1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
|
# mypy: allow-untyped-defs
from __future__ import annotations
import collections
import contextlib
import dataclasses
import dis
import functools
import inspect
import logging
import operator
import random
import re
import tempfile
from itertools import count
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Optional,
Sequence,
Set,
Tuple,
TYPE_CHECKING,
Union,
)
import sympy
from sympy import Expr
import torch
import torch._ops
from torch import dtype as torch_dtype
from torch._dynamo.utils import counters, dynamo_timed
from torch._inductor.codegen.debug_utils import DebugPrinterManager
from torch._inductor.codegen.multi_kernel import MultiKernelState
from torch._inductor.runtime.runtime_utils import cache_dir
from torch.fx.experimental.symbolic_shapes import ConvertIntKey, DivideByKey, SymTypes
from torch.fx.node import _get_qualified_name
from torch.utils._sympy.singleton_int import SingletonInt
from torch.utils._sympy.symbol import symbol_is_type, SymT
from .. import async_compile, config, ir
from ..codecache import output_code_log
from ..ir import IRNode, ReinterpretView
from ..runtime import triton_heuristics
from ..runtime.hints import DeviceProperties
from ..utils import (
cache_on_self,
get_benchmark_name,
LineContext,
sympy_product,
sympy_str,
)
from ..virtualized import V
from .common import (
CodeGen,
DeferredLine,
IndentedBuffer,
PythonPrinter,
WorkspaceArg,
WorkspaceZeroMode,
)
from .triton_utils import config_of, should_unwrap_unspec_arg, signature_to_meta
if TYPE_CHECKING:
import triton
from ..graph import GraphLowering
pexpr = PythonPrinter().doprint
ReuseKey = Tuple[torch.device, torch.dtype, str]
BufferLike = Union[ir.Buffer, WorkspaceArg]
def buffer_reuse_key(node: BufferLike) -> ReuseKey:
return (
node.get_device_or_error(),
node.get_dtype(),
# NB: this is symbolic so that we don't try to reuse a buffer
# for s0 for s1, just because they happen to share the same
# size hint
sympy_str(V.graph.sizevars.simplify(node.get_layout().storage_size())),
)
def convert_arg_type(arg: torch.Argument) -> str:
from .cpp import CONTAINER_PYTHON_TO_CPP, PYTHON_TO_CPP
# use x.real_type instead of x.type so that we get ScalarType instead of int
python_type = repr(arg.real_type) # type: ignore[attr-defined]
if python_type == "Tensor":
# Conversions rules follow https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/native#func
if arg.alias_info is not None and arg.alias_info.is_write:
return f"at::{python_type}&"
else:
return f"at::{python_type} const&"
if python_type in PYTHON_TO_CPP:
cpp_type = PYTHON_TO_CPP[python_type]
return cpp_type
# Convert args of container types e.g. Optional[*]
for py_container, cpp_container in CONTAINER_PYTHON_TO_CPP.items():
container_match = re.findall(py_container + r"\[([a-zA-Z_]+)]", python_type)
if len(container_match) == 1:
contained_type = container_match[0]
assert (
contained_type in PYTHON_TO_CPP
), f"unsupported {py_container} type in convert_arg_type: {contained_type}"
cpp_contained_type = PYTHON_TO_CPP[contained_type]
return f"{cpp_container}<{cpp_contained_type}>"
raise AssertionError(f"unsupport python_type: {python_type}")
def convert_return_type(ret: torch.Argument) -> str:
# use x.real_type instead of x.type so that we get ScalarType instead of int
python_type = repr(ret.real_type) # type: ignore[attr-defined]
python_to_cpp = {
"Tensor": "at::Tensor",
"List[Tensor]": "std::vector<at::Tensor>",
}
cpp_type = python_to_cpp.get(python_type, None)
assert cpp_type is not None, f"NYI return type: {python_type}"
# An output aliasing an input is returned by reference only when it's a
# Tensor, not when it's a Tensor[]. For example, aten.split.Tensor's output
# aliases the input tensor, but the op returns a vector by value.
if python_type == "Tensor" and ret.alias_info is not None:
cpp_type += "&"
return cpp_type
def get_cpp_op_schema(kernel: torch._ops.OpOverload) -> str:
args = kernel._schema.arguments
returns = kernel._schema.returns
num_returns = len(returns)
assert num_returns > 0, "must have at least one return value"
if num_returns == 1:
cpp_return_value = convert_return_type(returns[0])
elif num_returns > 1:
tuple_returns = ", ".join([convert_return_type(r) for r in returns])
cpp_return_value = f"std::tuple<{tuple_returns}>"
cpp_arg_type = [f"{convert_arg_type(arg)} {arg.name}" for arg in args]
return f"{cpp_return_value}({', '.join(cpp_arg_type)})" # type: ignore[possibly-undefined]
# TODO: Move to a well known place
TritonMetaParams = Dict[str, int]
TritonGrid = Union[
Tuple[Union[int, sympy.Expr], ...], Callable[[TritonMetaParams], Tuple[int, ...]]
]
def user_defined_kernel_grid_fn_code(
name: str,
configs: List[triton.Config], # type: ignore[name-defined]
grids: List[TritonGrid],
wrapper: Optional[PythonWrapperCodegen] = None,
) -> Tuple[str, str]:
output = IndentedBuffer()
def _convert_to_sympy_expr(item: Union[int, sympy.Expr]) -> sympy.Expr:
return item if isinstance(item, sympy.Expr) else sympy.Integer(item)
def determine_grid(
grid: TritonGrid,
):
"""
This function return a tuple of two values: the first one is for the real grid
which is used in the generated code; the second one is an example grid with
concreate values which is used in the autotune block to run the generated
kernels at compile time.
