@dataclasses.dataclass
class BlockParameters:
    """
    Class representing ND block dimensions, for block pointer analysis.
    """

    shape: List[sympy.Expr] = dataclasses.field(default_factory=list)
    block_shape: List[sympy.Expr] = dataclasses.field(default_factory=list)
    strides: List[sympy.Expr] = dataclasses.field(default_factory=list)
    offsets: List[sympy.Expr] = dataclasses.field(default_factory=list)

    def __add__(self, other: BlockParameters) -> BlockParameters:
        """
        Concatenates block parameters.
        """
        cls = type(self)
        a, b = tuple(dataclasses.asdict(x) for x in (self, other))
        return cls(**{key: a[key] + b[key] for key in a})


class CooperativeReductionWorkspaceCache:
    """
    The scratch space used for cooperative reductions can be reused
    after two reduction loops.  This keeps track of what can be reused.
    """

    def __init__(self, args):
        self.args = args
        self.current_loop = []
        self.prior_loop = []
        self.ready_for_reuse = collections.defaultdict(collections.deque)
        self.loop_count = 0
        self.store_count = 0

    def allocate(self, nbytes: sympy.Expr):
        cached = self.ready_for_reuse.get(nbytes)
        if cached:
            return cached.popleft()
        ws_name, ws_offset = self.args.workspace(nbytes, False)
        self.current_loop.append((nbytes, ws_name, ws_offset))
        return (ws_name, ws_offset)

    def on_loop_end(self):
        # Buffers can be reused after 2 loop ends
        for nbytes, ws_name, ws_offset in self.prior_loop:
            self.ready_for_reuse[nbytes].append((ws_name, ws_offset))
        self.prior_loop = self.current_loop
        self.current_loop = []
        self.loop_count += 1

    def increment_store_count(self):
        prior = self.store_count
        self.store_count += 1
        return prior


@dataclasses.dataclass
class FixedTritonConfig:
    config: Dict[str, int]

    def __getitem__(self, item):
        return self.config[item]


class TritonCSE(CSE):
    """
    Subclasses CSE to apply the current load mask to the cache key to avoid CSEing
    variables across separate masked blocks.
    """

    def augment_key(self, cache_key: object) -> object:
        if mask := V.kernel._load_mask:
            return (cache_key, mask.name)
        else:
            return cache_key


class TritonKernel(SIMDKernel):
    overrides = TritonKernelOverrides  # type: ignore[assignment]
    helper_functions: HelperFunctions
    kexpr: Callable[[sympy.Expr], str] = texpr
    allow_block_ptr = True

    def __init__(
        self,
        tiling: Dict[str, sympy.Expr],
        min_elem_per_thread=0,
        optimize_mask=True,
        fixed_config: Optional[FixedTritonConfig] = None,
        **kwargs,
    ) -> None:
        self.optimize_mask: bool = optimize_mask
        self.fixed_config = fixed_config
        super().__init__(tiling, **kwargs)
        self.cse = TritonCSE(self.newvar_prefix, self.suffix)
        self.post_loop_combine: IndentedBuffer = IndentedBuffer()
        self.post_loop_store: IndentedBuffer = IndentedBuffer()
        self.outside_loop_vars: OrderedSet[Any] = OrderedSet()
        self.min_elem_per_thread = min_elem_per_thread
        self.block_ptr_id = itertools.count()
        self.helper_functions = HelperFunctions()
        self._load_counts: collections.Counter[str] = collections.Counter()

        # A set of autotuning hints to pass as part of triton_meta
        self.autotune_hints: OrderedSet[AutotuneHint] = OrderedSet()
        self.triton_meta: Optional[Dict[str, Any]] = None

        if self.cooperative_reduction:
            self.init_cooperative_reduction()

        self.codegen_range_tree()

    def dtype_to_str(self, dtype: torch.dtype) -> str:
        return triton_type(dtype)

    def should_use_cooperative_reduction(self) -> bool:
        return self.inside_reduction and V.choices.should_use_cooperative_reduction(
            self.features
        )

    def init_cooperative_reduction(self):
        """One time setup code for cooperative reductions."""
        assert self.cooperative_reduction

        # shift all the grids over since tl.program_id(0) is for rsplit
        for tree in self.range_trees:
            if tree.grid_dim is not None:
                tree.grid_dim += 1

        sem_count = self.numels["x"]
        if self.fixed_config:
            sem_count = CeilDiv(sem_count, self.fixed_config["XBLOCK"])
        self.semaphores_name = self.args.semaphores(sem_count)
        self.cooperative_reduction_workspace_cache = CooperativeReductionWorkspaceCache(
            self.args
        )
        self.body.splice(
            """
            rsplit_id = tl.program_id(0)
            num_rblocks = (rnumel + RBLOCK - 1) // RBLOCK
            rsplit_chunk = (num_rblocks + RSPLIT - 1) // RSPLIT * RBLOCK
            rsplit_start = rsplit_chunk * rsplit_id
            rsplit_end = rsplit_chunk * (rsplit_id + 1)
            """,
            strip=True,
        )
        if not self._has_constant_mask(self.range_trees[-1]):
            self.body.writeline(
                "rsplit_end = tl.where(rsplit_end < rnumel, rsplit_end, rnumel)"
            )

    def codegen_range_tree(self):
        for tree in self.range_trees:
            # reduction indexing goes inside a loop
            if not tree.is_loop:
                self.iteration_ranges_codegen_header(tree, self.body)
        if self.inside_reduction and self.range_trees[-1].is_loop:
            # workaround for this issue:
            # https://gist.github.com/jansel/6527126f781559095c5531f98a4235a7
            self.body.writeline(
                f"rbase = {self.iteration_ranges_ranges_code(self.range_trees[-1])}"
            )

    def need_numel_args(self):
        r"""
        Indicate whether we need provide numel as arguments for the generated
        kernel calls in the benchmark.

        Should be true for pointwise/reduction kernels but false for triton
        matmul kernels.
        """
        return True

    def should_use_persistent_reduction(self) -> bool:
        return self.inside_reduction and V.choices.should_use_persistent_reduction(
            self.features, self.cooperative_reduction
        )

    def want_no_x_dim(self):
        if self.persistent_reduction and len(self.numels) == 2:
            if self.fixed_config:
                return self.fixed_config["XBLOCK"] == 1
            return V.choices.want_no_x_dim(self.features)
        return False

    @property
    def assert_function(self) -> str:
        return "tl.device_assert"

    def indexing(
        self,
        index: sympy.Expr,
        *,
        copy_shape=None,
        dense_indexing=False,
        override_mask=None,
        block_ptr=False,
    ):
        """
        Compute the index and mask to pass to tl.load() or tl.store()
        """
        index = self.prepare_indexing(index)
        index_vars = index.free_symbols
        has_rindex = False

        mask_vars: OrderedSet[str] = OrderedSet()
        for var in index_vars:
            assert isinstance(var, sympy.Symbol)
            has_rindex = has_rindex or symbol_is_type(var, SymT.RINDEX)
            if override_mask:
                pass
            elif symbol_is_type(var, SymT.TMP):
                # indirect indexing
                cse_var = self.cse.varname_map[var.name]
                mask_vars.update(cse_var.mask_vars)
            elif symbol_is_type(
                var,
                (
                    SymT.UNBACKED_INT,
                    SymT.SIZE,
                    SymT.PRECOMPUTED_SIZE,
                    SymT.INDEX,
                    SymT.FLOAT,
                    SymT.UNBACKED_FLOAT,
                ),
            ):
                pass
            else:
                # var is one of xN, yN or rN
                assert symbol_is_type(
                    var, (SymT.RINDEX, SymT.XBLOCK, SymT.YBLOCK, SymT.ZBLOCK)
                ), var.name
                mask_vars.add(f"{var.name[0]}mask")

        need_dense = (
            config.triton.dense_indexing
            or dense_indexing
            or self._load_mask is not None
        ) and index != 0

        have_dense = True
        have_loop_vars = False
        dense_mask_vars: OrderedSet[str] = OrderedSet()

        for tree in self.active_range_trees():
            if index_vars.intersection(tree.var_list):
                have_loop_vars = True
            else:
                have_dense = False
            dense_mask_vars.add(f"{tree.prefix}mask")

        if (
            block_ptr
            and self.allow_block_ptr
            and config.triton.use_block_ptr
            and not override_mask
            and not self._load_mask
            and len(mask_vars - dense_mask_vars) == 0
            and not self.is_indirect_indexing(index)
            and have_loop_vars
            # workaround https://github.com/openai/triton/issues/2821
            and self.index_dtype == "tl.int32"
        ):

            def match_strided_block(
                index: sympy.Expr, range_tree: IterationRangesEntry
            ) -> Optional[BlockParameters]:
                """
                Matches expressions of the form:
                    idx = s * xindex

                This implies stride (s,), and shape (XBLOCK,).
                """
                symbol = range_tree.symbol()
                stride = sympy.Wild("stride", exclude=[symbol])
                m = index.match(symbol * stride)
                if m is None:
                    return None

                return BlockParameters(
                    shape=[range_tree.numel],
                    block_shape=[TritonSymbols.get_block_size(range_tree)],
                    strides=[m[stride]],
                    offsets=[TritonSymbols.get_block_offset(range_tree)],
                )

            def match_mod_div_block(
                index: sympy.Expr, range_tree: IterationRangesEntry
            ) -> Optional[BlockParameters]:
                """
                Matches higher-dimensional blocks coming from FloorDiv and ModularIndexing.

                Example expression to match:
                   sN * ((rindex//(d1 * ... * d(N-1))))
                       + s1 * ModularIndexing(rindex, 1, d1)
                       + ...
                       + s(N-1) * ModularIndexing(rindex, d1 * ... * d(N-2), d(N-1))

                This iterates over a block of shape (dN, ..., d1) and stride
                (sN, ..., s1). (d1,...,d(N-1)) and (s1,...,sN) are
                wildcards that we match.

