1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
|
import itertools
import logging
import textwrap
from collections import defaultdict
from dataclasses import dataclass
from typing import (
Any,
Callable,
cast,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
Union,
)
import sympy
from sympy import Integer, Symbol
from .. import config, metrics
from ..runtime.hints import DeviceProperties
from ..runtime.runtime_utils import next_power_of_2
from ..runtime.triton_heuristics import grid_combo_kernels
from ..scheduler import BaseSchedulerNode
from ..utils import Placeholder
from ..virtualized import V
from .common import (
DeferredLine,
IndentedBuffer,
Kernel,
PythonPrinter,
SizeArg,
WorkspaceArg,
)
from .simd import prefix_is_reduction, SIMDScheduling
from .simd_kernel_features import SIMDKernelFeatures
from .triton import gen_common_triton_imports, TritonKernel
from .triton_utils import config_of, signature_to_meta
log = logging.getLogger(__name__)
pexpr = PythonPrinter().doprint
LARGE_NUMELS = 512e5
BLOCK_UTILIZATION = 0.8
def _default_custom_combo_kernel_horizontal_partition(
nodes: List[BaseSchedulerNode],
triton_scheduling: SIMDScheduling,
kernel_map: Dict[BaseSchedulerNode, TritonKernel],
node_info_map: Dict[BaseSchedulerNode, Tuple[Any, Any, Any, Any]],
) -> List[List[BaseSchedulerNode]]:
"""Horizontally partition the given list of nodes into a list of list of nodes where each sublist
represents a partion. Nodes in different partitions are implemented in different combo kernels.
Nodes in the same partition are likely to be implemented
in the same combo kernel, but subject to subsequent restrictions like CUDA limits for number of args.
Input arguments:
nodes: a list of fused scheduler nodes to partition.
triton_scheduling: TritonScheduling instance.
kernel_map: a map from node to its kernel.
node_info_map: a map from node to (node_schedule, tiled_groups, numel, rnumel).
Output:
a list of list of nodes with each sublist representing a partition.
The default algorithm is to partition nodes based on the following rules:
1) nodes with the same number of block dimensions are grouped together.
2) large pointwise nodes (numels greater than LARGE_NUMELS) are separated from other nodes.
3) large reduce nodes are separated from other nodes.
"""
assert len(nodes) >= 1
# first partition nodes based on number of block dimensions
tilings = [node_info_map[n][1] for n in nodes]
max_dims = max(len(t) for t in tilings)
nodes_per_ndim: List[List[BaseSchedulerNode]] = []
for i in range(2, max_dims + 1):
group_per_dim = [n for n, t in zip(nodes, tilings) if len(t) == i]
reduction = [
n
for n in group_per_dim
if kernel_map[n].inside_reduction
and not (kernel_map[n].persistent_reduction and kernel_map[n].no_x_dim)
]
not_reduction = [n for n in group_per_dim if n not in reduction]
# rnumel > 2048 usually has long execution time
# BaseSchedulerNode.group[-1][-1] is rnumel for reduction nodes
long_reduction = [
n for n in reduction if V.graph.sizevars.size_hint(n.group[-1][-1]) > 2048 # type: ignore[arg-type]
]
short_reduction = [n for n in reduction if n not in long_reduction]
if long_reduction:
log.warning(
"ComboKernels: %d long reduction nodes are separated",
len(long_reduction),
)
large_pointwise = [
n
for n in not_reduction
if not kernel_map[n].inside_reduction
and len(kernel_map[n].numels) == 2
and V.graph.sizevars.size_hint(kernel_map[n].numels["x"]) > LARGE_NUMELS
]
if large_pointwise:
# TODO benchmark the performance when large pointwise nodes combining with others
log.warning(
"ComboKernels: %d large pointwise nodes are separated",
len(large_pointwise),
)
not_reduction = [n for n in not_reduction if n not in large_pointwise]
nodes_per_ndim.extend([node] for node in large_pointwise)
nodes_per_ndim.extend(
g for g in (not_reduction, short_reduction, long_reduction) if g
)
assert sum(len(p) for p in nodes_per_ndim) == len(nodes)
return nodes_per_ndim
_custom_combo_kernel_horizontal_partition_algorithm: Callable[
[
List[BaseSchedulerNode],
SIMDScheduling,
Dict[BaseSchedulerNode, TritonKernel],
Dict[BaseSchedulerNode, Tuple[Any, Any, Any, Any]],
],
List[List[BaseSchedulerNode]],
] = _default_custom_combo_kernel_horizontal_partition
def set_custom_combo_kernel_horizontal_partition(
algorithm: Callable[
[
List[BaseSchedulerNode],
SIMDScheduling,
Dict[BaseSchedulerNode, TritonKernel],
Dict[BaseSchedulerNode, Tuple[Any, Any, Any, Any]],
],
List[List[BaseSchedulerNode]],
]
) -> None:
"""Sets the algorithm used to partition nodes into horizontal partitions. Nodes in different partitions
are implemented in different combo kernels. Nodes in the same partition are likely to be implemented
in the same combo kernel, but subject to subsequent restricts like CUDA limits for number of args.