"""
if wrapper is None or callable(grid):
# return as-is when used in eager mode or when grid is callable
return grid, grid
# Grid contains ints/Expr, so utilize wrapper's expr printer for codegen
sympy_grid = tuple(_convert_to_sympy_expr(g) for g in grid)
return (
wrapper.codegen_python_shape_tuple(sympy_grid),
(
wrapper.codegen_python_shape_tuple(
tuple(
wrapper.generate_example_arg_value(g, type(g))
for g in sympy_grid
)
)
if config.triton.autotune_at_compile_time
else None
),
)
def writeline(line: str, example_grid: Optional[str] = None):
output.writeline(line)
if (
wrapper
and config.triton.autotune_at_compile_time
and name not in wrapper.kernel_autotune_names
):
wrapper.kernel_autotune_calls.writeline(example_grid or line)
fn_name = f"grid_wrapper_for_{name}"
writeline(f"def {fn_name}(meta):")
kernel_autotune_calls_indent = (
wrapper.kernel_autotune_calls.indent()
if wrapper and config.triton.autotune_at_compile_time
else contextlib.nullcontext()
)
with output.indent(), kernel_autotune_calls_indent:
if len(grids) == 1:
grid, example_grid = determine_grid(grids[0])
writeline(f"return {grid}", f"return {example_grid}")
else:
assert len(grids) > 1
assert len(grids) == len(configs)
seen = set()
# sort the configs from the largest # of kwargs to the smallest to
# emit the grids in the order of (approximately) decreasing specificity
# TODO(aakhundov): the sorting below is generally not sufficient, so
# maybe we'll need to restrict the supported cases to identical kwarg
# names in all autotuning configs.
for grid, c in sorted(
zip(grids, configs), key=lambda x: len(x[1].kwargs), reverse=True
):
if c.kwargs:
guards = [
f"meta['{name}'] == {val}" for name, val in c.kwargs.items()
]
guards = " and ".join(guards)
else:
guards = "True" # for configs with empty kwargs
grid, example_grid = determine_grid(grid)
statement = f"if {guards}: return {grid}"
if statement in seen:
continue
seen.add(statement)
writeline(statement, f"if {guards}: return {example_grid}")
return fn_name, output.getvalue()
def user_defined_triton_kernel_transitive_closure_source_code(kernel) -> str:
"""
Given a triton kernel function pointer collect the transitive closure of
its dependencies
"""
compile_wrapper = IndentedBuffer()
compile_wrapper.splice(kernel.src, strip=True)
# Also include any possible kernel being called indirectly
from triton import JITFunction # type: ignore[name-defined, attr-defined]
from triton.language import constexpr # type: ignore[name-defined]
# global constexpr vars handled above
symbols_included = {kernel.__name__}
def traverse(cur_kernel):
# here we extract the unqualified names (i.e., not attributes and
# without prepended module name) loaded in the kernel code, which
# are matched with the co_names and __globals__ below to codegen
# the respective imports necessary for the kernel compilation
unqualified_loads = {
inst.argval
for inst in dis.Bytecode(cur_kernel.fn)
if inst.opname == "LOAD_GLOBAL"
}
global_annotations = cur_kernel.fn.__globals__.get("__annotations__", {})
for symbol_name in cur_kernel.fn.__code__.co_names:
if symbol_name in symbols_included:
continue
if symbol_name in cur_kernel.fn.__globals__:
symbol = cur_kernel.fn.__globals__[symbol_name]
if isinstance(symbol, JITFunction):
compile_wrapper.newline()
compile_wrapper.writeline("@triton.jit")
compile_wrapper.splice(symbol.src, strip=True)
symbols_included.add(symbol_name)
traverse(symbol)
elif isinstance(symbol, (int, str, bool, constexpr)):
compile_wrapper.newline()
if isinstance(symbol, constexpr):
symbol_str = f"tl.constexpr({symbol.value!r})"
else:
symbol_str = f"{symbol!r}"
if annotation := global_annotations.get(symbol_name):
annotion_code = ""
if isinstance(annotation, type):
annotation_code = (
f": {annotation.__module__}.{annotation.__name__}"
)
else:
annotation_code = f": {annotation!r}"
compile_wrapper.writeline(
f"{symbol_name}{annotation_code} = {symbol_str}"
)
else:
compile_wrapper.writeline(f"{symbol_name} = {symbol_str}")
symbols_included.add(symbol_name)
elif (
symbol_name in unqualified_loads
and symbol_name != "tl" # already imported
and hasattr(symbol, "__module__")
# only codegen imports from triton; JITFunctions
# imported from other modules will be codegened
# in the separate branch above
and symbol.__module__.startswith("triton")
):
# a global symbol imported from triton is referenced
# without module qualification (i.e., `store` instead
# of `tl.store`): need to codegen an import
compile_wrapper.writeline(
f"from {symbol.__module__} import {symbol.__name__} as {symbol_name}"
)
symbols_included.add(symbol_name)
traverse(kernel)
return compile_wrapper.getvalue()
@dataclasses.dataclass
class SymbolicCallArg:
inner: str
# the original symbolic expression represented by inner
inner_expr: sympy.Expr
def __str__(self):
return str(self.inner)
class MemoryPlanningState:
def __init__(self):
super().__init__()
self.reuse_pool: Dict[
ReuseKey, List[FreeIfNotReusedLine]
] = collections.defaultdict(list)
self.total_allocated_buffer_size: int = 0
def __contains__(self, key: ReuseKey) -> bool:
return bool(self.reuse_pool.get(key, None))
def pop(self, key: ReuseKey) -> FreeIfNotReusedLine:
item = self.reuse_pool[key].pop()
assert not item.is_reused
return item
def push(self, key: ReuseKey, item: FreeIfNotReusedLine) -> None:
assert not item.is_reused
self.reuse_pool[key].append(item)
class WrapperLine:
pass
@dataclasses.dataclass
class EnterSubgraphLine(WrapperLine):
wrapper: PythonWrapperCodegen
graph: GraphLowering
def __post_init__(self) -> None:
self.wrapper.push_computed_sizes(self.wrapper.computed_sizes)
def codegen(self, code: IndentedBuffer) -> None:
self.wrapper.push_codegened_graph(self.graph)
code.do_indent()
@dataclasses.dataclass
class ExitSubgraphLine(WrapperLine):
wrapper: PythonWrapperCodegen
def __post_init__(self) -> None:
self.wrapper.computed_sizes = self.wrapper.pop_computed_sizes()
def codegen(self, code: IndentedBuffer) -> None:
self.wrapper.pop_codegened_graph()
code.do_unindent()
@dataclasses.dataclass
class EnterDeviceContextManagerLine(WrapperLine):
device_idx: int
last_seen_device_guard_index: Optional[int]
def codegen(self, code: IndentedBuffer) -> None:
if V.graph.cpp_wrapper:
code.writeline("\n")
if V.graph.aot_mode:
# In AOT mode, we have a stream provided as a param. A stream is
# associated with a device, so we never expect the device to change.
# CUDAStreamGuard sets the stream and the device.
if self.last_seen_device_guard_index is None:
code.writeline(
f"{V.graph.device_ops.cpp_aoti_stream_guard()} stream_guard(stream, this->device_idx_);"
)
else:
assert (
self.last_seen_device_guard_index == self.device_idx
), "AOTInductor only supports running on one CUDA device"
else:
if self.last_seen_device_guard_index is None:
code.writeline(
f"{V.graph.device_ops.cpp_aoti_device_guard()} device_guard({self.device_idx});"
)
else:
code.writeline(f"device_guard.set_index({self.device_idx});")
else:
# Note _DeviceGuard has less overhead than device, but only accepts
# integers
code.writeline(f"with {V.graph.device_ops.device_guard(self.device_idx)}:")
code.do_indent()
code.writeline(V.graph.device_ops.set_device(self.device_idx))
class ExitDeviceContextManagerLine(WrapperLine):
def codegen(self, code: IndentedBuffer) -> None:
if not V.graph.cpp_wrapper:
code.do_unindent()
@dataclasses.dataclass
class MemoryPlanningLine(WrapperLine):
wrapper: PythonWrapperCodegen
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
"""First pass to find reuse"""
return self
def codegen(self, code: IndentedBuffer) -> None:
"""Second pass to output code"""
def __str__(self) -> str:
"""
Emits a string representation that fits on one line.