                Note that dN does not appear in the expression, but we solve for it
                using range tree numels and the other dims.
                """
                # Bound the possible number of dims. We use the following heuristics:
                # - At least one dim for each range tree node.
                # - At least one dim for every FloorDiv or ModularIndexing op.
                # - At least 2 dims to pattern match.
                num_dims = max(
                    2,
                    len(self.range_tree_nodes),
                    (index.count(FloorDiv) + index.count(ModularIndexing)),
                )

                # Pattern match to find the strides and offset.
                index_var = range_tree.symbol()
                match_result = BlockPatternMatcher.match_mod_div_block_expr(
                    index, index_var, range_tree.numel, num_dims
                )
                if match_result is None:
                    return None

                (
                    dims,
                    strides,
                    block_index_exprs,
                ) = match_result
                slice_numels = BlockPatternMatcher.get_slice_numels(dims)

                # Check for applicable iteration range sizes.
                # When mapping a 1D block into an ND one, we need to know that
                # the number of elements is not changed. This means the slice numels of
                # the ND iteration range must evenly divide the length of the 1D block.
                # There are two cases where we can guarantee this:
                #  1. Numels are powers of 2. If numel == 2 ** n, and we know XBLOCK == 2 ** m,
                #     with n and m integers, then either numel is a multiple of XBLOCK, or numel
                #     is less than XBLOCK. (If numel is less than XBLOCK, we round up to 1 below.)
                #  2. Numels are multiples of the maximum possible block size.
                sizevars = V.graph.sizevars
                max_block = self.max_block(range_tree.prefix)
                if any(
                    not sizevars.statically_known_multiple_of(numel, max_block)
                    and not sizevars.statically_known_power_of_2(numel)
                    for numel in slice_numels
                ):
                    return None

                # Compute the ND block shape from the linear block size.
                # Use CielDiv to round leading dimensions up to 1.
                # Non-leading dimensions are clamped to the size of the iteration range,
                # while the leading dimension can exceed this to accomodate a larger
                # block size.
                linear_block_size = TritonSymbols.get_block_size(range_tree)
                block_shape: List[sympy.Expr] = [
                    CeilDiv(linear_block_size, slice_numels[0])
                ] + [
                    sympy.Min(CeilDiv(linear_block_size, numel), dim)
                    for numel, dim in zip(slice_numels[1:], dims[1:])
                ]

                # Compute block offsets from {xyzr}offset and the matched expressions.
                block_offsets: List[sympy.Expr] = [
                    sympy_subs(
                        expr, {index_var: TritonSymbols.get_block_offset(range_tree)}
                    )
                    for expr in block_index_exprs
                ]

                return BlockParameters(
                    shape=dims,
                    block_shape=block_shape,
                    strides=strides,
                    offsets=block_offsets,
                )

            def match_block_pointer_subexpr(
                expr: sympy.Expr, range_tree: IterationRangesEntry
            ) -> Optional[BlockParameters]:
                """
                Match a block indexing subexpression involving a single range tree.
                """
                for match_func in (
                    match_strided_block,
                    match_mod_div_block,
                ):
                    match = match_func(expr, range_tree)
                    if match is not None:
                        return match

                return None

            def match_block_pointer() -> Optional[BlockPtrOptions]:
                index_relative_to_xyr_index = sympy_subs(
                    index, {v: t.expr for v, t in self.range_tree_nodes.items()}
                )
                range_trees = self.active_range_trees(reorder=True)

                # Partition the index into subexpressions pertaining to each range tree.
                # For example xindex * 5 + rindex * 3 is partitioned to
                # (xindex * 5, rindex * 3).
                index_subexprs = [
                    BlockPatternMatcher.get_subexpr_involving_symbol(
                        index_relative_to_xyr_index, tree.symbol()
                    )
                    for tree in range_trees
                ]

                # Match each range tree's subexpression separately.
                range_symbols = {tree.symbol() for tree in range_trees}
                block_params = BlockParameters()
                for tree, subexpr in zip(range_trees, index_subexprs):
                    # Reject mixed terms, e.g. xindex * rindex.
                    # NB: the zero expression is allowed, for broadcasting.
                    if len(range_symbols.intersection(subexpr.free_symbols)) > 1:
                        return None

                    # Match the subexpression for this range tree.
                    params = match_block_pointer_subexpr(subexpr, tree)
                    if params is None:
                        return None
                    block_params += params

                # Collect leftover terms as a constant offset.
                offset = index_relative_to_xyr_index - sum(index_subexprs)

                # Form the block pointer.
                self.filter_masks(mask_vars)
                return BlockPtrOptions.create(
                    params=block_params,
                    constant_offset=offset,
                    range_trees=range_trees,
                    mask_vars=mask_vars,
                    get_max_block=self.max_block,
                )

            # Return a block pointer, if indexing matches the pattern.
            options = match_block_pointer()
            if options is not None:
                return options

        expand_str = None
        index_str = self.index_to_str(index)
        if isinstance(index, sympy.Integer):
            expand_str = f"{copy_shape}.shape" if copy_shape else self.dense_size_str()
            index_str = f"tl.full({expand_str}, {index_str}, tl.int32)"
            return IndexingOptions(
                index_str, OrderedSet(), "None", expand_str, has_rindex, index
            )

        if need_dense and not have_dense:
            expand_str = f"{copy_shape}.shape" if copy_shape else self.dense_size_str()
            index_str = f"tl.broadcast_to({index_str}, {expand_str})"
            mask_vars = dense_mask_vars
        elif not have_loop_vars and copy_shape:
            index_str = f"tl.broadcast_to({index_str}, {copy_shape}.shape)"
            mask_vars = dense_mask_vars

        if override_mask:
            mask_vars = OrderedSet([override_mask])

        if self._load_mask:
            mask_vars.add(self._load_mask)

        self.filter_masks(mask_vars)

        mask_str = " & ".join(sorted(map(str, mask_vars))) if mask_vars else "None"
        return IndexingOptions(index_str, mask_vars, mask_str, expand_str, has_rindex, index)  # type: ignore[arg-type]

    def codegen_block_ptr(
        self, name: str, var: str, indexing: BlockPtrOptions, other=""
    ) -> Tuple[str, Optional[DeferredLine], str]:
        advance_block_ptr = None
        check = indexing.boundary_check()
        if not check:
            # workaround https://github.com/openai/triton/issues/2813
            other = ""
        elif other:
            assert other == ", other=0.0"
            other = f", boundary_check={check!r}, padding_option='zero'"
        else:
            other = f", boundary_check={check!r}"
        if (
            self.inside_reduction
            and self.range_trees[-1].is_loop
            and indexing.has_rindex()
        ):
            block_ptr = f"block_ptr{next(self.block_ptr_id)}"
            self.body.writeline(
                DeferredLine(
                    name, f"{block_ptr} = {indexing.format(var, roffset=False)}"
                )
            )
            advance_block_ptr = DeferredLine(
                name,
                f"{block_ptr} = tl.advance({block_ptr}, {indexing.advance_roffset()})",
            )
        else:
            block_ptr = indexing.format(var)
        return block_ptr, advance_block_ptr, other

    def codegen_block_ptr_store_line(self, name, indexing, block_ptr, value, other=""):
        # Stores require an explicit broadcast.
        value = indexing.codegen_broadcast_and_reshape(
            value, indexing.final_shape, indexing.block_shape, False
        )

        # workaround https://github.com/openai/triton/issues/2814
        value = f"{value}.to({triton_store_type(V.graph.get_dtype(name))})"
        return f"tl.store({block_ptr}, {value}{other})"

    def check_bounds(
        self,
        expr: sympy.Expr,
        size: sympy.Expr,
        lower: bool,
        upper: bool,
    ):
        if not (lower or upper):
            return

        assert isinstance(expr, sympy.Expr)
        indexing = self.indexing(expr, block_ptr=False)
        assert isinstance(indexing, IndexingOptions)

        index_str = indexing.index_str
        mask_str = indexing.mask_str if indexing.has_mask() else None
        size_str = texpr(self.rename_indexing(size)) if upper else None

        # expr is already wrapped
        line = self.indirect_assert(
            index_str, "0" if lower else None, size_str, mask_str
        )

        buffer = self.get_load_buffer(indexing)
        self.cse.generate(buffer, line, assignment=False, dtype=torch.int32)

    def get_load_buffer(self, indexing):
        if indexing.has_indirect() or indexing.has_tmpmask():
            # Masked loads must come after the mask is computed
            return self.compute
        elif (
            self.inside_reduction
            and self.range_trees[-1].is_loop
            and not indexing.has_rindex()
        ):
            # can lift a common load outside of reduction loop
            # One exception is when this is an indirect_load.
            return self.body
        else:
            return self.loads

    def load(self, name: str, index: sympy.Expr):
        var = self.args.input(name)
        load_counts = self._load_counts
        load_counts[name] += 1
        make_line: Callable[[str], Union[str, DelayReplaceLine]] = identity
        indirect_indexing = self.is_indirect_indexing(index)
        original_index = index
        indexing = self.indexing(index, block_ptr=True)
        has_rindex = indexing.has_rindex()
        has_tmpmask = indexing.has_tmpmask()

        # Keep the variable in cache if were going to reuse it. Equiv., if any of the following hold
        #  1) We are doing broadcasting
        #  2) It is a non-coalesced load. The intuition is that if it's
        #  non-coalesced, we will likely load each element multiple times in
        #  practice.
        #  3) It will be used later and it won't be CSE'd. Equiv., if all the following hold
        #   3.1) We are in a reduction loop
        #   3.2) Its not its last use
        #   3.3) This load will not be lifted to the body
        #
        is_coalesced = any(
            i == 1 for i in self.get_strides_of_load(original_index).values()
        )
        if self.is_broadcasted(original_index):
            ep = ", eviction_policy='evict_last'"
        elif not is_coalesced:
            ep = ", eviction_policy='evict_last'"
        elif self.inside_reduction and self.range_trees[-1].is_loop:

            def decide_later():
                if load_counts[name] > expected_count and (
                    has_rindex or indirect_indexing
                ):
                    return "evict_last"
                return "evict_first"

            expected_count = load_counts[name]
            ep = ", eviction_policy='<EP>'"
            make_line = functools.partial(DelayReplaceLine, "<EP>", decide_later)
        else:
            ep = ""

        if (has_tmpmask or has_rindex) and indexing.has_mask():
            if self._load_other:
                other = f", other={constant_repr(self._load_other)}"
            else:
                other = ", other=0.0"
        else:
            other = ""

        advance_block_ptr = None
        append_broadcast = None
        dtype = V.graph.get_dtype(name)

        if should_unwrap_unspec_arg(name):
            line = var
        else:
            if isinstance(indexing, BlockPtrOptions):
                block_ptr, advance_block_ptr, other = self.codegen_block_ptr(
                    name, var, indexing, other
                )
                line = f"tl.load({block_ptr}{other}{ep})"
                line = indexing.codegen_broadcast_and_reshape(
                    line, indexing.block_shape, indexing.final_shape, True
                )

            elif isinstance(original_index, sympy.Integer):
                line = f"tl.load({var} + ({original_index}))"
                append_broadcast = indexing.expand_str
            else:
                line = f"tl.load({var} + ({indexing.index_str}), {indexing.mask_str}{ep}{other})"

            if (
                dtype in (torch.float16, torch.bfloat16)
                and config.triton.codegen_upcast_to_fp32
            ):
                line += ".to(tl.float32)"
                dtype = torch.float32
            if dtype == torch.bool and torch.version.hip is None:
                # Workaround for https://github.com/openai/triton/issues/2151
                # tl.load returns int8 when loading from pointer to int1
                # NOTE: Currently causes hangs on bool UTs for ROCm
                line += ".to(tl.int1)"
                dtype = torch.bool

        load_buffer = self.get_load_buffer(indexing)
        result_var = self.cse.generate(load_buffer, make_line(line), dtype=dtype)
        if result_var.use_count > 1:
            load_counts[name] -= 1  # don't double count cache hit
        assert isinstance(result_var, TritonCSEVariable)
        result_var.mask_vars = indexing.mask_vars  # type: ignore[assignment]

        if append_broadcast:
            line = f"tl.broadcast_to({result_var}, {append_broadcast})"
            result_var = self.cse.generate(load_buffer, line, dtype=dtype)

        if advance_block_ptr:
            load_buffer.writeline(advance_block_ptr)

        if not self.inside_reduction or (not indexing.has_rmask() and not has_rindex):
            self.outside_loop_vars.add(result_var)

        return result_var

    def store(
        self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
    ) -> None:
        var = self.args.output(name)
        original_index = index
        indexing = self.indexing(index, dense_indexing=True, block_ptr=mode is None)