The algorithm should take a list of nodes and return a list of list of nodes.
The default algorithm is to partition nodes based on number of block dimensions.
"""
global _custom_combo_kernel_horizontal_partition_algorithm
_custom_combo_kernel_horizontal_partition_algorithm = algorithm
@dataclass
class PartitionState:
partitions: List[List[BaseSchedulerNode]]
cur_partition: List[BaseSchedulerNode]
cur_count: int
def finalize(self) -> None:
if self.cur_partition:
self.partitions.append(self.cur_partition)
class ComboKernel(Kernel):
MAX_NUM_ARGS = 250 # number where I would no longer get triton errors
@staticmethod
def _update_partition(
partition_state: PartitionState,
node_rw_count: int,
node_info: BaseSchedulerNode,
) -> None:
if partition_state.cur_count + node_rw_count > ComboKernel.MAX_NUM_ARGS:
partition_state.partitions.append(partition_state.cur_partition)
partition_state.cur_partition = [node_info]
partition_state.cur_count = node_rw_count
else:
partition_state.cur_count += node_rw_count
partition_state.cur_partition.append(node_info)
@staticmethod
def _base_horizontal_partition(
subkernel_nodes: List[BaseSchedulerNode],
triton_scheduling: SIMDScheduling,
node_info_map: Dict[BaseSchedulerNode, Tuple[Any, Any, Any, Any]],
custom_algorithm: bool,
) -> List[List[BaseSchedulerNode]]:
"""Generates a list of lists of node info tuples which consist of (fused_nodes, tiling, numel, rnumel)
for each subkernel node where each sublist is guaranteed to not exceed CUDA limits for number of args
(read/writes) and to have the same 2D or 1D blocking strategy."""
# TODO support combination of kernels with different block dimensions
assert len(subkernel_nodes) >= 1
mixed_sizes = config.combo_kernel_allow_mixed_sizes > 1 or (
config.combo_kernel_allow_mixed_sizes == 1 and custom_algorithm
)
ndim_to_partition_state: Dict[int, PartitionState] = defaultdict(
lambda: PartitionState([], [], 0)
)
yelem_to_partition_state: Dict[int, PartitionState] = defaultdict(
lambda: PartitionState([], [], 0)
)
for node in subkernel_nodes:
node_schedule, tiled_groups, numel, rnumel = node_info_map[node]
node_info = node
read_writes = node.read_writes
read_write_count = len(read_writes.reads) + len(read_writes.writes)
ndim = len(tiled_groups)
assert ndim >= 2, f"Combokernel not support tile {tiled_groups}"
if not mixed_sizes and ndim == 3:
y_elem = tiled_groups["y"]
partition_state = yelem_to_partition_state[y_elem]
ComboKernel._update_partition(
partition_state, read_write_count, node_info
)
else:
assert mixed_sizes or ndim <= 3, f"No mixed sizes: tile {tiled_groups}"
partition_state = ndim_to_partition_state[ndim]
ComboKernel._update_partition(
partition_state, read_write_count, node_info
)
all_partitions = []
for partition_state in ndim_to_partition_state.values():
partition_state.finalize()
all_partitions.extend(partition_state.partitions)
for partition_state in yelem_to_partition_state.values():
partition_state.finalize()
all_partitions.extend(partition_state.partitions)
return all_partitions
@staticmethod
def horizontal_partition(
nodes: List[BaseSchedulerNode],
triton_scheduling: SIMDScheduling,
kernel_map: Dict[BaseSchedulerNode, TritonKernel],
node_info_map: Dict[BaseSchedulerNode, Tuple[Any, Any, Any, Any]],
custom_algorithm: bool = False,
) -> List[List[BaseSchedulerNode]]:
"""Generates a list of lists of node info tuples which consist of (fused_nodes, tiling, numel, rnum)
for each subkernel node where each sublist forms a ComboKernel. It horizontally partitions nodes into
sublists in the following way:
1) call _custom_combo_kernel_horizontal_partition_algorithm() if custom_algorithm is True
2) then, call _base_horizontal_partition() to partition nodes into sublists, each sublist is
guaranteed to not exceed CUDA limits for number of args (read/writes) and to have the same
2D or 1D blocking strategy.
"""
if custom_algorithm:
raw_partitions = _custom_combo_kernel_horizontal_partition_algorithm(
nodes, triton_scheduling, kernel_map, node_info_map
)
else:
raw_partitions = [nodes]
"""Generates a list of lists of node info tuples which consist of (fused_nodes, tiling, numel, rnumel)
for each subkernel node where each sublist is guaranteed to not exceed CUDA limits for number of args
(read/writes) and to have the same 2D or 1D blocking strategy."""
all_partitions = []
for raw_partition in raw_partitions:
all_partitions.extend(
ComboKernel._base_horizontal_partition(
raw_partition, triton_scheduling, node_info_map, custom_algorithm
)
)
return all_partitions
class SequentialDispatch:
"""
The dispatcher which dispatches the subkernels in a sequential manner:
the blocks are first dispatched to the 1st subkernel (until it is filled),
then to the 2nd subkernel, and so on.