"""
args: List[str] = []
for field in dataclasses.fields(self):
if field.name == "wrapper":
continue
val = getattr(self, field.name)
args.append(
f"{field.name}={val.get_name() if field.type is ir.Buffer else val}"
)
return f"{type(self).__name__}({', '.join(args)})"
@dataclasses.dataclass
class AllocateLine(MemoryPlanningLine):
node: BufferLike
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
if self.node.get_name() in V.graph.removed_buffers:
return NullLine(self.wrapper)
# try to reuse a recently freed buffer
key = buffer_reuse_key(self.node)
if config.allow_buffer_reuse and key in state:
free_line = state.pop(key)
free_line.is_reused = True
return ReuseLine(self.wrapper, free_line.node, self.node)
if self.node.get_device_or_error().type == "cpu":
static_shape = self.wrapper.static_shape_for_buffer_or_none(self.node)
if static_shape is not None:
state.total_allocated_buffer_size += int(
functools.reduce(operator.mul, static_shape, 1)
)
return self
def codegen(self, code: IndentedBuffer) -> None:
assert self.node.get_name() not in V.graph.removed_buffers
line = self.wrapper.make_buffer_allocation(self.node)
code.writeline(line)
@dataclasses.dataclass
class FreeIfNotReusedLine(MemoryPlanningLine):
node: BufferLike
is_reused: bool = False
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
if len(self.node.get_inputs_that_alias_output()) > 0:
return self
if isinstance(self.node.layout, ir.MultiOutputLayout):
return self
assert not self.is_reused
if self.node.get_name() in V.graph.removed_buffers:
return NullLine(self.wrapper)
if config.allow_buffer_reuse:
state.push(buffer_reuse_key(self.node), self)
return self
def codegen(self, code: IndentedBuffer) -> None:
assert self.node.get_name() not in V.graph.removed_buffers
if not self.is_reused:
code.writeline(self.wrapper.make_buffer_free(self.node))
@dataclasses.dataclass
class ReuseLine(MemoryPlanningLine):
node: BufferLike
reused_as: BufferLike
delete_old: bool = True
def plan(self, state: MemoryPlanningState) -> MemoryPlanningLine:
if self.node.get_name() in V.graph.removed_buffers:
assert self.reused_as.get_name() in V.graph.removed_buffers
return NullLine(self.wrapper)
assert self.reused_as.get_name() not in V.graph.removed_buffers
return self
def codegen(self, code: IndentedBuffer) -> None:
assert self.node.get_name() not in V.graph.removed_buffers
assert self.reused_as.get_name() not in V.graph.removed_buffers
code.writeline(
self.wrapper.make_buffer_reuse(self.node, self.reused_as, self.delete_old)
)
class NullLine(MemoryPlanningLine):
pass
@dataclasses.dataclass
class CommBufferLine(WrapperLine):
wrapper: PythonWrapperCodegen # type: ignore[name-defined] # noqa: F821
node: ir.Buffer
@property
def size(self) -> int:
from torch._inductor.utils import is_symbolic
numel = self.node.get_numel()
dtype = self.node.get_dtype()
if is_symbolic(numel):
raise AssertionError(
f"The size of a comm buffer can't be symbolic: {self.node}"
)
return int(numel) * dtype.itemsize
@property
def comm_buffer_type(self) -> ir.CommBufferType:
layout = self.node.get_output_spec()
assert isinstance(layout, ir.CommBufferLayout)
return layout.comm_buffer_type
@property
def group_name(self) -> str:
layout = self.node.get_output_spec()
assert isinstance(layout, ir.CommBufferLayout)
return layout.group_name
@dataclasses.dataclass
class CommBufferAllocateLine(CommBufferLine):
def codegen(self, code: IndentedBuffer) -> None:
assert self.node.get_name() not in V.graph.removed_buffers
name = self.node.get_name()
device = self.node.get_device()
dtype = self.node.get_dtype()
shape = tuple(self.node.get_size())
stride = tuple(self.node.get_stride())
code.writeline(
self.make_allocation_line(
self.comm_buffer_type,
self.group_name,
self.wrapper,
name,
device,
dtype,
shape,
stride,
)
)
@staticmethod
def make_allocation_line(
comm_buffer_type, group_name, wrapper, name, device, dtype, shape, stride
):
if comm_buffer_type == ir.CommBufferType.SYMM_MEM:
return (
f"{name} = empty_strided_p2p("
f"{wrapper.codegen_shape_tuple(shape)}, "
f"{wrapper.codegen_shape_tuple(stride)}, "
f"{dtype}, "
f'torch.device("cuda:{device.index}"), '
f'group_name="{group_name}", '
f"alloc_id={random.randint(0, 2**64 - 1)})"
)
else:
raise NotImplementedError(
f"Unsupported comm buffer type: {comm_buffer_type}"
)
@dataclasses.dataclass
class CommBufferFreeLine(CommBufferLine):
def codegen(self, code: IndentedBuffer) -> None:
line = self.wrapper.make_buffer_free(self.node)
code.writeline(f"{line} # {self.comm_buffer_type.value} buffer free")
BufferName = str
class PythonWrapperCodegen(CodeGen):
"""
Generate outer wrapper in Python that calls the kernels.