        # Guard against write-after-read corruption in triton.
        # See # https://github.com/openai/triton/issues/1615
        # This triton bug means that a load which is broadcasted over multiple
        # warps may see the result of a store that happens later in the triton
        # program. The workaround is to add a barrier before storing, which
        # enforces that all warps have already read the data.
        is_inplace = name in self.args.inplace_buffers
        is_broadcasted = self.is_broadcasted(original_index)
        if is_inplace and is_broadcasted:
            self.stores.writeline(DeferredLine(name, "tl.debug_barrier()"))

        advance_block_ptr = None
        if isinstance(indexing, BlockPtrOptions):
            block_ptr, advance_block_ptr, other = self.codegen_block_ptr(
                name, var, indexing
            )
            # block_ptr stores don't do implicit casting
            line = self.codegen_block_ptr_store_line(
                name, indexing, block_ptr, value, other
            )
        elif mode is None:
            line = f"tl.store({var} + ({indexing.index_str}), {value}, {indexing.mask_str})"
        elif mode == "atomic_add":
            line = f"tl.atomic_add({var} + ({indexing.index_str}), {value}, {indexing.mask_str}, sem='relaxed')"
        else:
            raise NotImplementedError(f"store mode={mode}")

        exit_stack = contextlib.ExitStack()
        if not self.inside_reduction and self.cooperative_reduction:
            exit_stack.enter_context(self.guard_cooperative_store(name, self.stores))

        self.stores.writeline(DeferredLine(name, line))
        if advance_block_ptr:
            self.stores.writeline(advance_block_ptr)

        if not self.inside_reduction:
            self.outside_loop_vars.add(value)

        exit_stack.close()

    def guard_cooperative_store(self, name, buffer):
        """
        For cooperative reductions only one thread block should write out the result.
        We rotate which thread block does each write for better parallelism
        """
        idx = self.cooperative_reduction_workspace_cache.increment_store_count()
        buffer.writeline(DeferredLine(name, f"if rsplit_id == ({idx} % RSPLIT):"))
        return buffer.indent()

    def bucketize(
        self,
        values: CSEVariable,
        boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
        boundary_indices: CSEVariable,
        indexing_dtype: torch.dtype,
        right: bool,
        sorter: Optional[Tuple[str, sympy.Expr]] = None,
        sorter_indices: Optional[CSEVariable] = None,
    ) -> CSEVariable:
        """
        See [Note: Inductor bucketize op]
        """

        # Triton performance for bucketize_binary_search is much better when the number
        # of threads equals the number of elements.
        # If we're trying to use a bucketize kernel, we should make sure that an
        # autotuning config with num_elements_per_warp=(warp_size) exists.
        self.autotune_hints.add(AutotuneHint.ONE_ELEMENT_PER_THREAD)

        boundaries_ptr = self.args.input(boundaries[0])
        boundary_size = self.index_to_str(boundaries[1])
        boundaries_underlying_numel = self.index_to_str(boundaries[2])
        boundary_stride = self.index_to_str(boundaries[3])
        sorter_ptr = self.args.input(sorter[0]) if sorter else "None"
        sorter_stride = self.index_to_str(sorter[1]) if sorter else "None"
        block_size = self.dense_size_str()

        if indexing_dtype == torch.int32:
            triton_dtype = "tl.int32"
        elif indexing_dtype == torch.int64:
            triton_dtype = "tl.int64"
        else:
            raise NotImplementedError(
                "Bucketize only supports indexing with int32 and int64"
            )

        result = self.cse.generate(
            self.compute,
            f"triton_helpers.bucketize_binary_search({values}, "
            f"{boundaries_ptr}, {boundary_size}, {boundaries_underlying_numel}, {boundary_stride}, "
            f"{boundary_indices}, "
            f"{triton_dtype}, "
            f"{right}, "
            f"{sorter_ptr}, {sorter_stride}, "
            f"{sorter_indices}, "
            f"{block_size}, "
            ")",
            dtype=indexing_dtype,  # type: ignore[attr-defined]
        )

        return result

    def reduction_resize(self, value):
        ndims = self.triton_tensor_ndim()
        if ndims == 1:
            return f"triton_helpers.promote_to_tensor({value})"

        sizes = [":"] * ndims
        sizes[-1] = "None"
        return f"{value}[{', '.join(sizes)}]"

    def reduction(
        self,
        dtype: torch.dtype,
        src_dtype: torch.dtype,
        reduction_type: ReductionType,
        value: Union[CSEVariable, Tuple[CSEVariable, ...]],
    ) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
        assert self.inside_reduction
        masks = OrderedSet(f"{tree.prefix}mask" for tree in self.range_trees)
        self.filter_masks(masks)
        masks = sorted(masks)
        if self._load_mask:
            masks.append(self._load_mask)
        reduction_range_prefix = self.range_trees[-1].prefix

        # Say we have
        #     tmp0 = ops.constant(1, torch.int64)
        #     tmp1 = ops.reduction(torch.int64, torch.int64, "sum", tmp0)
        # tmp0 in the triton code is either a scalar, or single-element tensor
        # so if we emit tl.sum directly, it will only give 1 instead of RBLOCK * 1
        # To avoid this, we broadcast to the expected shape first.
        dense_size_str = self.dense_size_str()
        value = self._map_tuple_or_scalar(
            lambda v: self.cse.generate(
                self.compute,
                f"tl.broadcast_to({v}, {dense_size_str})",
                dtype=v.dtype,
            ),
            value,
        )

        dim: int
        root_op: str

        def final_reduction(value):
            use_helper = reduction_type in {"any", "max", "min", "prod"}
            module = "triton_helpers" if use_helper else "tl"
            if reduction_type in {"max", "min"}:
                return self.reduction_resize(
                    f"{module}.{reduction_type}2({value}, {dim})"
                )
            return self.reduction_resize(f"{module}.{reduction_type}({value}, {dim})")

        def final_argreduce(buffer, result_var, value, index):
            buffer.splice(
                f"""\
                {result_var}_val, {result_var}_idx = triton_helpers.{root_op}_with_index({value}, {index}, {dim})
                {result_var} = {self.reduction_resize(f'{result_var}_idx')}
                """
            )

        cache_key = (src_dtype, reduction_type, value)
        if cache_key in self.cse.reduction_cache:
            return self.cse.reduction_cache[cache_key]

        dim = self.triton_tensor_ndim() - 1
        acc_type = triton_acc_type(src_dtype)
        torch_acc_type = upcast_acc_dtype(src_dtype)
        result_var: Any = self.cse.newvar(dtype=torch_acc_type)
        result_var.mask_vars = OrderedSet(
            var for var in masks if not prefix_is_reduction(var[0])
        )
        cond = " & ".join(masks)

        def where_cond(tval, fval):
            if not cond:
                return tval
            return TritonKernelOverrides.where(cond, tval, fval)

        if self.persistent_reduction:
            default = ir.Reduction.default_value(reduction_type, src_dtype)
            default = self._map_tuple_or_scalar(constant_repr, default)

            def _mask_value(value, default):
                return self.cse.generate(
                    self.compute, where_cond(value, default), dtype=value.dtype
                )

            if isinstance(value, tuple):
                masked_value = [_mask_value(v, d) for v, d in zip(value, default)]
            else:
                masked_value = _mask_value(value, default)

            if reduction_type in {"argmax", "argmin"}:
                accumulator_index = str(
                    self.cse.generate(
                        self.compute,
                        f"tl.broadcast_to({reduction_range_prefix}index, {masked_value}.shape)",
                        dtype=torch.int64,
                    )
                )
                root_op = {"argmax": "max", "argmin": "min"}[reduction_type]
                final_argreduce(
                    self.compute, result_var, masked_value, accumulator_index
                )
            elif reduction_type == "welford_reduce":
                if self.cooperative_reduction:
                    # cooperative reductions require full welford for correctness
                    result_var = self.welford_reduce(
                        result_var, reduction_type, value, where_cond, acc_type, dtype
                    )
                else:
                    # For persistent reductions, don't bother with
                    # welford's algorithm since it uses more registers, and
                    # taking two reductions doesn't increase memory usage.
                    result_var = self.welford_reduce_fallback(dtype, value)
            elif reduction_type == "welford_combine":
                mean, m2, weight = masked_value
                welford = f"triton_helpers.welford({mean}, {m2}, {weight}, {dim})"
                mean, m2, weight = (self.cse.newvar(dtype=dtype) for _ in range(3))
                self.compute.writeline(f"{mean}, {m2}, {weight} = {welford}")

                result_var = tuple(
                    self.cse.generate(
                        self.compute, self.reduction_resize(var_name), dtype=dtype
                    )
                    for var_name in (mean, m2, weight)
                )
            else:
                assert isinstance(masked_value, CSEVariable)
                result_var = self.cse.generate(
                    self.compute,
                    final_reduction(masked_value),
                    dtype=masked_value.dtype,
                )
        else:
            accumulator = self.cse.namedvar(f"_{result_var}", dtype=torch_acc_type)
            default = ir.Reduction.default_accumulator(reduction_type, src_dtype)
            default = self._map_tuple_or_scalar(constant_repr, default)
            if not isinstance(default, tuple):
                self.body.writeline(
                    f"{accumulator} = tl.full({self.dense_size_str()}, {default}, {acc_type})"
                )

            if reduction_type in {"argmax", "argmin"}:
                accumulator_index = f"_{result_var}_index"
                long_max = torch.iinfo(torch.int64).max
                self.body.writeline(
                    f"{accumulator_index} = tl.full({self.dense_size_str()}, {long_max}, tl.int64)"
                )
                root_op = {"argmax": "max", "argmin": "min"}[reduction_type]

                self.compute.splice(
                    f"""\
                {accumulator}_next, {accumulator_index}_next = triton_helpers.{root_op}imum_with_index(
                    {accumulator}, {accumulator_index}, {value}, {reduction_range_prefix}index
                )
                {accumulator} = {where_cond(f'{accumulator}_next', accumulator)}
                {accumulator_index} = {where_cond(f'{accumulator_index}_next', accumulator_index)}
                """
                )
                final_argreduce(
                    self.post_loop_combine, result_var, accumulator, accumulator_index
                )
            elif is_welford_reduction(reduction_type):
                result_var = self.welford_reduce(
                    result_var, reduction_type, value, where_cond, acc_type, dtype
                )
            else:
                combine_fn = ir.get_reduction_combine_fn(reduction_type, src_dtype)
                updated = combine_fn(accumulator, value)
                self.compute.writeline(
                    f"{accumulator} = {where_cond(updated, accumulator)}"
                )

                if src_dtype == torch.bool:
                    # This is only really used for aten.any. It changes the
                    # final reduction of a non-persistent reduction from
                    #     tmp5 = triton_helpers.max(_tmp5, 1)[:, None]
                    # to
                    #     tmp5 = triton_helpers.max(_tmp5.to(tl.int8), 1)[:, None].to(tl.int1)
                    # which is needed because tl.reduce doesn't support tl.int1
                    accumulator_casted_str = f"{accumulator}.to(tl.int8)"
                    result_type = triton_compute_type(dtype)
                    self.post_loop_combine.writeline(
                        f"{result_var} = {final_reduction(accumulator_casted_str)}.to({result_type})"
                    )
                else:
                    self.post_loop_combine.writeline(
                        f"{result_var} = {final_reduction(accumulator)}"
                    )