The class defines the methods specific to the dispatch algorithm.
Methods:
codegen_pid_range(...): codegen the pid range for each subkernel.
grid(...): codegen the grid size for launching the combo kernel.
"""
@classmethod
def codegen_pid_range(
cls, kernel: "ComboKernel", num: int, code: IndentedBuffer
) -> None:
if num == 0:
cls._calculate_xblocks(kernel, code)
code.splice(f"if pid < num_xblocks_{num}:")
with code.indent():
code.splice("pid_offset = pid")
else:
code.splice(f"elif pid < num_xblocks_{num}:")
with code.indent():
code.splice(f"pid_offset = pid - num_xblocks_{num - 1}")
@classmethod
def _calculate_xblocks(
cls, kernel: "ComboKernel", code: IndentedBuffer
) -> None:
x_numels_list = kernel.x_numels_list
for i in range(len(x_numels_list)):
xnumels, no_x_dim = (
(x_numels_list[i], False)
if isinstance(x_numels_list[i], str)
and cast(str, x_numels_list[i])[0] != "-"
or (
isinstance(x_numels_list[i], int)
and cast(int, x_numels_list[i]) > 0
)
else (kernel.min_x_blocks_list[i], True)
)
xblock_str = (
f"tl.cdiv({xnumels}, XBLOCK)" if not no_x_dim else f"{xnumels}"
)
if i == 0:
code.splice(f"num_xblocks_{i} = {xblock_str}")
else:
code.splice(f"num_xblocks_{i} = num_xblocks_{i - 1} + {xblock_str}")
@classmethod
def grid(
cls,
sub_kernel_numels: List[List[int]],
x_blocks_list: List[Union[str, int]],
dynamic_shape: bool,
) -> Tuple[Any, ...]:
xnumel = list(x_blocks_list)
ynumel: Any = [e[-2] if len(e) > 1 else None for e in sub_kernel_numels]
znumel: Any = [e[-3] if len(e) > 2 else None for e in sub_kernel_numels]
if dynamic_shape:
ynumel = None if None in ynumel else ynumel
znumel = None if None in znumel else znumel
else:
# TODO: improve 1d/2d mixed cases
ynumel = (
None
if any(e is None for e in cast(List[Any], ynumel))
else max(cast(Iterable[int], ynumel))
)
znumel = (
None
if any(e is None for e in cast(List[Any], znumel))
else max(cast(Iterable[int], znumel))
)
numels = (
(xnumel,)
if not ynumel
else (ynumel, xnumel)
if not znumel
else (znumel, ynumel, xnumel)
)
return numels
class RoundRobinDispatch:
"""
The dispatcher which dispatches the subkernels in a round robin manner:
the blocks are interleavedly dispatched to each subkernel to execute them
in parallel.
The class defines the methods specific to the dispatch algorithm.
Methods:
codegen_pid_range(...): codegen the pid range for each subkernel.
grid(...): codegen the grid size for launching the combo kernel.
"""
@classmethod
def codegen_pid_range(
cls, kernel: "ComboKernel", num: int, code: IndentedBuffer
) -> None:
num_kernels = len(kernel.sub_kernels)
if num == 0:
cond = "if"
else:
cond = "elif"
code.splice(f"{cond} pid % {num_kernels} == {num}:")
with code.indent():
code.splice(f"pid_offset = pid // {num_kernels}")
@classmethod
def grid(
cls,
sub_kernel_numels: List[List[int]],
x_blocks_list: List[Union[str, int]],
dynamic_shape: bool,
) -> Tuple[Any, ...]:
xnumel = x_blocks_list
# set no_x_dim xnumels to 0
xnumel_x_dim = [max(e, 0) for e in xnumel]
ynumel = [e[-2] if len(e) > 1 else None for e in sub_kernel_numels]
znumel = [e[-3] if len(e) > 2 else None for e in sub_kernel_numels]
# TODO: support 1d/2d mixed cases
xnumel = (
None
if any(e is None for e in xnumel)
else xnumel
if dynamic_shape
else max(xnumel_x_dim) # type: ignore[type-var, arg-type]
)
ynumel = (
None
if any(e is None for e in ynumel)
else ynumel
if dynamic_shape
else max(ynumel) # type: ignore[type-var, arg-type]
)
znumel = (
None
if any(e is None for e in znumel)
else znumel
if dynamic_shape
else max(znumel) # type: ignore[type-var, arg-type]
)
numels = (
(xnumel,)
if not ynumel
else (ynumel, xnumel)
if not znumel
else (znumel, ynumel, xnumel)
)
return numels
def __init__(
self, enable_autotune: bool = False, mixed_sizes: bool = False
) -> None:
super().__init__()
self.sub_kernels: List[TritonKernel] = []
self.iter_vars_count = itertools.count()
self.grids: List[List[int]] = []
self.min_x_blocks_list: List[Union[int, str]] = []
self.x_numels_list: List[Union[int, str]] = []
self.enable_autotune = enable_autotune
self.mixed_sizes = mixed_sizes
self.dispatch_class: Optional[
Union[
Type[ComboKernel.SequentialDispatch],
Type[ComboKernel.RoundRobinDispatch],
]
] = None
self.block_args: List[str] = []
# there following are used when autotuning is disabled
self.block_size_1d = 1024 # Try tuning this value
self.block_size_2d = 32
self.num_warps = 8
self.block_size_reduce = 256
self.dynamic_shape_args: List[str] = []
def create_sub_kernel(self, triton_kernel: TritonKernel) -> TritonKernel:
sub_kernel = triton_kernel
metrics.generated_kernel_count -= 1
sub_kernel.args = self.args
sub_kernel.iter_vars_count = self.iter_vars_count
sub_kernel.cse.iter_buffer_ids = self.cse.iter_buffer_ids
self.sub_kernels.append(sub_kernel)
return sub_kernel
@staticmethod
def create_triton_kernel(
tiling: Dict[str, sympy.Expr],
features: SIMDKernelFeatures,
optimize_mask: bool,
) -> TritonKernel:
"""
Only allow optimize_mask=True when 1) sequential dispatch is used,
2) numels except x dimension are the same for each sub kernel.