"""
def __init__(self):
super().__init__()
self._names_iter: Iterator[int] = count()
self.imports = IndentedBuffer()
self.header = IndentedBuffer()
self.prefix = IndentedBuffer()
self.suffix = IndentedBuffer()
self.wrapper_call = IndentedBuffer()
self.kernel_autotune_defs = IndentedBuffer()
self.kernel_autotune_calls = IndentedBuffer()
self.subgraph_definitions = IndentedBuffer()
self.kernel_autotune_names: Set[str] = set()
# If the generated source code is exactly the same, reuse the
# pre-existing kernel for it
self.src_to_kernel: Dict[str, str] = {}
self.kernel_numel_expr: Set[Tuple[str, GraphLowering]] = set()
self.lines: List[Union[MemoryPlanningLine, LineContext]] = []
self.declare = ""
self.declare_maybe_reference = ""
self.ending = ""
self.comment = "#"
self.none_str = "None"
self.move_begin = "std::move(" if V.graph.cpp_wrapper else ""
self.move_end = ")" if V.graph.cpp_wrapper else ""
self.last_seen_device_guard_index: Optional[int] = None
self.supports_intermediate_hooks = True
self.user_defined_kernel_cache: Dict[Tuple[Any, ...], Tuple[str, Any]] = {}
self.unbacked_symbol_decls: Set[str] = set() # str of sympy.Symbol
self.computed_sizes: Set[sympy.Symbol] = set()
self.launcher_fn_name = None
# This function can be overridden to change the launcher name
self.set_launcher_fn_name()
# this is used for tracking which GraphLowering instance---parent graph
# or (nested) subgraph---is currently codegened; the primary use case is
# including the graph instance into a cache key to avoid cross-graph
# caching during lowering of nested subgraphs
self.codegened_graph_stack = []
self.computed_sizes_stack = []
self.write_header()
self.write_prefix()
self.write_kernel_autotune_defs_header()
if not V.graph.aot_mode:
for name, hashed in V.graph.constant_reprs.items():
# include a hash so our code cache puts different constants into different files
self.write_constant(name, hashed)
self.allocated: Set[BufferName] = set()
self.freed: Set[BufferName] = set()
# maps from reusing buffer to reused buffer
self.reuses: Dict[BufferName, BufferName] = {}
self.write_get_raw_stream = functools.lru_cache(None)( # type: ignore[assignment]
self.write_get_raw_stream
)
@functools.lru_cache(None)
def add_import_once(line: str) -> None:
self.imports.writeline(line)
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.writeline(line)
self.add_import_once = add_import_once
self._metas: Dict[str, str] = {}
self._meta_vars: Set[str] = set()
self.multi_kernel_state = MultiKernelState()
self.already_codegened_subgraphs: Set[str] = set()
self.allocated_workspaces: Dict[str, Any] = {}
# intermediate tensor value printing utility
self.debug_printer = DebugPrinterManager(
debug_printer_level=config.aot_inductor.debug_intermediate_value_printer
)
# Additional files that are dependent to the wrapper (ex. cubin files)
self.additional_files = []
@staticmethod
def create(
is_subgraph: bool, subgraph_name: str, parent_wrapper: PythonWrapperCodegen
):
if is_subgraph:
return SubgraphPythonWrapperCodegen(subgraph_name, parent_wrapper)
return PythonWrapperCodegen()
def set_launcher_fn_name(self) -> None:
self.launcher_fn_name = "call"
def write_constant(self, name: str, hashed: str) -> None:
self.header.writeline(f"{name} = None # {hashed}")
def write_header(self) -> None:
context = torch._guards.TracingContext.try_get()
aot_config_comment = ""
if context is not None and context.aot_graph_name is not None:
aot_config_comment = f"# AOT ID: {context.aot_graph_name}"
aot_inductor_debug_utils = ""
if int(config.aot_inductor.debug_intermediate_value_printer) > 0:
aot_inductor_debug_utils = "from torch._inductor.codegen.debug_utils import _print_debugging_tensor_value_info"
self.imports.splice(
f"""
{aot_config_comment}
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from {async_compile.__name__} import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
{aot_inductor_debug_utils}
""",
strip=True,
)
self.header.splice(
"""
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
""",
strip=True,
)
try:
# Only add empty_strided_p2p() if distributed and SymmetricMemory
# is available
from torch._C._distributed_c10d import _SymmetricMemory # noqa: F401
self.header.splice(
"""
empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p
""",
strip=True,
)
except (AttributeError, ImportError):
pass
if config.annotate_training:
self.header.writeline("from torch.cuda import nvtx")
def include_extra_header(self, header: str):
pass
def write_kernel_autotune_defs_header(self) -> None:
self.kernel_autotune_defs.splice(
f"""
import torch
from torch._dynamo.testing import rand_strided
from torch._dynamo.utils import preserve_rng_state
from torch._inductor.select_algorithm import AlgorithmSelectorCache
from {async_compile.__name__} import AsyncCompile
async_compile = AsyncCompile()
generate_example_value = AlgorithmSelectorCache.generate_example_value
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
"""
)
@cache_on_self
def write_triton_header_once(self) -> None:
import_str = f"""
import triton
import triton.language as tl
from {triton_heuristics.__name__} import (
grid,
split_scan_grid,
grid_combo_kernels,
start_graph,
end_graph,
cooperative_reduction_grid,
)
"""
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.splice(import_str)
self.kernel_autotune_calls.writeline(
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
)
if not V.graph.cpp_wrapper:
self.imports.splice(import_str, strip=True)
self.imports.writeline(
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
)
@cache_on_self
def write_get_raw_stream_header_once(self) -> None:
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.writeline(
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
)
if not V.graph.cpp_wrapper:
self.imports.writeline(
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
)
def add_meta_once(self, meta: TritonMetaParams) -> str:
meta = repr(meta)
if meta not in self._metas:
var = f"meta{len(self._metas)}"
self._metas[meta] = var
self.header.writeline(f"{var} = {meta}")
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.writeline(f"{var} = {meta}")
self._meta_vars.add(var)
return self._metas[meta]
@cache_on_self
def get_output_refs(self) -> List[str]:
return [x.codegen_reference(self.wrapper_call) for x in V.graph.graph_outputs]
def mark_output_type(self) -> None:
return
def codegen_input_size_asserts(self) -> None:
for name, buf in V.graph.graph_inputs.items():
if isinstance(buf, sympy.Expr):