        if self.cooperative_reduction:
            exit_stack = contextlib.ExitStack()
            for buf in (self.post_loop_combine, self.post_loop_store):
                # only do cooperative reduction combines if we have more than one thread block
                buf.writeline("if RSPLIT > 1:")
                exit_stack.enter_context(buf.indent())

            if reduction_type in {"argmax", "argmin"}:
                self.post_loop_combine.writeline(
                    f"{result_var}_bval = {self.reduction_resize(f'{result_var}_val')}"
                )
                peer_val = self.codegen_cooperative_reduction_peer_combine(
                    f"{result_var}_bval", src_dtype
                )
                peer_idx = self.codegen_cooperative_reduction_peer_combine(
                    result_var, dtype
                )
                final_argreduce(self.post_loop_store, result_var, peer_val, peer_idx)
            elif is_welford_reduction(reduction_type):
                assert reduction_type == "welford_reduce"
                result_mean, result_m2, result_weight = result_var
                peer_mean = self.codegen_cooperative_reduction_peer_combine(
                    result_mean, upcast_acc_dtype(src_dtype)
                )
                peer_m2 = self.codegen_cooperative_reduction_peer_combine(
                    result_m2, upcast_acc_dtype(src_dtype)
                )
                peer_weight = self.codegen_cooperative_reduction_peer_combine(
                    result_weight, upcast_acc_dtype(src_dtype)
                )
                self.welford_reduce_final_reduction(
                    self.post_loop_store,
                    result_mean,
                    result_m2,
                    result_weight,
                    peer_mean,
                    peer_m2,
                    peer_weight,
                    dim,
                )
            else:
                peers = self.codegen_cooperative_reduction_peer_combine(
                    result_var, upcast_acc_dtype(src_dtype)
                )
                self.post_loop_store.writeline(
                    f"{result_var} = {final_reduction(peers)}"
                )
            exit_stack.close()

        self.cse.reduction_cache[cache_key] = result_var

        if isinstance(result_var, tuple):
            assert all(isinstance(x, TritonCSEVariable) for x in result_var)
            self.outside_loop_vars |= OrderedSet(result_var)
        else:
            assert isinstance(result_var, TritonCSEVariable)
            self.outside_loop_vars.add(result_var)

        return result_var

    def welford_reduce(
        self, result_var, reduction_type, value, where_cond, acc_type, dtype
    ):
        """Helper to codegen a welford reduction"""
        dim = self.triton_tensor_ndim() - 1
        accumulator = f"{result_var}_mean"
        accumulator_m2 = f"{result_var}_m2"
        accumulator_weight = f"{result_var}_weight"
        self.body.writeline(
            f"{accumulator} = tl.zeros({self.dense_size_str()}, {acc_type})"
        )
        self.body.writeline(
            f"{accumulator_m2} = tl.zeros({self.dense_size_str()}, {acc_type})"
        )
        self.body.writeline(
            f"{accumulator_weight} = tl.zeros({self.dense_size_str()}, {acc_type})"
        )
        if reduction_type == "welford_combine":
            mean, m2, weight = value
            self.compute.splice(
                f"""\
                {accumulator}_next, {accumulator_m2}_next, {accumulator_weight}_next = triton_helpers.welford_combine(
                    {accumulator}, {accumulator_m2}, {accumulator_weight},
                    {mean}, {m2}, {weight}
                )
                """
            )
        else:
            assert reduction_type == "welford_reduce"
            self.compute.splice(
                f"""\
                {accumulator}_next, {accumulator_m2}_next, {accumulator_weight}_next = triton_helpers.welford_reduce(
                    {value}, {accumulator}, {accumulator_m2}, {accumulator_weight}, roffset == 0
                )
                """
            )
        self.compute.splice(
            f"""\
            {accumulator} = {where_cond(f'{accumulator}_next', accumulator)}
            {accumulator_m2} = {where_cond(f'{accumulator_m2}_next', accumulator_m2)}
            {accumulator_weight} = {where_cond(f'{accumulator_weight}_next', accumulator_weight)}
            """
        )
        result_mean = result_var
        result_m2 = self.cse.newvar(dtype=dtype)
        result_weight = self.cse.newvar(dtype=dtype)
        return self.welford_reduce_final_reduction(
            self.post_loop_combine,
            result_mean,
            result_m2,
            result_weight,
            accumulator,
            accumulator_m2,
            accumulator_weight,
            dim,
        )

    def welford_reduce_final_reduction(
        self,
        buf,
        result_mean,
        result_m2,
        result_weight,
        accumulator,
        accumulator_m2,
        accumulator_weight,
        dim,
    ):
        """Helper to codegen call to triton_helpers.welford"""
        buf.splice(
            f"""\
            {result_mean}_tmp, {result_m2}_tmp, {result_weight}_tmp = triton_helpers.welford(
                {accumulator}, {accumulator_m2}, {accumulator_weight}, {dim}
            )
            {result_mean} = {self.reduction_resize(f'{result_mean}_tmp')}
            {result_m2} = {self.reduction_resize(f'{result_m2}_tmp')}
            {result_weight} = {self.reduction_resize(f'{result_weight}_tmp')}
            """
        )
        return result_mean, result_m2, result_weight

    def max_rsplit(self):
        if self.fixed_config:
            return self.fixed_config["RSPLIT"]
        return TRITON_MAX_RSPLIT

    def codegen_cooperative_reduction_peer_combine(self, result_var, dtype):
        """
        Generate code to save a [XBLOCK, RSPLIT] temporary workspace, where each thread block writes a different
        column.  After the barrier, every thread block loads the completed value so that it can compute the final
        value independently.
        """
        xnumel = self.numels["x"]
        mask = "xindex < xnumel" if xnumel != 1 and not self.no_x_dim else None
        expand = "" if self.no_x_dim else "[None,:]"

        nbytes = xnumel * dtype.itemsize * self.max_rsplit()
        ws_name, ws_offset = self.cooperative_reduction_workspace_cache.allocate(nbytes)

        self.post_loop_combine.splice(
            f"""
                {result_var}_ws = ({ws_name} + {self.index_to_str(ws_offset)}).to(tl.pointer_type({triton_type(dtype)}))
                tl.store({result_var}_ws + (xindex * RSPLIT + rsplit_id), {result_var}, {mask})
            """,
            strip=True,
        )
        self.post_loop_store.writeline(
            f"{result_var}_peers = tl.load({result_var}_ws + (xindex * RSPLIT + tl.arange(0, RSPLIT){expand}), "
            f"{mask}, eviction_policy='evict_first')"
        )
        return f"{result_var}_peers"

    def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
        assert self.inside_reduction
        self.inside_reduction = False
        indexing = self.indexing(index, block_ptr=True)
        self.inside_reduction = True
        var = self.args.output(name)

        exit_stack = contextlib.ExitStack()
        if self.cooperative_reduction:
            exit_stack.enter_context(
                self.guard_cooperative_store(name, self.post_loop_store)
            )

        if isinstance(indexing, BlockPtrOptions):
            self.post_loop_store.writeline(
                DeferredLine(
                    name,
                    self.codegen_block_ptr_store_line(
                        name,
                        indexing,
                        indexing.format(var),
                        value,
                        f", boundary_check={indexing.boundary_check()!r}",
                    ),
                )
            )
        else:
            assert isinstance(indexing, IndexingOptions)
            self.post_loop_store.writeline(
                DeferredLine(
                    name,
                    f"tl.store({var} + ({indexing.index_str}), {value}, {indexing.mask_str})",
                )
            )

        exit_stack.close()

    def _lift_helper(self, fn, num_args) -> str:
        # Lift IR function for scan operations into a triton function
        # in the global namespace
        helper = IndentedBuffer()
        helper.writeline("@triton.jit")
        args = [tuple(f"arg{i}_{n}" for n in range(num_args)) for i in range(2)]
        signature = ", ".join(itertools.chain.from_iterable(args))
        helper.writeline(f"def {{name}}({signature}):")

        cse = CSE(prefix="", suffix="")
        overrides = TritonOverrides(V.MockHandler())

        # Build a name that changes depending on fn to workaround a triton bug
        # where the combine_fn to reduce and scan is not hashed, and so different
        # scan ops may collide in the triton cache.
        # This is fixed with the latest triton pin, but not the triton-rocm pin.
        helper_name = "_triton_helper_fn"

        class CSEProxy:
            def __getattr__(self, name: str) -> Callable[..., CSEVariable]:
                def inner(*args, **kwargs):
                    nonlocal helper_name
                    helper_name += f"_{name}"
                    return cse.generate(
                        helper,
                        getattr(overrides, name)(*args, **kwargs),
                        dtype=torch.float32,
                    )

                return inner

        with helper.indent(), V.set_ops_handler(CSEProxy()):
            outputs = fn(*args)
            outputs = ", ".join(str(output) for output in outputs)
            helper.writeline(f"return {outputs}")

        return self.helper_functions.add(helper.getvalue(), base_name=helper_name)

    def scan(
        self,
        dtypes: Tuple[torch.dtype, ...],
        combine_fn: Callable[
            [Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]], Tuple[CSEVariable, ...]
        ],
        values: Tuple[CSEVariable, ...],
    ) -> Tuple[CSEVariable, ...]:
        assert self.inside_reduction
        assert not self.cooperative_reduction, "TODO"
        masks = OrderedSet(f"{tree.prefix}mask" for tree in self.range_trees)
        self.filter_masks(masks)
        masks = sorted(masks)
        assert not self._load_mask, "ops.scan not supported inside ops.masked"

        broadcasted_values = []
        accumulators = []

        cse_compute = functools.partial(self.cse.generate, self.compute)
        combine_helper_fn = self._lift_helper(combine_fn, len(values))
        dim = self.triton_tensor_ndim() - 1

        for value, dtype in zip(values, dtypes):
            value_dtype = self.cse.generate(
                self.compute,
                f"{value}.to({triton_compute_type(dtype)})",
                dtype=upcast_compute_type(dtype),
            )
            value = self.cse.generate(
                self.compute,
                f"tl.broadcast_to({value_dtype}, {self.dense_size_str()})",
                dtype=upcast_compute_type(dtype),
            )
            broadcasted_values.append(value)

            acc_type = triton_acc_type(dtype)

            if not self.persistent_reduction:
                accumulator = self.cse.newvar(dtype=upcast_compute_type(dtype))
                reduced_size = self.dense_size_list()
                reduced_size[-1] = "1"
                reduced_size = f"[{', '.join(reduced_size)}]"

                default = "float('nan')" if dtype.is_floating_point else "-1"
                self.body.writeline(
                    f"{accumulator} = tl.full({reduced_size}, {default}, {acc_type})"
                )

                accumulators.append(accumulator)

        def csv(values):
            return " ".join(f"{value}," for value in values)

        def cse_multiple(line, values, masks, dtypes):
            n = len(values)
            cache_keys = [f"{line}, {i}, {masks}" for i in range(n)]
            if all(self.cse.contains(cache_key) for cache_key in cache_keys):
                return [self.cse.get(cache_key) for cache_key in cache_keys]
            result_vars = [self.cse.newvar(dtype=_dtype) for _dtype in dtypes]
            self.compute.writeline(
                f"{csv(result_vars)} = {line}",
            )
            for result_var, cache_key in zip(result_vars, cache_keys):
                if masks:
                    result_var.mask_vars = masks  # type: ignore[attr-defined]
                self.cse.put(cache_key, result_var)
            return tuple(result_vars)