"""
return TritonKernel(
tiling,
features=features,
pid_cache={"tl.program_id(0)": "pid_offset"},
optimize_mask=optimize_mask,
# foreach kernels don't work with cooperative reductions
override_cooperative_reduction=False,
)
def codegen_static_numels_sub_kernel(
self, code: IndentedBuffer, sub_kernel: TritonKernel, num: int
) -> List[str]:
"""
We get a small speedup from hard coding numels if they are static.
This code stomps on the passed-in values by writing an constant to the top of the kernel.
In a kernel like:
def KERNEL_NAME(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
We would add
xnumel = 4096
rnumel = 768
After the signature, before the kernel code, if we decided to make these static. As its hardcoded, it becomes
a better signal to triton on how to unroll and do some static indexing. So, it's not so much that downstream
knows that its a static numel, as that you just plop a constant into the kernel.
"""
grid = []
uniquify_block_sizes = []
for tree in sub_kernel.range_trees:
simplified_tree_numel = V.graph.sizevars.simplify(tree.numel)
if isinstance(simplified_tree_numel, (Integer, int)):
code.writeline(f"{tree.prefix}numel = {int(simplified_tree_numel)}")
else:
assert f"{tree.prefix}numel_{num}" in self.dynamic_shape_args
uniquify_block_sizes.append(f"{tree.prefix}numel")
if not tree.is_reduction:
if isinstance(simplified_tree_numel, (Integer, int)):
grid.append(int(simplified_tree_numel))
else:
grid.append(f"{tree.prefix}numel_{num}")
if tree.is_reduction and sub_kernel.persistent_reduction:
if isinstance(simplified_tree_numel, (Integer, int)):
val = int(simplified_tree_numel)
else:
raise RuntimeError(
"Dynamic shape on reduction dimension is not supported"
)
val = next_power_of_2(val)
code.writeline(f"RBLOCK_{num}: tl.constexpr = {val}")
uniquify_block_sizes.append("RBLOCK")
if tree.prefix == "x" and sub_kernel.no_x_dim:
code.writeline(f"XBLOCK_{num}: tl.constexpr = 1")
uniquify_block_sizes.append("XBLOCK")
self.grids.append(grid)
return uniquify_block_sizes
def min_x_blocks_sub_kernel(self, sub_kernel: TritonKernel, num: int) -> None:
"""
Kernels with no_x_dim being true has no tunable XBLOCK. They have a fixed number of X blocks.
Grid calculation needs to make sure that they are assigned with enough number of blocks.
"""
min_x_blocks: Union[int, str] = 0
x_numels: Union[int, str] = 0
for tree in sub_kernel.range_trees:
simplified_tree_numel = V.graph.sizevars.simplify(tree.numel)
if tree.prefix == "x":
if isinstance(simplified_tree_numel, (Integer, int)):
x_numels = int(simplified_tree_numel)
else:
x_numels = f"{tree.prefix}numel_{num}"
if sub_kernel.no_x_dim:
min_x_blocks = x_numels
x_numels = (
-min_x_blocks
if isinstance(x_numels, int)
else "-" + cast(str, x_numels)
)
else:
if isinstance(simplified_tree_numel, (Integer, int)):
x_numels = int(simplified_tree_numel)
else:
x_numels = f"{tree.prefix}numel_{num}"
self.min_x_blocks_list.append(min_x_blocks)
self.x_numels_list.append(x_numels)
def select_heuristics(self, sub_kernel: TritonKernel) -> Tuple[str, Dict[str, int]]:
size_hints = {
prefix: next_power_of_2(V.graph.sizevars.size_hint(numel))
for prefix, numel in sub_kernel.numels.items()
if not prefix_is_reduction(prefix) or sub_kernel.inside_reduction
}
if sub_kernel.persistent_reduction:
assert sub_kernel.inside_reduction
heuristics = "persistent_reduction"
elif sub_kernel.inside_reduction:
heuristics = "reduction"
else:
heuristics = "pointwise"
return heuristics, size_hints
def select_combo_heuristics(
self, heuristics_list: List[str], size_hints_list: List[Dict[str, int]]
) -> Tuple[str, Dict[str, int], TritonKernel]:
if not self.enable_autotune:
return "foreach", size_hints_list[0], self.sub_kernels[0]
if "reduction" in heuristics_list:
i, _ = max(
enumerate(size_hints_list),
key=lambda x: x[1]["x"] if heuristics_list[x[0]] == "reduction" else 0,
)
return heuristics_list[i], size_hints_list[i], self.sub_kernels[i]
elif "pointwise" in heuristics_list:
i, _ = max(
enumerate(size_hints_list),
key=lambda x: x[1]["x"] if heuristics_list[x[0]] == "pointwise" else 0,
)
# modify size_hint to avoid oom check fail (may be a false alarm)
num_pointwise = len([e for e in heuristics_list if e == "pointwise"])
num_reduction = len([e for e in heuristics_list if e == "reduction"])
num_persistent_reduction = len(
[e for e in heuristics_list if e == "persistent_reduction"]
)
assert (
num_reduction == 0
), "combining pointwise and reduction are not supported yet."