continue
# comparing strides for 0 size tensor is tricky. Ignore them for now.
if sympy_product(buf.get_size()) == 0:
continue
size = self.codegen_python_shape_tuple(buf.get_size())
stride = self.codegen_python_shape_tuple(buf.get_stride())
self.prefix.writeline(f"assert_size_stride({name}, {size}, {stride})")
def codegen_input_nan_asserts(self) -> None:
self.prefix.writeline("# make sure graph inputs are not nan/inf")
for name, buf in V.graph.graph_inputs.items():
if isinstance(buf, sympy.Expr):
continue
line = f"assert not {name}.isnan().any().item()"
self.prefix.writeline(line)
line = f"assert not {name}.isinf().any().item()"
self.prefix.writeline(line)
def write_async_compile_wait(self) -> None:
self.prefix.splice(
"""
async_compile.wait(globals())
del async_compile
"""
)
def write_prefix(self) -> None:
assert self.launcher_fn_name is not None
self.write_async_compile_wait()
self.prefix.splice(
f"""
def {self.launcher_fn_name}(args):
"""
)
with self.prefix.indent():
if config.triton.debug_sync_graph:
self.prefix.writeline(V.graph.device_ops.synchronize())
phase = V.graph.get_training_phase()
if config.annotate_training:
self.prefix.writeline(
f"training_annotation = nvtx._device_range_start('{phase}')"
)
if V.graph.graph_inputs:
lhs = ", ".join(V.graph.graph_input_names)
if len(V.graph.graph_input_names) == 1:
lhs += ","
self.prefix.writeline(f"{lhs} = args")
self.prefix.writeline("args.clear()")
self.codegen_inputs()
self.codegen_input_size_and_nan_asserts()
def codegen_input_size_and_nan_asserts(self) -> None:
if config.size_asserts:
self.codegen_input_size_asserts()
if config.nan_asserts:
self.codegen_input_nan_asserts()
# this function (and below) takes a graph as input so
# that stream caching happens per graph instance. this
# is important for nested subgraph codegening.
def write_get_raw_stream(self, device_idx: int, graph=None) -> str:
self.write_get_raw_stream_header_once()
name = f"stream{device_idx}"
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.writeline(
f"{name} = get_raw_stream({device_idx})"
)
if V.graph.cpp_wrapper:
# For cpp wrapper, no need to continue codegen for the main body
return name
self.writeline(f"{name} = get_raw_stream({device_idx})")
return name
def get_codegened_graph(self):
return self.codegened_graph_stack[-1]
def push_codegened_graph(self, graph):
self.codegened_graph_stack.append(graph)
def pop_codegened_graph(self):
return self.codegened_graph_stack.pop()
def push_computed_sizes(self, computed_sizes):
from copy import deepcopy
return self.computed_sizes_stack.append(deepcopy(computed_sizes))
def pop_computed_sizes(self):
return self.computed_sizes_stack.pop()
def next_kernel_suffix(self) -> str:
return f"{next(self._names_iter)}"
def codegen_device_guard_enter(self, device_idx: int) -> None:
self.writeline(
EnterDeviceContextManagerLine(device_idx, self.last_seen_device_guard_index)
)
if config.triton.autotune_at_compile_time:
# mimic logic of EnterDeviceContextManagerLine.codegen for the autotune code block
self.write_triton_header_once()
self.kernel_autotune_calls.writeline(
f"with {V.graph.device_ops.device_guard(device_idx)}:"
)
self.kernel_autotune_calls.do_indent()
self.kernel_autotune_calls.writeline(
V.graph.device_ops.set_device(device_idx)
)
self.kernel_autotune_calls.writeline(
f"stream{device_idx} = get_raw_stream({device_idx})"
)
self.last_seen_device_guard_index = device_idx
def codegen_device_guard_exit(self) -> None:
self.writeline(ExitDeviceContextManagerLine())
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.do_unindent()
def generate_return(self, output_refs: List[str]) -> None:
if output_refs:
self.wrapper_call.writeline("return (" + ", ".join(output_refs) + ", )")
else:
self.wrapper_call.writeline("return ()")
def generate_before_suffix(self, result: IndentedBuffer) -> None:
return
def generate_end(self, result: IndentedBuffer) -> None:
return
def generate_fallback_kernel(self, fallback_kernel, args):
self.generate_extern_kernel_alloc(fallback_kernel, args)
def generate_extern_kernel_alloc(self, extern_kernel, args):
# If it's a NoneLayout then the extern_kernel should essentially be
# treated as if it doesn't return anything
no_return = isinstance(extern_kernel.layout, ir.NoneLayout)
output_name = extern_kernel.get_name()
origin_node = extern_kernel.get_origin_node()
kernel_name = extern_kernel.get_kernel_name()
ending = self.ending
if config.memory_planning and "view_as_complex" in kernel_name:
# view operation fallbacks cause issues since inductor
# doesn't know the memory is still needed and might reuse it.
ending = f".clone(){ending}"
if no_return:
self.writeline(f"{self.declare}{kernel_name}({', '.join(args)}){ending}")
else:
self.writeline(
f"{self.declare}{output_name} = {kernel_name}({', '.join(args)}){ending}"
)
if (
self.supports_intermediate_hooks
and config.generate_intermediate_hooks
and origin_node is not None
):
counters["inductor"]["intermediate_hooks"] += 1
self.writeline(
f"run_intermediate_hooks({origin_node.name!r}, {output_name})"
)
def generate_extern_kernel_out(
self, kernel: str, out: str, out_view: Optional[str], args: List[str]
):
# add debug printer code for triton kernel calls at (jit) inductor level
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.set_printer_args(args, kernel, None, None, "extern")
args.append(f"out={out_view if out_view else out}")
with debug_printer_manager:
self.writeline(f"{kernel}({', '.join(args)})")
def generate_user_defined_triton_kernel(
self,
kernel_name: str,
raw_args: List[Any],
grid: List[Any],
configs,
triton_meta,
constexprs,
):
grid_fn, code = user_defined_kernel_grid_fn_code(
kernel_name, configs, grid, wrapper=self
)
if not (config.triton.autotune_at_compile_time and V.graph.cpp_wrapper):
# When codegen the autotune block only, do no insert Triton kernel
# code into the main block
#
# Must happen after free symbols are already codegened
# Emit the grid wrapper function right before the call
for line in code.split("\n"):
self.writeline(line)
# Explicitly call the Python version of val_to_arg_str
args = [PythonWrapperCodegen.val_to_arg_str(self, v) for v in raw_args]
arg_types = [
arg.get_dtype() if isinstance(arg, IRNode) else type(arg)
for arg in raw_args
]
# Because generate_kernel_call can be overriden by a subclass, explictly call
# PythonWrapperCodegen.generate_kernel_call here
PythonWrapperCodegen.generate_kernel_call(
self,
kernel_name,
args,
grid_fn=grid_fn,
arg_types=arg_types,
raw_args=raw_args,
)
def _generate_tma_descriptor_call(self, desc, apply_size_hints=False):
dims = desc.dims
block_dims = desc.block_dims
if apply_size_hints:
dims = tuple(V.graph.sizevars.atomically_apply_size_hint(d) for d in dims)
block_dims = tuple(
V.graph.sizevars.atomically_apply_size_hint(d) for d in block_dims
)
ptr = f"{desc.tensor.codegen_reference()}.data_ptr()"
# Explicitly call the Python version of val_to_arg_str
dims = ", ".join(PythonWrapperCodegen.val_to_arg_str(self, dim) for dim in dims)
block_dims = ", ".join(
PythonWrapperCodegen.val_to_arg_str(self, dim) for dim in block_dims
)
element_size = PythonWrapperCodegen.val_to_arg_str(self, desc.element_size)