        partial_scan_vars = cse_multiple(
            f"tl.associative_scan(({csv(broadcasted_values)}), {dim}, {combine_helper_fn})",
            values,
            masks,
            (upcast_compute_type(dtype) for dtype in dtypes),
        )

        if not self.persistent_reduction:
            # tl.reduce doesn't work for non-commutative operators, so instead
            # of repeating the scan op as a reduction, we use sum to select the
            # last scan value
            partial_reduce_vars = [
                cse_compute(
                    f"triton_helpers.select_one(({partial_scan_var}), rbase == (RBLOCK - 1), dim=-1, keep_dims=True)",
                    dtype=upcast_compute_type(partial_scan_var.dtype),
                )
                for partial_scan_var in partial_scan_vars
            ]
            accs_next = combine_fn(tuple(accumulators), tuple(partial_reduce_vars))
            full_scan_vars = combine_fn(tuple(accumulators), partial_scan_vars)
            result_vars = [
                cse_compute(
                    f"tl.where(roffset > 0, {full_scan}, {partial_scan})",
                    dtype=partial_scan.dtype,
                )
                for full_scan, partial_scan in zip(full_scan_vars, partial_scan_vars)
            ]
            for acc_next, accumulator, partial_reduce in zip(
                accs_next, accumulators, partial_reduce_vars
            ):
                self.compute.writeline(
                    f"{accumulator} = tl.where(roffset > 0, {acc_next}, {partial_reduce})"
                )
        else:
            result_vars = partial_scan_vars

        for result_var in result_vars:
            result_var.mask_vars = masks  # type: ignore[attr-defined]

        return tuple(result_vars)

    def sort(
        self,
        dtypes: Tuple[torch.dtype, ...],
        values: Tuple[CSEVariable, ...],
        stable: bool,
        descending: bool,
    ) -> Tuple[CSEVariable, ...]:
        assert self.inside_reduction
        assert not self.cooperative_reduction, "TODO"
        masks = OrderedSet(f"{tree.prefix}mask" for tree in self.range_trees)
        self.filter_masks(masks)
        masks = sorted(masks)
        assert not self._load_mask, "ops.sort not supported inside ops.masked"
        assert (
            self.persistent_reduction
        ), "ops.sort is only supported in persistent reductions"
        reduction_range_prefix = self.range_trees[-1].prefix

        cse_compute = functools.partial(self.cse.generate, self.compute)
        dim = self.triton_tensor_ndim() - 1

        assert len(dtypes) == len(values)
        broadcasted_values = [
            cse_compute(
                f"tl.broadcast_to({value}, {self.dense_size_str()})", dtype=dtypes[i]
            )
            for i, value in enumerate(values)
        ]

        def csv(values):
            return " ".join(f"{value}," for value in values)

        def cse_multiple(line, n, masks, dtypes):
            cache_keys = [f"{line}, {i}, {masks}" for i in range(n)]
            if all(self.cse.contains(cache_key) for cache_key in cache_keys):
                return [self.cse.get(cache_key) for cache_key in cache_keys]
            result_vars = [self.cse.newvar(dtype=dtypes[i]) for i in range(n)]  # type: ignore[attr-defined]
            self.compute.writeline(
                f"{csv(result_vars)} = {line}",
            )
            for result_var, cache_key in zip(result_vars, cache_keys):
                if masks:
                    result_var.mask_vars = masks  # type: ignore[attr-defined]
                self.cse.put(cache_key, result_var)
            return tuple(result_vars)

        assert self.range_trees[-1].is_reduction
        rnumel = "None" if self._has_constant_mask(self.range_trees[-1]) else "rnumel"

        if len(values) == 2:
            line = (
                f"triton_helpers.sort_with_index({broadcasted_values[0]}, {broadcasted_values[1]},"
                f" {rnumel}, {dim}, stable={stable}, descending={descending})"
            )
            result_vars = cse_multiple(line, len(values), masks, dtypes)
        else:
            raise AssertionError("Unhandled sort")

        for result_var, input_var in zip(result_vars, values):
            result_var.mask_vars = masks  # type: ignore[attr-defined]
            result_var.bounds = input_var.bounds

        return tuple(result_vars)

    def codegen_body(self):
        """
        Concat output code from index_code, loads, compute, stores,
        suffix into self.body.

        For pointwise kernels, this is called just once at the end.

        For reduction kernels, this generates a loop over the reduction
        axis.
        """
        if not (
            self.indexing_code
            or self.loads
            or self.stores
            or self.compute
            or self.post_loop_combine
            or self.post_loop_store
        ):
            return

        if self.inside_reduction and self.range_trees[-1].is_loop:
            if self.cooperative_reduction:
                self.body.writeline(
                    "for roffset in range(rsplit_start, rsplit_end, RBLOCK):"
                )
            else:
                self.body.writeline("for roffset in range(0, rnumel, RBLOCK):")

            with self.body.indent():
                # last range tree is always reduction
                self.iteration_ranges_codegen_header(self.range_trees[-1], self.body)
                self.body.splice(self.indexing_code)
                self.body.splice(self.loads)
                self.body.splice(self.compute)
                self.body.splice(self.stores)

            # invalidate any caches that came from inside the reduction loop
            self.cse.invalidate(self.outside_loop_vars)
            self.range_trees[-1].cache_clear()
        else:
            self.body.splice(self.indexing_code)
            self.body.splice(self.loads)
            self.body.splice(self.compute)
            self.body.splice(self.stores)
        self.body.splice(self.post_loop_combine)
        if self.cooperative_reduction and (
            self.post_loop_combine or self.post_loop_store
        ):
            sem_ptr = f"{self.semaphores_name} + tl.program_id(1)"
            self.body.splice(
                f"""
                if RSPLIT > 1:
                    triton_helpers.x_grid_barrier({sem_ptr})
                """,
                strip=True,
            )
            self.cooperative_reduction_workspace_cache.on_loop_end()
        self.body.splice(self.post_loop_store)
        self.indexing_code.clear()
        self.loads.clear()
        self.compute.clear()
        self.stores.clear()
        self.post_loop_combine.clear()
        self.post_loop_store.clear()

    def codegen_kernel_benchmark(self, num_gb, grid=None):
        result = IndentedBuffer()
        argdefs, call_args, signature, _ = self.args.python_argdefs()

        result.writelines(["", "", "def get_args():"])
        with result.indent():
            name_cnt = itertools.count()
            var_names = []
            for arg_name, arg_sig in zip(call_args, signature):
                var_name = f"arg_{next(name_cnt)}"
                buf = V.graph.try_get_buffer(arg_name)
                if buf:
                    result.writeline(
                        f"{var_name} = rand_strided({V.graph.sizevars.size_hints(buf.get_size())}, {V.graph.sizevars.size_hints(buf.get_stride())}, device='{buf.get_device()}', dtype={buf.get_dtype()})"  # noqa: B950 line too long
                    )
                elif arg_name in V.graph.constants:
                    # note that random seed is put in V.graph.constants
                    const_tensor = V.graph.constants[arg_name]
                    result.writeline(
                        f"{var_name} = rand_strided({V.graph.sizevars.size_hints(const_tensor.size())}, {V.graph.sizevars.size_hints(const_tensor.stride())}, device='{const_tensor.device}', dtype={const_tensor.dtype})"  # type: ignore[arg-type]  # noqa: B950 line too long
                    )
                elif isinstance(arg_sig, SizeArg):
                    symval_hint = V.graph.sizevars.size_hint(arg_sig.expr)

                    # Force the seed_offset to be 0 so calls to the same kernel
                    # using different seed offset will have the same benchmark harness.
                    # We can dedup kernel definitions in this case.
                    if "seed_offset" in arg_sig.name:
                        symval_hint = 0
                    result.writeline(f"{var_name} = {symval_hint}")
                elif isinstance(arg_sig, WorkspaceArg):
                    device = V.graph.get_current_device_or_throw()
                    count = V.graph.sizevars.size_hint(arg_sig.count)
                    result.writeline(
                        f"{var_name} = torch.zeros({count}, device='{device}', dtype={arg_sig.dtype})"
                    )
                else:
                    raise KeyError(
                        f"Don't find the buffer or const tensor for {arg_name}"
                    )
                var_names.append(var_name)
            result.writeline(f"return {', '.join(var_names)},")

        result.writelines(["\n", "\n", "def call(args):"])
        if grid is None:
            grid = []
            extra_args = []
            extra_args_str = None
            for tree in self.active_range_trees():
                expr = pexpr(V.graph.sizevars.size_hint(tree.numel))
                extra_args.append(expr)
                if not tree.is_reduction:
                    grid.append(expr)
            if self.need_numel_args():
                extra_args_str = ", ".join(map(str, extra_args)) + ", "
            else:
                extra_args_str = ""
            grid_arg = f"{extra_args_str}grid=grid({', '.join(grid)})"
        else:
            grid_arg = f"grid={grid}"
        current_device = V.graph.get_current_device_or_throw()
        index = current_device.index
        with result.indent():
            result.writeline(f"with {V.graph.device_ops.device_guard(index)}:")
            with result.indent():
                result.writeline(
                    V.graph.device_ops.set_device(index)
                )  # no-op to ensure context
                stream_name = f"stream{index}"
                result.writeline(f"{stream_name} = get_raw_stream({index})")
                result.writeline(
                    f"{str(Placeholder.KERNEL_NAME)}.run(*args, {grid_arg}, stream={stream_name})"
                )

        # benchmark all configs
        result.writelines(["\n", "\n", "def benchmark_all_configs(args):"])
        with result.indent():
            result.writeline(f"with {V.graph.device_ops.device_guard(index)}:")
            with result.indent():
                result.writeline(
                    V.graph.device_ops.set_device(index)
                )  # no-op to ensure context
                result.writeline(
                    f"return {str(Placeholder.KERNEL_NAME)}.benchmark_all_configs(*args, {grid_arg})"
                )

        result.writelines(["\n", "\n", "if __name__ == '__main__':"])
        with result.indent():
            result.writeline(
                "from torch._inductor.runtime.benchmarking import benchmarker"
            )
            result.writeline("")

            result.writeline("args = get_args()")
            result.writeline(
                "ms = benchmarker.benchmark_gpu(lambda: call(args), rep=40)"
            )
            result.writeline(f"num_gb = {num_gb}")
            result.writeline("gb_per_s = num_gb / (ms / 1e3)")
            result.writeline(
                'print(f"{ms:.3f}ms    {num_gb:.3f}GB    {gb_per_s:.2f}GB/s")'
            )

        return result

    def imports_for_benchmark_kernel(self):
        return textwrap.dedent(
            """
            from torch._dynamo.testing import rand_strided
            {}
            import torch
            from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid
        """.format(
                V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
            )
        )

    def _get_heuristic(self):
        if self.fixed_config:
            return "fixed_config"
        elif self.cooperative_reduction:
            return "cooperative_reduction"
        elif self.persistent_reduction:
            assert self.inside_reduction
            return "persistent_reduction"
        elif self.inside_reduction:
            return "reduction"
        return "pointwise"