heuristics = (
"pointwise_with_reduction"
if num_persistent_reduction > 0
else "pointwise"
)
if len(heuristics_list) - num_pointwise >= 4:
size_hints = size_hints_list[i]
size_hints["x"] = min(128, size_hints["x"])
return heuristics, size_hints_list[i], self.sub_kernels[i]
else:
return heuristics_list[0], size_hints_list[0], self.sub_kernels[0]
def get_mutated_args_sub_kernels(self) -> List[str]:
mutated_args = set()
for sub_kernel in self.sub_kernels:
for mutation in sub_kernel.mutations:
if mutation in sub_kernel.args.input_buffers:
mutated_args.add(sub_kernel.args.input_buffers[mutation])
if (
mutation in sub_kernel.args.inplace_buffers
and mutation not in V.graph.removed_buffers
and mutation not in sub_kernel.removed_buffers
):
mutated_args.add(
sub_kernel.args.inplace_buffers[mutation].inner_name
)
if mutation in sub_kernel.args.output_buffers:
mutated_args.add(sub_kernel.args.output_buffers[mutation])
return sorted(mutated_args)
def select_dispatch_strategy(self) -> None:
if self.dispatch_class is not None:
return
# mixed_sizes is used for optimize_mask, so it only allows sequential dispatch
# Not mixed sizes on y dim technically is ok to use round robin as wells.
if not self.mixed_sizes or any(isinstance(e, str) for e in self.x_numels_list):
# str in min_x_blocks_list means a dynamic shape
self.dispatch_class = ComboKernel.SequentialDispatch
return
# A negative x_blocks_list element means the kernel is not tunable,
# i.e., no_x_dim = True
x_numels_list = [abs(cast(int, e)) for e in self.x_numels_list]
total = max(x_numels_list) * len(x_numels_list)
needed = sum(x_numels_list)
if needed / total > BLOCK_UTILIZATION:
# Introduced overhead (masked blocks) is less than 20%
self.dispatch_class = ComboKernel.RoundRobinDispatch
else:
self.dispatch_class = ComboKernel.SequentialDispatch
def jit_line(
self,
heuristics: str,
size_hints: Dict[str, int],
selected_kernel: TritonKernel,
signature: List[Any],
argdefs: List[str],
pointwise_with_reduce: bool = False,
) -> str:
can_use_32bit = all(k.index_dtype == "tl.int32" for k in self.sub_kernels)
size_dtype = "tl.int32" if can_use_32bit else "tl.int64"
for i, sub in enumerate(self.sub_kernels):
self.min_x_blocks_sub_kernel(sub, i)
self.select_dispatch_strategy()
triton_meta = {
"signature": signature_to_meta(
signature, size_dtype=size_dtype, argdefs=argdefs
),
"device": DeviceProperties.create(V.graph.get_current_device_or_throw()),
"constants": {},
}
triton_meta["configs"] = [config_of(signature)]
mutated_args = self.get_mutated_args_sub_kernels()
inductor_meta = {
"kernel_name": str(Placeholder.DESCRIPTIVE_NAME),
"mutated_arg_names": mutated_args,
**TritonKernel.inductor_meta_common(),
}
sub_kernel = selected_kernel
if heuristics == "foreach":
heuristics_line = f"""
@triton_heuristics.foreach(
num_warps={self.num_warps},
triton_meta={triton_meta!r},
inductor_meta={inductor_meta!r},
)
@triton.jit
"""
elif sub_kernel.inside_reduction:
reduction_hint = sub_kernel.features.get_reduction_hint()
heuristics_line = f"""
@triton_heuristics.{heuristics}(
size_hints={size_hints!r},
reduction_hint={reduction_hint},
filename=__file__,
triton_meta={triton_meta!r},
inductor_meta={inductor_meta!r}
)
@triton.jit
"""
else:
tile_hint = ""
if len(size_hints) == 2:
tile_hint = "tile_hint=TileHint.SQUARE,"
else:
tile_hint = "tile_hint=TileHint.DEFAULT,"
heuristics_line = f"""
@triton_heuristics.{heuristics}(
size_hints={size_hints!r}, {tile_hint}
filename=__file__,