prefix = "triton.tools.experimental_descriptor"
fn = f"{prefix}.create_{desc.rank}d_tma_descriptor"
args = f"{ptr}, {dims}, {block_dims}, {element_size}"
call = f"{fn}({args})"
return call
def generate_tma_descriptor(self, desc):
call = self._generate_tma_descriptor_call(desc)
line = f"{desc.name} = {call}{self.ending}"
self.writeline(line)
def generate_scatter_fallback(
self,
output,
inputs,
cpp_kernel_name,
python_kernel_name,
src_is_tensor,
reduce,
kwargs,
):
line = f"{python_kernel_name}({','.join(map(str, inputs))}"
if python_kernel_name.startswith("aten.scatter_reduce"):
line += ", ".join([""] + kwargs)
else:
if reduce:
line += f", reduce={repr(reduce)}"
line += ")"
self.writeline(line)
def generate_index_put_fallback(self, kernel, x, indices, values, accumulate):
indices_str = f"[{', '.join(indices)}]"
args = [x, indices_str, values, accumulate]
self.writeline(self.wrap_kernel_call(kernel, args))
def generate_fallback_kernel_with_runtime_lookup(
self,
buf_name: str,
python_kernel_name: str,
cpp_kernel_name: str,
codegen_args: List[str],
op_overload: Optional[torch._ops.OpOverload] = None,
raw_args=None,
outputs=None,
):
self.writeline(f"{buf_name} = {python_kernel_name}({', '.join(codegen_args)})")
def generate(self, is_inference):
with dynamo_timed("PythonWrapperCodegen.generate"):
return self._generate(is_inference)
def _generate(self, is_inference):
if config.profile_bandwidth:
self.write_triton_header_once()
result = IndentedBuffer()
result.splice(self.imports)
result.writeline("")
result.splice(self.header)
# We do not want the cpp header for intermediate const graph. Headers would be
# rendered by the main module instead.
if V.graph.aot_mode and V.graph.cpp_wrapper and V.graph.is_const_graph:
result = IndentedBuffer()
# Add subgraph definitions to the result
result.splice(self.subgraph_definitions)
with contextlib.ExitStack() as stack:
stack.enter_context(self.wrapper_call.indent())
if config.profiler_mark_wrapper_call:
self.generate_profiler_mark_wrapper_call(stack)
if config.profile_bandwidth:
self.generate_start_graph()
# We disable planning during training because it presently increases peak memory consumption.
if is_inference and config.memory_planning:
self.memory_plan()
else:
self.memory_plan_reuse()
if config.triton.store_cubin and not config.triton.autotune_at_compile_time:
self.generate_reset_kernel_saved_flags()
for line in self.lines:
if isinstance(line, WrapperLine):
line.codegen(self.wrapper_call)
else:
self.wrapper_call.writeline(line)
output_refs = self.get_output_refs()
self.mark_output_type()
if config.triton.debug_sync_graph:
self.wrapper_call.writeline(V.graph.device_ops.synchronize())
if config.profile_bandwidth:
self.generate_end_graph()
if config.triton.store_cubin and not config.triton.autotune_at_compile_time:
self.generate_save_uncompiled_kernels()
if config.triton.autotune_at_compile_time:
self.generate_and_run_autotune_block()
if config.annotate_training:
self.wrapper_call.writeline(
"nvtx._device_range_end(training_annotation)"
)
self.generate_return(output_refs)
self.finalize_prefix()
result.splice(self.prefix)
with result.indent():
result.splice(self.wrapper_call)
self.generate_before_suffix(result)
result.splice(self.suffix)
self.generate_end(result)
self.add_benchmark_harness(result)
return result.getvaluewithlinemap()
def generate_and_run_autotune_block(self):
"""
Compose self.kernel_autotune_defs and self.kernel_autotune_calls into a single block of
code and execute it to trigger Triton kernel compilation and auto-tuning
"""
self.kernel_autotune_defs.splice(
"""
async_compile.wait(globals())
del async_compile
"""
)
scope = {} # type: ignore[var-annotated]
tuning_code = (
self.kernel_autotune_defs.getvalue()
+ "\n"
+ self.kernel_autotune_calls.getvalue()
)
if output_code_log.level == logging.DEBUG:
# Save the autotuning code block into a file
# Create a temporary file
with tempfile.NamedTemporaryFile(
dir=cache_dir(), suffix=".py", delete=False
) as f:
f.write(tuning_code.encode("utf-8"))
file_path = f.name
output_code_log.debug(
"Auto-tuning code written to %s",
file_path,
)
# Execute the code to autotune kernels
try:
exec(tuning_code, scope)
except Exception as e:
raise RuntimeError(f"Failed to run autotuning code block: {e}") from e
def memory_plan(self):
from .memory_planning import MemoryPlanner
self.lines = MemoryPlanner(self).plan(self.lines)
def memory_plan_reuse(self):
out_names = V.graph.get_output_names()
while (
self.lines
and isinstance(self.lines[-1], MemoryPlanningLine)
# TODO: this seems legit, NullLine has no node
and self.lines[-1].node.name not in out_names # type: ignore[attr-defined]
):
# these lines will be pointless
self.lines.pop()
# codegen allocations in two passes
planning_states = [MemoryPlanningState()]
past_planning_states = []
for i in range(len(self.lines)):
line = self.lines[i]
if isinstance(line, MemoryPlanningLine):
self.lines[i] = line.plan(planning_states[-1])
elif isinstance(line, EnterSubgraphLine):
planning_states.append(MemoryPlanningState())
elif isinstance(line, ExitSubgraphLine):
past_planning_states.append(planning_states.pop())
past_planning_states.append(planning_states.pop())
assert len(planning_states) == 0
# conservatively use the sum of all allocated buffer sizes
# in potentially nested scopes as the total allocated size
total_allocated_buffer_size = sum(
s.total_allocated_buffer_size for s in past_planning_states
)
def codegen_input_symbol_assignment(
self,
name: str,
value: ir.TensorBox,
bound_vars: Set[sympy.Symbol],
):
code = self.prefix
@functools.lru_cache(None)
def sizeof(name):
code.writeline(f"{name}_size = {name}.size()")
return f"{name}_size"
@functools.lru_cache(None)
def strideof(name):
code.writeline(f"{name}_stride = {name}.stride()")
return f"{name}_stride"
if isinstance(value, sympy.Expr):
if not isinstance(value, sympy.Symbol) or value in bound_vars:
return
code.writeline(f"{value} = {name}")
bound_vars.add(value)
elif isinstance(value, ir.TensorBox):
for dim, size in enumerate(value.get_size()):
if isinstance(size, sympy.Symbol) and size not in bound_vars:
code.writeline(f"{size} = {sizeof(name)}[{dim}]")
bound_vars.add(size)
for dim, stride in enumerate(value.get_stride()):
if isinstance(stride, sympy.Symbol) and stride not in bound_vars:
code.writeline(f"{stride} = {strideof(name)}[{dim}]")
bound_vars.add(stride)
else:
raise AssertionError(f"Unknown value type: {type(value)}")
def codegen_inputs(self):
"""Assign all symbolic shapes to locals"""
bound_vars: Set[sympy.Symbol] = set()
for name, value in V.graph.graph_inputs.items():
self.codegen_input_symbol_assignment(name, value, bound_vars)
def ensure_size_computed(self, sym: sympy.Symbol):
if isinstance(sym, sympy.Symbol) and symbol_is_type(sym, SymT.PRECOMPUTED_SIZE):
if sym in self.computed_sizes:
return
self.computed_sizes.add(sym)
expr = V.graph.sizevars.inv_precomputed_replacements[sym]
self.writeline(f"{sym} = {pexpr(expr)}")
def finalize_prefix(self):
pass
def codegen_cpp_sizevar(self, x: Expr, *, simplify: bool = True) -> str:
raise RuntimeError("codegen_cpp_sizevar is only implemented for cpp_wrapper!")