    @staticmethod
    def inductor_meta_common():
        inductor_meta = {
            "backend_hash": torch.utils._triton.triton_hash_with_backend(),
            "are_deterministic_algorithms_enabled": torch.are_deterministic_algorithms_enabled(),
            "assert_indirect_indexing": config.assert_indirect_indexing,
            "autotune_local_cache": config.autotune_local_cache,
            "autotune_pointwise": config.triton.autotune_pointwise,
            "autotune_remote_cache": config.autotune_remote_cache,
            "force_disable_caches": config.force_disable_caches,
            "dynamic_scale_rblock": config.dynamic_scale_rblock,
            "max_autotune": config.max_autotune,
            "max_autotune_pointwise": config.max_autotune_pointwise,
            "min_split_scan_rblock": config.triton.min_split_scan_rblock,
            "spill_threshold": config.triton.spill_threshold,
            "store_cubin": config.triton.store_cubin,
        }
        if torch.version.hip is not None:
            inductor_meta["is_hip"] = True
        if config.is_fbcode():
            inductor_meta["is_fbcode"] = True
        if config.profile_bandwidth:
            inductor_meta["profile_bandwidth"] = config.profile_bandwidth
            inductor_meta["profile_bandwidth_regex"] = config.profile_bandwidth_regex
            inductor_meta["profile_bandwidth_output"] = config.profile_bandwidth_output
            inductor_meta[
                "profile_bandwidth_with_do_bench_using_profiling"
            ] = config.profile_bandwidth_with_do_bench_using_profiling
        if config.coordinate_descent_tuning:
            inductor_meta[
                "coordinate_descent_tuning"
            ] = config.coordinate_descent_tuning
            inductor_meta[
                "coordinate_descent_search_radius"
            ] = config.coordinate_descent_search_radius
            inductor_meta[
                "coordinate_descent_check_all_directions"
            ] = config.coordinate_descent_check_all_directions
        return inductor_meta

    def codegen_kernel(self, name=None):
        code = IndentedBuffer()

        size_hints = {}
        for prefix, numel in self.numels.items():
            if prefix_is_reduction(prefix) and not self.inside_reduction:
                continue

            numel_hint = V.graph.sizevars.symbolic_hint(numel)
            if not isinstance(numel_hint, (int, sympy.Integer)):
                # This default heuristic hint was picked carefully: it is
                # large, to ensure that we don't shrink the block size (since
                # if you don't have many elements, it'd be wasteful to pick a
                # large block size).  Since we don't know how many elements we
                # might have, we should be OK with some inefficiency to make
                # sure we handle the large case well.  8192 is the largest
                # block size we support, so we pick that.
                #
                # If we have a better hint for unbacked SymInts (e.g., because
                # a user told us, or we are tracking upper bounds) we could
                # use that here.
                size_hint = 8192
            else:
                size_hint = next_power_of_2(int(numel_hint))
            size_hints[prefix] = size_hint

        if name is None:
            code.splice(gen_common_triton_imports())
            device_type = V.graph.get_current_device_or_throw().type
            if device_type == "cpu":
                code.splice("triton_helpers.set_driver_to_cpu()")
            else:
                code.splice("triton_helpers.set_driver_to_gpu()")

            if config.benchmark_kernel:
                code.splice(self.imports_for_benchmark_kernel())

        argdefs, _, signature, _ = self.args.python_argdefs()
        # maps actual expression to SizeArg if it is in sizevars replacements
        for i, arg in enumerate(signature):
            if isinstance(arg, SizeArg):
                # mypy is unhappy about the sympy.Expr
                # type for the key of the dict below
                symbol = cast(sympy.Symbol, arg.expr)
                if symbol in V.graph.sizevars.inv_precomputed_replacements:
                    signature[i] = SizeArg(
                        arg.name, V.graph.sizevars.inv_precomputed_replacements[symbol]
                    )

        mutated_args: OrderedSet[str] = OrderedSet()
        for mutation in self.mutations:
            if mutation in self.args.input_buffers:
                mutated_args.add(self.args.input_buffers[mutation])
            if (
                mutation in self.args.inplace_buffers
                and mutation not in V.graph.removed_buffers
                and mutation not in self.removed_buffers
            ):
                mutated_args.add(self.args.inplace_buffers[mutation].inner_name)
            if mutation in self.args.output_buffers:
                mutated_args.add(self.args.output_buffers[mutation])

        # Note: [Workspace Mutation]
        # workspace arguments are mutated, but are not marked as mutations in self.mutations
        # because their buffers are added during codegen, and aren't tracked during
        # lowering/scheduling. So we add them as mutated_args explicitly below.
        #
        # In the logic below, we only mark the workspaces a mutated if they are marked with
        # zero_fill: that's because, if we don't expect the buffer to be pre-filled with
        # zeros, then, although we still mutate the data, we don't care about those
        # mutations because we don't make any assumptions about the contents of the
        # workspace buffer.  Similarly, ZERO_PER_GRAPH requires the kernel to return
        # the buffer back to its original state.
        for argname, arg in zip(argdefs, signature):
            if (
                isinstance(arg, WorkspaceArg)
                and arg.zero_mode == WorkspaceZeroMode.ZERO_ON_CALL
            ):
                mutated_args.add(argname)

        mutated_args = sorted(mutated_args)

        triton_meta_signature = signature_to_meta(
            signature, size_dtype=self.index_dtype, argdefs=argdefs
        )
        triton_meta: Dict[str, Any] = {
            "signature": triton_meta_signature,
            "device": DeviceProperties.create(V.graph.get_current_device_or_throw()),
            "constants": {},
        }

        # Skip memory optimization for forward of the training loop where we expect
        # every new node will increase the peak memory and our greedy approach would
        # introduce a lot of unnecessary cpu copies.
        optimize_mem = V.graph.is_inference or V.graph.is_backward

        inductor_meta = {
            "autotune_hints": set(self.autotune_hints),
            "kernel_name": str(Placeholder.DESCRIPTIVE_NAME),
            "mutated_arg_names": mutated_args,
            "optimize_mem": optimize_mem,
            "no_x_dim": self.no_x_dim,
            "num_load": self.num_load,
            "num_reduction": self.num_reduction,
            **self.inductor_meta_common(),
        }
        if self.cooperative_reduction:
            inductor_meta["persistent_reduction"] = self.persistent_reduction

        num_gb = None
        if config.benchmark_kernel or config.profile_bandwidth:
            num_gb = self.estimate_kernel_num_bytes() / 1e9
            inductor_meta["kernel_num_gb"] = num_gb

        for tree in self.active_range_trees():
            sizearg = SizeArg(f"{tree.prefix}numel", tree.numel)
            signature.append(sizearg)
            triton_meta_signature[sizearg.name] = signature_of(
                sizearg, size_dtype=self.index_dtype
            )
            argdefs.append(f"{tree.prefix}numel")
            # constexpr version causes issues, see
            # https://github.com/pytorch/torchdynamo/pull/1362
            # triton_meta["constants"][len(argdefs)] = V.graph.sizevars.size_hint(
            #     tree.numel
            # )
            # argdefs.append(f"{tree.prefix}numel: tl.constexpr")
        triton_meta["configs"] = [config_of(signature)]

        # Triton compiler includes equal_to_1 args into constants even
        # when they are not constexpr. otherwise there may be a segfault
        # during launching the Inductor-compiled Triton kernel.
        # https://github.com/pytorch/pytorch/issues/120478#issuecomment-1962822307
        # https://github.com/openai/triton/blob/231efe9ed2d200be0f69a07c298e4342b08efe3d/python/triton/runtime/jit.py#L384
        for arg_num in triton_meta["configs"][0].equal_to_1:  # type: ignore[index]
            triton_meta["constants"][signature[arg_num].name] = 1  # type: ignore[index]

        self.triton_meta = triton_meta

        for tree in self.range_trees:
            if tree.is_reduction and self.persistent_reduction:
                # RBLOCK for persistent_reduction is defined in codegen_static_numels
                continue
            if tree.tensor_dim is None:
                continue
            argdefs.append(f"{tree.prefix.upper()}BLOCK : tl.constexpr")

        if self.cooperative_reduction:
            argdefs.append("RSPLIT : tl.constexpr")

        self.codegen_body()

        for helper in self.helper_functions:
            code.writeline("")
            code.splice(helper)

        if self.fixed_config:
            heuristics_line = f"""
                @triton_heuristics.{self._get_heuristic()}(
                    config={self.fixed_config.config!r},
                    filename=__file__,
                    triton_meta={triton_meta!r},
                    inductor_meta={inductor_meta!r}
                )
                @triton.jit
            """
        elif self.inside_reduction:
            reduction_hint = self.features.get_reduction_hint()
            heuristics_line = f"""
                @triton_heuristics.{self._get_heuristic()}(
                    size_hints={size_hints!r},
                    reduction_hint={reduction_hint},
                    filename=__file__,
                    triton_meta={triton_meta!r},
                    inductor_meta={inductor_meta!r}
                )
                @triton.jit
            """
        else:
            tile_hint = ""
            if len(size_hints) == 2:
                if len(signature) == 4:  # input, output and 2 args
                    tile_hint = "tile_hint=TileHint.SQUARE,"
                else:
                    tile_hint = "tile_hint=TileHint.DEFAULT,"
            heuristics_line = f"""
                @triton_heuristics.{self._get_heuristic()}(
                    size_hints={size_hints!r}, {tile_hint}
                    filename=__file__,
                    triton_meta={triton_meta!r},
                    inductor_meta={inductor_meta!r},
                    min_elem_per_thread={self.min_elem_per_thread}
                )
                @triton.jit
            """
        code.splice(heuristics_line)
        code.writeline(
            f"def {name or str(Placeholder.KERNEL_NAME)}({', '.join(argdefs)}):"
        )
        with code.indent():
            self.codegen_static_numels(code)
            for old, new in self.args.aliases():
                code.writeline(f"{old} = {new}")
            code.splice(self.body)

        if config.benchmark_kernel:
            code.splice(self.codegen_kernel_benchmark(num_gb))

        return code.getvalue()

    @staticmethod
    def _get_persistent_RBLOCK(rnumel):
        rnumel = V.graph.sizevars.simplify(rnumel)
        if isinstance(rnumel, (sympy.Integer, int)):
            val = int(rnumel)
            val = next_power_of_2(val)
        else:
            val = 128
            while not V.graph.sizevars.statically_known_leq(rnumel, val):
                if val > 16 * 1024:
                    raise ValueError(f"Failed to find static RBLOCK for {rnumel}")
                val *= 2
        return val

    @staticmethod
    def has_persistent_RBLOCK(rnumel):
        try:
            TritonKernel._get_persistent_RBLOCK(rnumel)
            return True
        except ValueError:
            return False

    def codegen_static_numels(self, code):
        """
        We get a small speedup from hard coding numels if they are static.

        This code stomps on the passed-in values by writing an constant to the top of the kernel.