triton_meta={triton_meta!r},
inductor_meta={inductor_meta!r}
)
@triton.jit
"""
return heuristics_line
def codegen_blocks(self, code: IndentedBuffer) -> None:
for block in self.block_args:
assert block in [
"XBLOCK",
"YBLOCK",
"RBLOCK",
], f"{block} is not supported without autotuning"
if "YBLOCK" in self.block_args:
code.splice(f"XBLOCK: tl.constexpr = {self.block_size_2d}")
code.splice(f"YBLOCK: tl.constexpr = {self.block_size_2d}")
else:
code.splice(f"XBLOCK: tl.constexpr = {self.block_size_1d}")
if "RBLOCK" in self.block_args:
code.splice(f"RBLOCK: tl.constexpr = {self.block_size_reduce}")
def add_blockd_to_args(self, argdefs: List[str]) -> List[str]:
block_args = {}
block_names = {}
for num, sub_kernel in enumerate(self.sub_kernels):
# TODO: we assume all sub_kernels have the same block size
for tree in sub_kernel.range_trees:
if tree.is_reduction and (
not sub_kernel.inside_reduction or sub_kernel.persistent_reduction
):
continue
if tree.prefix == "x" and sub_kernel.no_x_dim:
continue
block_args[f"{tree.prefix.upper()}BLOCK : tl.constexpr"] = tree.prefix
block_names[f"{tree.prefix.upper()}BLOCK"] = tree.prefix
if self.enable_autotune:
argdefs.extend(block_args)
self.block_args = list(block_names.keys())
return argdefs
def add_numel_to_args(self, argdefs: List[str], signature: List[Any]) -> List[str]:
for num, sub_kernel in enumerate(self.sub_kernels):
for tree in sub_kernel.active_range_trees():
if not isinstance(tree.numel, (Integer, int)):
# only if it is a dynamic shape
sizearg = SizeArg(f"{tree.prefix}numel_{num}", tree.numel)
signature.append(sizearg)
argdefs.append(f"{tree.prefix}numel_{num}")
self.dynamic_shape_args.append(f"{tree.prefix}numel_{num}")
return argdefs
def add_numel_to_call_args_and_grid(
self, name: str, call_args: List[Any], arg_types: List[Any], grid: List[Any]
) -> None:
for num, sub_kernel in enumerate(self.sub_kernels):
for i, tree in enumerate(sub_kernel.range_trees):
numel_name = f"{tree.prefix}numel_{num}"
if numel_name not in self.dynamic_shape_args:
continue
if isinstance(tree.numel, (Integer, Symbol)):
expr = tree.numel
else:
expr = V.graph.wrapper_code.generate_numel_expr(
name, tree, suffix=str(num)
)
if not tree.is_reduction:
assert isinstance(
grid[i][num], str
), f"Grid {grid[i][num]} should be a dynamic shape."
numel_sign = grid[i][num][0] if grid[i][num][0] == "-" else ""
assert (
grid[i][num] == numel_sign + numel_name
), f"numel args mismatch: {grid[i][num]} vs {numel_name}"
grid[i][num] = -expr if numel_sign == "-" else expr
if not tree.is_reduction or sub_kernel.inside_reduction:
call_args.append(expr)
arg_types.append(type(expr))
def add_numel_to_call_args_and_grid_benchmark(
self, extra_args: List[Any], grid: Union[List[Any], Tuple[Any, ...]]
) -> None:
for num, sub_kernel in enumerate(self.sub_kernels):
for i, tree in enumerate(sub_kernel.range_trees):
numel_name = f"{tree.prefix}numel_{num}"
if numel_name not in self.dynamic_shape_args:
continue
expr = V.graph.sizevars.size_hint(tree.numel)
if not tree.is_reduction:
assert isinstance(
grid[i][num], str
), f"Grid {grid[i][num]} should be a dynamic shape."
numel_sign = grid[i][num][0] if grid[i][num][0] == "-" else ""
assert (
grid[i][num] == numel_sign + numel_name
), f"grid mismatch: {grid[i][num]} vs {numel_name}"
grid[i][num] = -expr if numel_sign == "-" else expr
if not tree.is_reduction or sub_kernel.inside_reduction:
extra_args.append(expr)
def codegen_kernel(self, name: Optional[str] = None) -> str:
# TODO: is it correct to use the first sub kernel's heuristics?
heuristics_list, size_hints_list = [], []
for subkernel in self.sub_kernels:
h, s = self.select_heuristics(subkernel)
heuristics_list.append(h)
size_hints_list.append(s)
heuristics, size_hints, selected_kernel = self.select_combo_heuristics(
heuristics_list, size_hints_list
)
pointwise_with_reduction, heuristics = (
(True, "pointwise")
if heuristics == "pointwise_with_reduction"
else (False, heuristics)
)
code = IndentedBuffer()
code.splice(gen_common_triton_imports())
if config.benchmark_combo_kernel:
code.splice(self.imports_for_benchmark_kernel())
argdefs, _, signature, _ = self.args.python_argdefs()
argdefs = self.add_numel_to_args(argdefs, signature)
argdefs = self.add_blockd_to_args(argdefs)
code.splice(
self.jit_line(
heuristics,
size_hints,
selected_kernel,
pointwise_with_reduce=pointwise_with_reduction,
signature=signature,
argdefs=argdefs,
)
)
code.writeline(
f"def {name or str(Placeholder.KERNEL_NAME)}({', '.join(argdefs)}):"
)
with code.indent():
code.splice("pid = tl.program_id(0)")
if not self.enable_autotune:
self.codegen_blocks(code)
for num, sub_kernel in enumerate(self.sub_kernels):
assert self.dispatch_class is not None
self.dispatch_class.codegen_pid_range(self, num, code)
with code.indent():
uniquify = self.codegen_static_numels_sub_kernel(
code, sub_kernel, num
)
sub_kernel.codegen_body()
uniquified_body = self.uniquify_block_sizes(
sub_kernel.body, num, uniquify
)
code.splice(uniquified_body)
code.splice("else:")
with code.indent():
code.splice("pass")
if config.benchmark_combo_kernel:
code.splice(self.codegen_kernel_benchmark(num_gb=0))
return code.getvalue()
def codegen_kernel_benchmark(
self, num_gb: float, grid: Optional[List[Any]] = None
) -> IndentedBuffer:
result = IndentedBuffer()
argdefs, call_args, signature, _ = self.args.python_argdefs()
result.writelines(["", "", "def get_args():"])
with result.indent():
name_cnt = itertools.count()
var_names = []
for arg_name, arg_sig in zip(call_args, signature):
var_name = f"arg_{next(name_cnt)}"
buf = V.graph.try_get_buffer(arg_name)
if buf:
result.writeline(
f"{var_name} = rand_strided({V.graph.sizevars.size_hints(buf.get_size())}, {V.graph.sizevars.size_hints(buf.get_stride())}, device='{buf.get_device()}', dtype={buf.get_dtype()})" # noqa: B950 line too long
)
elif arg_name in V.graph.constants:
# note that random seed is put in V.graph.constants
const_tensor = V.graph.constants[arg_name]
result.writeline(
f"{var_name} = rand_strided({V.graph.sizevars.size_hints(const_tensor.size())}, {V.graph.sizevars.size_hints(const_tensor.stride())}, device='{const_tensor.device}', dtype={const_tensor.dtype})" # type: ignore[arg-type] # noqa: B950 line too long
)
elif isinstance(arg_sig, SizeArg):
symval_hint = V.graph.sizevars.size_hint(arg_sig.expr)
# Force the seed_offset to be 0 so calls to the same kernel
# using different seed offset will have the same benchmark harness.
# We can dedup kernel definitions in this case.
if "seed_offset" in arg_sig.name:
symval_hint = 0
result.writeline(f"{var_name} = {symval_hint}")
elif isinstance(arg_sig, WorkspaceArg):
device = V.graph.get_current_device_or_throw()
count = V.graph.sizevars.size_hint(arg_sig.count)
# for benchmark harness, we ignore arg_sig.zero_mode and always zero it
result.writeline(
f"{var_name} = torch.zeros({count}, device='{device}', dtype={arg_sig.dtype})"
)
else:
raise KeyError(
f"Don't find the buffer or const tensor for {arg_name}"
)
var_names.append(var_name)
result.writeline(f"return {', '.join(var_names)},")
result.writelines(["\n", "\n", "def call(args):"])
if grid is None:
assert self.dispatch_class is not None
dynamic_shape = self.dynamic_shape_args != []
grid_tuple = self.dispatch_class.grid(
self.grids, self.x_numels_list, dynamic_shape
)
extra_args_str = ""
extra_args: List[Any] = []
if dynamic_shape:
self.add_numel_to_call_args_and_grid_benchmark(extra_args, grid_tuple)
# convert nested list to list of str
grid_tuple = tuple(
"[" + ", ".join(pexpr(item) for item in e) + ",]"
for e in grid_tuple
)
extra_args_str = ", ".join(map(str, extra_args)) + ", "
min_blocks = None
else:
min_blocks = max(self.min_x_blocks_list) * len(self.sub_kernels)
grid_str = ", ".join(pexpr(item) for item in grid_tuple)
grid_extra_kwargs = (
f"num_kernels={len(self.sub_kernels)}, "
f"min_blocks={min_blocks}, "
f"is_sequential={self.dispatch_class is self.SequentialDispatch}"
)
grid_str = f"{grid_str}, {grid_extra_kwargs}"
grid_arg = f"{extra_args_str}grid=grid_combo_kernels({grid_str})"