def codegen_python_sizevar(self, x: Expr, *, simplify: bool = True) -> str:
return pexpr(x, simplify=simplify)
def codegen_sizevar(self, x: Expr) -> str:
return self.codegen_python_sizevar(x)
def codegen_tuple_access(self, basename: str, name: str, index: str) -> str:
return f"{basename}[{index}]"
def codegen_python_shape_tuple(self, shape: Sequence[Expr]) -> str:
parts = [*map(self.codegen_python_sizevar, shape)]
if len(parts) == 0:
return "()"
if len(parts) == 1:
return f"({parts[0]}, )"
return f"({', '.join(parts)})"
def codegen_shape_tuple(self, shape: Sequence[Expr]) -> str:
return self.codegen_python_shape_tuple(shape)
def codegen_alloc_from_pool(self, name, offset, dtype, shape, stride) -> str:
return "alloc_from_pool({})".format(
", ".join(
[
name,
pexpr(offset), # bytes not numel
str(dtype),
self.codegen_python_shape_tuple(shape),
self.codegen_python_shape_tuple(stride),
]
)
)
def codegen_reinterpret_view(
self,
data,
size,
stride,
offset,
writeline: Callable[..., None],
dtype=None,
) -> str:
if (
size == data.layout.size
and stride == data.layout.stride
and offset == data.layout.offset
):
if dtype is not None and dtype != data.dtype:
return f"aten.view.dtype({data.get_name()}, {dtype})"
else:
return f"{data.get_name()}"
else:
size = self.codegen_python_shape_tuple(size)
stride = self.codegen_python_shape_tuple(stride)
offset = self.codegen_sizevar(offset)
if dtype is not None and dtype != data.dtype:
return f"aten.view.dtype(reinterpret_tensor({data.get_name()}, {size}, {stride}, {offset}), {dtype})"
else:
return (
f"reinterpret_tensor({data.get_name()}, {size}, {stride}, {offset})"
)
def codegen_device_copy(self, src, dst, non_blocking: bool):
self.writeline(f"{dst}.copy_({src}, {non_blocking})")
def codegen_multi_output(self, name, value):
self.writeline(f"{self.declare}{name} = {value}{self.ending}")
def codegen_dynamic_scalar(self, node):
(data,) = (t.codegen_reference() for t in node.inputs)
if len(node.keypath) == 0:
self.writeline(f"{node.sym} = {data}.item()")
elif len(node.keypath) == 1 and isinstance(node.keypath[0], ConvertIntKey):
self.writeline(f"{node.sym} = 1 if {data}.item() else 0")
elif len(node.keypath) == 1 and isinstance(node.keypath[0], DivideByKey):
self.writeline(f"{node.sym}_undivided = {data}.item()")
self.writeline(
f"assert {node.sym}_undivided % {node.keypath[0].divisor} == 0, "
f"f'{{{node.sym}_undivided}} not divisible by {node.keypath[0].divisor}'"
)
self.writeline(
f"{node.sym} = {node.sym}_undivided // {node.keypath[0].divisor}"
)
else:
raise AssertionError(f"unrecognized keypath {node.keypath}")
# No one should ever use this buffer, but for uniformity
# define the variable and assign it None
self.writeline(f"{node.get_name()} = None")
def benchmark_compiled_module(self, output):
def add_fake_input(name, shape, stride, device, dtype):
output.writeline(
f"{name} = rand_strided("
f"{self.codegen_python_shape_tuple(shape)}, "
f"{self.codegen_python_shape_tuple(stride)}, "
f"device='{device}', dtype={dtype})"
)
def add_expr_input(name, val):
output.writeline(f"{name} = {val}")
def add_torchbind_input(name, value):
import pickle
output.writeline(f"{name} = pickle.loads({pickle.dumps(value)!r})")
output.writelines(
["", "", "def benchmark_compiled_module(times=10, repeat=10):"]
)
with output.indent():
output.splice(
"""
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
""",
strip=True,
)
for name, value in V.graph.constants.items():
# all the constants are global variables, that's why we need
# these 'global var_name' lines
output.writeline(f"global {name}")
add_fake_input(
name, value.size(), value.stride(), value.device, value.dtype
)
if len(V.graph.torchbind_constants) > 0:
output.writeline("import pickle")
for name, torchbind_obj in V.graph.torchbind_constants.items():
# all the constants are global variables, that's why we need
# these 'global var_name' lines
output.writeline(f"global {name}")
add_torchbind_input(name, torchbind_obj)
for name, value in V.graph.graph_inputs.items():
if isinstance(value, sympy.Symbol) and isinstance(
V.graph.sizevars.var_to_val.get(value, None), SingletonInt
):