        In a kernel like:
        def KERNEL_NAME(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):

        We would add
        xnumel = 4096
        rnumel = 768

        After the signature, before the kernel code, if we decided to make these static. As its hardcoded, it becomes
        a better signal to triton on how to unroll and do some static indexing. So, it's not so much that downstream
        knows that its a static numel, as that you just plop a constant into the kernel.
        """
        for tree in self.range_trees:
            if not tree.is_reduction or self.inside_reduction:
                simplified_tree_numel = V.graph.sizevars.simplify(tree.numel)
                if isinstance(simplified_tree_numel, (sympy.Integer, int)):
                    code.writeline(f"{tree.prefix}numel = {int(simplified_tree_numel)}")

            if tree.is_reduction and self.persistent_reduction:
                val = self._get_persistent_RBLOCK(tree.numel)
                if self.cooperative_reduction:
                    val = f"{val} // RSPLIT"
                code.writeline(f"RBLOCK: tl.constexpr = {val}")

            if tree.prefix == "x" and self.no_x_dim:
                code.writeline("XBLOCK: tl.constexpr = 1")

    def _get_grid_fn_str(self):
        return self._get_grid_fn().__name__

    def _get_grid_fn(self):
        if self.cooperative_reduction:
            return cooperative_reduction_grid
        return default_grid_fn

    def add_numel_to_call_args_and_grid(self, name, call_args, arg_types, grid):
        # TODO(jansel): if there are constants, we shouldn't bother passing them as args
        for tree in self.range_trees:
            if isinstance(tree.numel, (sympy.Integer, sympy.Symbol)):
                expr = tree.numel
            else:
                expr = V.graph.wrapper_code.generate_numel_expr(name, tree)

            if not tree.is_reduction or self.inside_reduction:
                call_args.append(expr)
                arg_types.append(type(expr))
            if tree.grid_dim is not None:
                grid.append(expr)

    def call_kernel(self, name: str, node: Optional[IRNode] = None):
        wrapper = V.graph.wrapper_code
        wrapper.write_triton_header_once()
        _, call_args, _, arg_types = self.args.python_argdefs()
        grid: List[Any] = []
        self.add_numel_to_call_args_and_grid(name, call_args, arg_types, grid)
        current_device = V.graph.get_current_device_or_throw()

        for ws in self.args.workspace_args:
            wrapper.generate_workspace_allocation(ws)

        grid = wrapper.generate_default_grid(
            name, grid, grid_callable=self._get_grid_fn()
        )
        wrapper.generate_kernel_call(
            name,
            call_args,
            grid,
            current_device.index,
            gpu=current_device.type != "cpu",
            triton=True,
            arg_types=arg_types,
            grid_fn=self._get_grid_fn_str(),
            triton_meta=self.triton_meta,
        )

        for ws in reversed(self.args.workspace_args):
            wrapper.generate_workspace_deallocation(ws)

    def codegen_nan_check(self):
        wrapper = V.graph.wrapper_code
        _, call_args, arg_signatures, _ = self.args.python_argdefs()
        for arg, arg_signature in zip(call_args, arg_signatures):
            if isinstance(arg_signature, TensorArg):
                if V.graph.cpp_wrapper:
                    wrapper.writeline(
                        f'AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_check_inf_and_nan("{arg}", {arg}));'
                    )
                else:
                    line = f"assert not {arg}.isnan().any().item()"
                    wrapper.writeline(line)
                    line = f"assert not {arg}.isinf().any().item()"
                    wrapper.writeline(line)

    def create_cse_var(self, *args, **kwargs):
        return TritonCSEVariable(*args, **kwargs)

    def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry):
        line = f"{entry.name} = {self.kexpr(self.rename_indexing(entry.expr))}"
        if entry.root.is_loop:
            self.indexing_code.writeline(line)
        else:
            # lift non-reduction stores outside loop
            self.body.writeline(line)

    def iteration_ranges_ranges_code(self, entry):
        assert entry.tensor_dim is not None
        size = self.indexing_size_str(entry.tensor_dim)
        index_dtype = self.index_dtype
        suffix = f".to({index_dtype})" if index_dtype != "tl.int32" else ""
        if (
            self.cooperative_reduction
            and self.persistent_reduction
            and entry.is_reduction
        ):
            suffix = f"{suffix} + rsplit_start"
        return f"tl.arange(0, {entry.prefix.upper()}BLOCK){size}{suffix}"

    def iteration_ranges_scalar_code(self, entry, value):
        index_dtype = self.index_dtype
        ndim = self.triton_tensor_ndim()
        size = [1] * ndim
        return f"tl.full({size}, {value}, {index_dtype})"

    def iteration_ranges_get_pid(self, entry):
        assert entry.grid_dim is not None
        key = f"tl.program_id({entry.grid_dim})"
        # y_grid has a limit, so express it in terms of y and z in case of overflow.
        # z grid is only exercised when max_tiles == 3 (off by default).
        if (
            entry.grid_dim == 1
            and not entry.has_zdim
            and not self.cooperative_reduction
            and not V.graph.sizevars.statically_known_leq(entry.numel, get_max_y_grid())
        ):
            # For ynumel larger than max_ygrid, we need to use zdim.
            # For each z dimension, there are tl.num_programs(1) yblocks which is passed by grad(x,y,z).
            # So, we need to add tl.program_id(z) * tl.num_programs(y) *YBLOCK to get the correct yoffset.
            key = f"({key} + tl.program_id({entry.grid_dim + 1}) * tl.num_programs({entry.grid_dim}))"
        pid = entry.pid_cache.get(key, key)
        if self.index_dtype != "tl.int32":
            return f"{pid}.to({self.index_dtype})"
        return pid

    def max_block(self, prefix):
        if self.fixed_config:
            return self.fixed_config[f"{prefix.upper()}BLOCK"]
        return TRITON_MAX_BLOCK[prefix.upper()]

    def _has_constant_mask(self, tree: IterationRangesRoot):
        if not self.optimize_mask:
            return False
        if V.graph.sizevars.statically_known_equals(tree.numel, 1):  # type: ignore[arg-type]
            return True

        # Masks are superfluous if numel is a multiple of BLOCK
        # (We use the fact that BLOCK is required by triton to be a power of 2)
        if tree.is_reduction and self.persistent_reduction:
            max_block = self._get_persistent_RBLOCK(tree.numel)
        elif tree.prefix == "x" and self.no_x_dim:
            max_block = 1
        else:
            max_block = self.max_block(tree.prefix)

        if tree.is_reduction and self.cooperative_reduction:
            max_block = max_block * self.max_rsplit()

        # Optional optimization: if block divides numel exactly, we will
        # never need to do a masked load to handle stragglers at the end.
        # If this tree is for the y dimension, we should only use a constant
        # mask if it can be guaranteed that:
        # 1. (ynumel / YBLOCK) < max_ygrid or
        # 2. (ynumel / YBLOCK) % max_ygrid == 0
        # Because YBLOCK is not constant, use a conservative heuristic:
        # only use a constant mask if ynumel < max_ygrid.
        # It's faster to avoid masking at all.  But it is sound to always
        # mask.
        if V.graph.sizevars.statically_known_multiple_of(tree.numel, max_block):
            return (
                tree.grid_dim != 1
                or tree.has_zdim
                or V.graph.sizevars.statically_known_leq(tree.numel, get_max_y_grid())
            )

        return False

    def filter_masks(self, mask_vars):
        for tree in self.range_trees:
            if self._has_constant_mask(tree):
                mask_vars.discard(f"{tree.prefix}mask")

    def iteration_ranges_codegen_header(self, entry, code):
        x = entry.prefix
        if entry.is_loop:
            code.writeline(f"{entry.name} = {x}offset + {x}base")
        elif entry.grid_dim is None:
            # no need to "{x}offset = "
            code.writeline(f"{entry.name} = {self.iteration_ranges_ranges_code(entry)}")
            code.writeline(f"{x}offset = 0")
        else:
            if entry.tensor_dim is not None:
                line = f"{x}offset + {self.iteration_ranges_ranges_code(entry)}"
            else:
                line = self.iteration_ranges_scalar_code(entry, f"{x}offset")
            code.writelines(
                [
                    f"{x}offset = {self.iteration_ranges_get_pid(entry)} * {x.upper()}BLOCK",
                    f"{entry.name} = {line}",
                ]
            )

        if self._has_constant_mask(entry):
            sizes = self.dense_size_str()
            code.writeline(f"{x}mask = tl.full({sizes}, True, tl.int1)")
        else:
            code.writeline(f"{x}mask = {entry.name} < {x}numel")


class TritonScheduling(SIMDScheduling):
    kernel_type: Type[Any] = TritonKernel
    backend_features = dict.fromkeys(  # dict for deterministic order
        [
            BackendFeature.FOREACH,
            BackendFeature.BUCKETIZE,
            BackendFeature.INPLACE_BUFFERS,
            BackendFeature.MASKED_SCATTER_WITH_INDEX,
            BackendFeature.SCAN,
            BackendFeature.TRITON_TEMPLATES,
        ]
    )
    if torch.version.hip is None:
        backend_features.update(
            dict.fromkeys(
                [
                    # TODO: Move this above when ROCm triton adds support for multiple inputs
                    BackendFeature.TUPLE_REDUCTION,
                    BackendFeature.SORT,
                ]
            )
        )

    def __init__(self, scheduler: Scheduler) -> None:
        super().__init__(scheduler)
        if scheduler is None or not hasattr(scheduler, "nodes"):
            return
        for node in scheduler.nodes:
            if isinstance(node, (SchedulerNode, FusedSchedulerNode)):
                node.debug_device_str = debug_triton_code

    @classmethod
    def get_backend_features(cls, device: torch.device):
        if (
            config.triton.cooperative_reductions
            or config.triton.force_cooperative_reductions
        ):
            return {
                **cls.backend_features,
                BackendFeature.REDUCE_TO_SINGLE_ELEMENT: None,
            }
        return cls.backend_features

    def codegen_comment(self, node_schedule):
        wrapper = V.graph.wrapper_code
        origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
        if origins:
            wrapper.writeline(origins)

        if config.debug_fusion:
            from torch._inductor.scheduler import (
                BaseSchedulerNode,
                ForeachKernelSchedulerNode,
            )

            if not any(
                isinstance(n, ForeachKernelSchedulerNode) for n in node_schedule
            ):
                # We probably should look what are the nodes inside a foreach
                # schedule node
                node_names = [
                    n.get_name()
                    for n in node_schedule
                    if isinstance(n, BaseSchedulerNode)
                ]
                wrapper.writeline(
                    f"{wrapper.comment} Fused node name list: {', '.join(node_names)}"
                )

    def define_kernel(self, src_code, node_schedule, kernel):
        wrapper = V.graph.wrapper_code
        if src_code in wrapper.src_to_kernel:
            kernel_name = wrapper.src_to_kernel[src_code]
        else:
            fused_name = (
                get_fused_kernel_name(node_schedule, config.triton.descriptive_names)
                if config.triton.descriptive_names
                else ""
            )
            kernel_category = get_kernel_category_by_source_code(src_code)[:3]
            kernel_name = "_".join(
                ["triton", kernel_category, fused_name, wrapper.next_kernel_suffix()]
            )
            # use the original src_code as the key
            wrapper.src_to_kernel[src_code] = kernel_name
            subs_name = kernel_name if config.triton.unique_kernel_names else "triton_"