else:
grid_arg = f"grid={grid}"
index = V.graph.get_current_device_or_throw().index
with result.indent():
result.writeline(f"with {V.graph.device_ops.device_guard(index)}:")
with result.indent():
result.writeline(
V.graph.device_ops.set_device(index)
) # no-op to ensure context
stream_name = f"stream{index}"
result.writeline(f"{stream_name} = get_raw_stream({index})")
result.writeline(
f"{str(Placeholder.KERNEL_NAME)}.run(*args, {grid_arg}, stream={stream_name})"
)
# benchmark all configs
result.writelines(["\n", "\n", "def benchmark_all_configs(args):"])
with result.indent():
result.writeline(f"with {V.graph.device_ops.device_guard(index)}:")
with result.indent():
result.writeline(
V.graph.device_ops.set_device(index)
) # no-op to ensure context
result.writeline(
f"return {str(Placeholder.KERNEL_NAME)}.benchmark_all_configs(*args, {grid_arg})"
)
result.writelines(["\n", "\n", "if __name__ == '__main__':"])
with result.indent():
result.writeline(
"from torch._inductor.runtime.benchmarking import benchmarker"
)
result.writeline("")
result.writeline("args = get_args()")
result.writeline(
"ms = benchmarker.benchmark_gpu(lambda: call(args), rep=40)"
)
result.writeline(f"num_gb = {num_gb}")
result.writeline("gb_per_s = num_gb / (ms / 1e3)")
result.writeline(
'print(f"{ms:.3f}ms {num_gb:.3f}GB {gb_per_s:.2f}GB/s")'
)
return result
def imports_for_benchmark_kernel(self) -> str:
return textwrap.dedent(
"""
from torch._dynamo.testing import rand_strided
{}
import torch
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels
""".format(
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
)
)
def uniquify_block_sizes(
self, code: IndentedBuffer, num_kernel: int, uniquify: List[str]
) -> IndentedBuffer:
if not uniquify:
return code
modified = IndentedBuffer(initial_indent=code._indent)
for line in code._lines:
if isinstance(line, str) and (blocks := [e for e in uniquify if e in line]):
modified_line = line
for block in blocks:
modified_line = modified_line.replace(
block, f"{block}_{num_kernel}"
)
modified.writeline(modified_line)
elif isinstance(line, DeferredLine) and (
blocks := [e for e in uniquify if e in line.line]
):
modified_line = line.line
for block in blocks:
modified_line = modified_line.replace(
block, f"{block}_{num_kernel}"
)
new_line = DeferredLine(line.name, modified_line)
modified.writeline(new_line)
else:
modified.writeline(line)
return modified
def call_kernel(self, code: IndentedBuffer, name: str) -> None:
_, call_args, _, arg_types = self.args.python_argdefs()
wrapper = V.graph.wrapper_code
assert self.dispatch_class is not None
dynamic_shape = self.dynamic_shape_args != []
grid = list(
self.dispatch_class.grid(self.grids, self.x_numels_list, dynamic_shape)
)
num_kernels = len(self.sub_kernels)
min_blocks = (
max(self.min_x_blocks_list) * num_kernels if not dynamic_shape else None
)
is_sequential = self.dispatch_class is self.SequentialDispatch
if dynamic_shape:
self.add_numel_to_call_args_and_grid(name, call_args, arg_types, grid)
# convert nested list to list of str
# grid = tuple("["+", ".join(pexpr(item) for item in e)+",]" for e in grid)
if not self.enable_autotune and not dynamic_shape:
launch_grid = self.grid_no_autotune(
grid, num_kernels, cast(int, min_blocks), is_sequential
)
V.graph.wrapper_code.generate_kernel_call(
name,
call_args,
grid=launch_grid,
arg_types=arg_types,
grid_fn="",
)
return
# autotuning is enabled
grid = wrapper.generate_default_grid(
name,
list(grid),
grid_callable=grid_combo_kernels,
num_kernels=num_kernels,
min_blocks=min_blocks,
is_sequential=is_sequential,
default_meta=None if self.enable_autotune else self.get_default_meta(),
)
wrapper.generate_kernel_call(
name,
call_args,
grid,
V.graph.get_current_device_or_throw().index,
gpu=True,
triton=True,
arg_types=arg_types,
grid_fn="grid_combo_kernels",
grid_extra_kwargs=(
f"num_kernels={num_kernels}, "
f"min_blocks={min_blocks}, "
f"is_sequential={is_sequential}, "
f"default_meta={None if self.enable_autotune else self.get_default_meta()}"
),
)
def grid_no_autotune(
self,
grid: Union[Tuple[Any], List[Any]],
num_kernels: int,
min_blocks: int,
is_sequential: bool,
) -> List[int]:
meta = self.get_default_meta()
grid_func = grid_combo_kernels(
*grid,
num_kernels=num_kernels,
min_blocks=min_blocks,
is_sequential=is_sequential,
)
return grid_func(meta)
def get_default_meta(self) -> Dict[str, int]:
if "YBLOCK" in self.block_args:
meta = {"XBLOCK": self.block_size_2d, "YBLOCK": self.block_size_2d}
else:
meta = {"XBLOCK": self.block_size_1d}
return meta
|