            # DESCRIPTIVE_NAME is used for profiling purposes; it shows the full kernel name
            # even when unique_kernel_names is turned off. Meanwhile, KERNEL_NAME is sometimes set
            # to "triton_" to maximize caching opportunities (when unique_kernel_names = False).
            src_code = src_code.replace(str(Placeholder.DESCRIPTIVE_NAME), kernel_name)
            src_code = src_code.replace(str(Placeholder.KERNEL_NAME), subs_name)

            # TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
            # not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
            src_code = src_code.replace("#pragma CMT", "#")

            basename, _, kernel_path = get_path(code_hash(src_code.strip()), "py")

            compile_wrapper = IndentedBuffer()
            compile_wrapper.writeline(f"async_compile.triton({subs_name!r}, '''")
            compile_wrapper.splice(src_code, strip=True)
            current_device = V.graph.get_current_device_or_throw()
            compile_wrapper.writeline(f"''', device_str='{current_device.type}')")

            metadata_comment = f"# kernel path: {kernel_path}"
            origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
            metadata_comment += "\n" + origins + "\n" + detailed_origins
            wrapper.define_kernel(
                kernel_name, compile_wrapper.getvalue(), metadata_comment
            )

            # log kernel metadata for offline analysis.
            # E.g. one can find all unaligned inner reduction and check if
            # padding helps with the perf kernel by kernel.
            if metrics.is_metric_table_enabled("kernel_metadata"):
                metrics.log_kernel_metadata(kernel_name, kernel_path, src_code)

        return kernel_name

    def benchmark_fused_nodes(self, nodes):
        with preserve_rng_state(), torch.cuda.device(
            V.graph.get_current_device_or_throw()
        ):
            src_code = self.generate_kernel_code_from_nodes(
                nodes, benchmark_kernel=True
            )
            mod = PyCodeCache.load(src_code)

            def cache_file_path():
                assert mod.__file__ is not None
                return os.path.splitext(mod.__file__)[0] + ".kernel_perf"

            def load_cache():
                path = cache_file_path()
                if os.path.exists(path):
                    with open(path) as fd:
                        return float(fd.read())
                return None

            def store_cache():
                path = cache_file_path()
                with open(path, "w") as fd:
                    fd.write(str(ms))

            log.debug(
                "kernel src code for %s written to: %s",
                {n.get_name() for n in nodes},
                mod.__file__,
            )
            ms = load_cache()
            if ms is not None:
                return ms, mod.__file__

            args = mod.get_args()
            call = mod.call
            wrapped_jit_function = mod.triton_

            # call once to trigger the compilation
            try:
                call(wrapped_jit_function.clone_args(*args)[0])
            except Exception as e:
                log.debug(
                    "Exception (%s) in compiling fused nodes %s",
                    e,
                    {n.get_name() for n in nodes},
                )
                ms = float("inf")
                store_cache()
                return ms, mod.__file__

            launchers = wrapped_jit_function.launchers
            assert len(launchers) == 1
            if launchers[0].n_spills > 0:
                # skip benchmarking the kernel if there are register spills
                ms = float("inf")
            else:
                # We have to clone the inplace updated arguments to avoid earlier calls
                # generating out of range indices for later calls.
                ms = benchmarker.benchmark_gpu(
                    lambda: call(wrapped_jit_function.clone_args(*args)[0])
                )

                # overhead of cloning args gives bias for fusing the kernel
                # in the case of mutating/in-placeable second fusion
                # TODO - would be better as a hook in triton do_bench that reset
                # the input values between benchmarking
                if len(wrapped_jit_function.mutated_arg_names) > 0:
                    ms = ms - benchmarker.benchmark_gpu(
                        lambda: wrapped_jit_function.clone_args(*args)
                    )

            log.debug(
                "The fused kernel for %s took %.3f ms to run",
                {n.get_name() for n in nodes},
                ms,
            )
            store_cache()
            return ms, mod.__file__

    def create_kernel_choices(
        self, kernel_features, kernel_args, kernel_kwargs
    ) -> List[SIMDKernel]:
        is_scan = kernel_features.contains_op("scan")
        is_split_scan = is_scan and any(
            node.is_split_scan() for node in kernel_features.scheduler_nodes()
        )
        kernel_type: Type[TritonKernel] = self.kernel_type
        if is_split_scan:
            from .triton_split_scan import TritonSplitScanKernel

            kernel_type = TritonSplitScanKernel

        if is_scan:
            # TODO(jansel): scan does not yet work with cooperative reductions
            kernel_kwargs["override_cooperative_reduction"] = False

        # ops.sort only works with persistent reduction, and is not bandwidth bound anyway
        # so taking the hit of non-coalesced loads is okay
        if kernel_features.contains_op("sort"):
            kernel_kwargs["override_persistent_reduction"] = True
            kernel_kwargs["override_cooperative_reduction"] = False

        if not TritonKernel.has_persistent_RBLOCK(kernel_features.reduction_numel):
            # Cannot use persistent reduction with unknown dynamic rnumel
            assert not kernel_kwargs.get("override_persistent_reduction")
            kernel_kwargs["override_persistent_reduction"] = False

        kernel_kwargs = V.choices.triton_kernel_kwargs(
            kernel_type, kernel_features, kernel_args, kernel_kwargs
        )
        kernel = kernel_type(*kernel_args, **kernel_kwargs)
        return self.add_multi_kernel_choices(kernel, kernel_args, kernel_kwargs)

    def add_multi_kernel_choices(
        self,
        kernel: SIMDKernel,
        kernel_args: List[Any],
        kernel_kwargs: Dict[str, Any],
    ) -> List[SIMDKernel]:
        kernels: List[SIMDKernel] = [kernel]
        if not config.triton.multi_kernel:
            return kernels

        optional_persistent = kernel.persistent_reduction and not kernel_kwargs.get(
            "override_persistent_reduction"
        )
        optional_cooperative = kernel.cooperative_reduction and not kernel_kwargs.get(
            "override_cooperative_reduction"
        )
        if optional_persistent:
            kernels.append(
                self.kernel_type(
                    *kernel_args,
                    **kernel_kwargs,
                    override_persistent_reduction=False,
                )
            )
        if optional_cooperative:
            rnumel = kernel.numels["r"]
            # for larger sizes non-cooperative gets very slow
            if V.graph.sizevars.statically_known_leq(rnumel, 65536):
                kernels.append(
                    other := self.kernel_type(
                        *kernel_args,
                        **kernel_kwargs,
                        override_cooperative_reduction=False,
                    )
                )
                if optional_persistent and other.persistent_reduction:
                    kernels.append(
                        self.kernel_type(
                            *kernel_args,
                            **kernel_kwargs,
                            override_cooperative_reduction=False,
                            override_persistent_reduction=False,
                        )
                    )

        if len(kernels) > 1:
            for kernel2 in kernels[1:]:
                # Keep buffers needed by the non-persistent reduction so both kernels have the same arguments
                kernel2.must_keep_buffers = kernel.must_keep_buffers
            # persistent kernels must be generated last so must_keep_buffers works right
            kernels.sort(key=lambda k: k.persistent_reduction)
        return kernels

    def benchmark_combo_kernel(self, node_list):
        def cache_file_path():
            assert mod.__file__ is not None
            return os.path.splitext(mod.__file__)[0] + ".kernel_perf"

        def load_cache():
            path = cache_file_path()
            if os.path.exists(path):
                with open(path) as fd:
                    return tuple(float(e) for e in fd.read().split())
            return (None, None)

        def store_cache():
            path = cache_file_path()
            with open(path, "w") as fd:
                fd.write(str(ms) + " " + str(ms_clone))

        total_ms, file_list = 0, []
        total_clone_ms = 0
        removed_buffers_orig = V.graph.removed_buffers
        V.graph.removed_buffers = OrderedSet(removed_buffers_orig)
        inplaced_to_remove_orig = V.graph.inplaced_to_remove
        V.graph.inplaced_to_remove = OrderedSet(inplaced_to_remove_orig)
        enable_autotune = config.combo_kernels_autotune > 0
        mixed_sizes = config.combo_kernel_allow_mixed_sizes > 0
        kernel_code_list = self.generate_combo_kernel_code(
            subkernel_nodes=node_list,
            custom_part_algorithm=True,
            enable_autotune=enable_autotune,
            mixed_sizes=mixed_sizes,
            only_gen_src_code=True,
        )

        for src_code, _, node_group in kernel_code_list:
            fused_node_lists = [node.get_nodes() for node in node_group]
            names = [n.get_name() for nodes in fused_node_lists for n in nodes]

            src_code = src_code.replace(str(Placeholder.KERNEL_NAME), "triton_")
            mod = PyCodeCache.load(src_code)

            log.debug(
                "kernel src code for %s written to: %s",
                names,
                mod.__file__,
            )
            ms, ms_clone = load_cache()
            if ms is not None:
                total_ms += ms
                total_clone_ms += ms_clone
                file_list.append(mod.__file__)
                continue

            args = mod.get_args()
            call = mod.call
            wrapped_jit_function = mod.triton_

            # call once to trigger the compilation
            call(wrapped_jit_function.clone_args(*args)[0])

            launchers = wrapped_jit_function.launchers
            assert len(launchers) == 1
            if launchers[0].n_spills > 0:
                # skip benchmarking the kernel if there are register spills
                ms = ms_clone = float("inf")
            else:
                # We have to clone the inplace updated arguments to avoid earlier calls
                # generating out of range indices for later calls.
                ms = benchmarker.benchmark_gpu(
                    lambda: call(wrapped_jit_function.clone_args(*args)[0])
                )
                ms_clone = benchmarker.benchmark_gpu(
                    lambda: wrapped_jit_function.clone_args(*args)[0]
                )

            log.debug(
                "The fused kernel for %s took %.3f ms to run, %.3f ms to clone inputs",
                {n.get_name() for n in node_group},
                ms,
                ms_clone,
            )
            store_cache()
            total_ms += ms
            total_clone_ms += ms_clone
            file_list.append(mod.__file__)
        V.graph.removed_buffers = removed_buffers_orig
        V.graph.inplaced_to_remove = inplaced_to_remove_orig
        return total_ms, total_clone_ms, file_list


def debug_triton_code(node: BaseSchedulerNode) -> List[str]:
    lines = []
    multi_template = node.get_template_node()
    assert multi_template is None or isinstance(multi_template, ir.MultiTemplateBuffer)
    if multi_template and multi_template.make_kernel_render is None:
        lines.append(f"{node.get_name()} Unfinalized multi template buffer")
    else:
        from torch._inductor.codegen.cuda_combined_scheduling import (
            CUDACombinedScheduling,
        )

        device = node.get_device()
        assert device is not None
        backend = node.scheduler.get_backend(device)
        assert isinstance(
            backend, (SIMDScheduling, CUDACombinedScheduling)
        ), f"Scheduling backend should be SIMD or CUDACombined when generating debug Triton strings, got: {type(backend)}"

        with V.graph.set_current_device(device):
            # Don't increment kernel count when generating debug string.
            # This will confuse some unit tests that check the number of
            # generated kernels.
            old_generated_kernel_count = metrics.generated_kernel_count
            triton_code = backend.generate_kernel_code_from_nodes(
                node.get_nodes()
            ).strip()
            metrics.generated_kernel_count = old_generated_kernel_count

        lines.append(f"{node.get_name()} Triton code:")
        lines.append(textwrap.indent(triton_code, "    "))
    return lines