# Inductor should only work with dense -> dense graph, and
# SingletonInts belong to metadata that should only live on
# the subclass.
continue
if isinstance(value, sympy.Expr): # Don't need to add symbolic
# TODO: this fallback and those below actually will generate possibly
# invalid benchmark code, because it's not guaranteed 42
# is actually a valid value for the kernel in question.
# See https://github.com/pytorch/pytorch/issues/124686
add_expr_input(name, V.graph.sizevars.size_hint(value, fallback=42))
else:
shape = [
V.graph.sizevars.size_hint(x, fallback=42)
for x in value.get_size()
]
stride = [
V.graph.sizevars.size_hint(x, fallback=42)
for x in value.get_stride()
]
add_fake_input(
name,
shape,
stride,
value.get_device(),
value.get_dtype(),
)
call_str = f"call([{', '.join(V.graph.graph_inputs.keys())}])"
output.writeline(f"fn = lambda: {call_str}")
output.writeline("return print_performance(fn, times=times, repeat=repeat)")
def add_benchmark_harness(self, output):
"""
Append a benchmark harness to generated code for debugging
"""
if not config.benchmark_harness:
return
self.benchmark_compiled_module(output)
output.writelines(["", "", 'if __name__ == "__main__":'])
with output.indent():
output.writelines(
[
"from torch._inductor.wrapper_benchmark import compiled_module_main",
f"compiled_module_main('{get_benchmark_name()}', benchmark_compiled_module)",
]
)
def define_kernel(
self,
kernel_name: str,
kernel_body: str,
metadata: Optional[str] = None,
gpu=True,
):
if config.triton.autotune_at_compile_time:
# Skip inserting comments for the autotune block as they may contain cpp style comments
body = f"\n\n{kernel_name} = {kernel_body}"
self.kernel_autotune_defs.splice(body)
if V.graph.cpp_wrapper:
# For cpp wrapper, no need to continue codegen for the main body
return
metadata_comment = f"{metadata}\n" if metadata else ""
body = f"\n\n{metadata_comment}{kernel_name} = {kernel_body}"
self.header.splice(body)
def define_subgraph_launcher_fn(self, fn_code: str):
self.subgraph_definitions.splice(fn_code)
def define_user_defined_triton_kernel(
self,
kernel,
configs,
kwargs,
restore_value_args,
reset_to_zero_args,
):
from torch.utils._triton import patch_triton_dtype_repr
patch_triton_dtype_repr()
original_name = kernel.__name__
from .common import KernelArgType, SizeArg, TensorArg, TMADescriptorArg
signature: List[KernelArgType] = []
constants: Dict[str, Any] = {}
non_constant_indices = []
equal_to_1_args: List[str] = []
for idx, key in enumerate(kernel.arg_names):
if key not in kwargs:
continue
arg = kwargs[key]
if idx in kernel.constexprs:
constants[key] = arg
elif kwargs[key] is None:
constants[key] = None
else:
non_constant_indices.append(idx)
if isinstance(arg, ir.TMADescriptor):
signature.append(
TMADescriptorArg(
name=key,
)
)
elif isinstance(arg, ir.Buffer):
signature.append(
TensorArg(
name=key,
buffer=arg.get_name(),
dtype=arg.get_dtype(),
)
)
elif isinstance(arg, ir.ReinterpretView):
# for ReinterpretView we use the underlying
# buffer name and note the (possibly non-zero)
# offset relative to the underlying buffer
signature.append(
TensorArg(
name=key,
buffer=arg.data.get_name(),
dtype=arg.get_dtype(),
offset=arg.layout.offset,
)
)
else:
signature.append(SizeArg(key, arg))
if isinstance(
arg, (int, sympy.Integer)
) and V.graph.sizevars.statically_known_equals(
arg, 1 # type: ignore[arg-type]
):
equal_to_1_args.append(key)
triton_meta: Dict[str, Any] = {
"signature": signature_to_meta(
signature,
size_dtype=None, # try to infer based on symints
indices=non_constant_indices,
argdefs=kernel.arg_names,
),
"device": DeviceProperties.create(V.graph.get_current_device_or_throw()),
# Triton compiler includes equal_to_1 args into constants even
# when they are not constexpr. otherwise there may be a segfault
# during launching the Inductor-compiled Triton kernel.
# TODO(aakhundov): add None args to constants, too. currently, this
# causes CUDA errors in test_aot_inductor.test_triton_kernel_with_none_input.
# https://github.com/pytorch/pytorch/issues/120478#issuecomment-1962822307
# https://github.com/openai/triton/blob/231efe9ed2d200be0f69a07c298e4342b08efe3d/python/triton/runtime/jit.py#L384
"constants": {
**constants,
**dict.fromkeys(equal_to_1_args, 1),
},
"configs": [
config_of(
signature,
indices=non_constant_indices,
)
],
}
if restore_value_args:
triton_meta["restore_value"] = tuple(restore_value_args)
if reset_to_zero_args:
triton_meta["reset_to_zero"] = tuple(reset_to_zero_args)
# Distinguish between different functions using function id
cache_key: List[Any] = [id(kernel.fn)]
if len(configs) > 0:
for arg in kwargs.values():
# We need to key on non tensor arg only in autotune mode
if not isinstance(arg, (ir.Buffer, ir.ReinterpretView)):
cache_key.append(arg)
cache_key.append(str(triton_meta))
cache_key = tuple(cache_key)
if cache_key in self.user_defined_kernel_cache:
return self.user_defined_kernel_cache[cache_key]
name = f"{original_name}_{len(self.user_defined_kernel_cache)}"
# Add to the cache for the next use
self.user_defined_kernel_cache[cache_key] = (name, triton_meta)
compile_wrapper = IndentedBuffer()
compile_wrapper.writeline(f"async_compile.triton({original_name!r}, '''")
from .triton import gen_common_triton_imports, TritonKernel
compile_wrapper.splice(gen_common_triton_imports())
inductor_meta = {
"kernel_name": name,
**TritonKernel.inductor_meta_common(),
}
configs = [
{
"kwargs": config.kwargs,
"num_warps": config.num_warps,
"num_stages": config.num_stages,
}
for config in configs
]
compile_wrapper.splice(
f"""
@triton_heuristics.user_autotune(
configs={configs!r},
inductor_meta={inductor_meta!r},
triton_meta={triton_meta!r},
filename=__file__,
custom_kernel=True,
)
@triton.jit
"""
)
compile_wrapper.splice(
user_defined_triton_kernel_transitive_closure_source_code(kernel)
)
current_device = V.graph.get_current_device_or_throw()
compile_wrapper.writeline(f"''', device_str='{current_device.type}')")
_, lineno = inspect.getsourcelines(kernel.fn)
srcfile = inspect.getsourcefile(kernel.fn)
metadata = f"# Original path: {srcfile}:{lineno}"
self.define_kernel(
name,
compile_wrapper.getvalue(),
metadata,
)
return name, triton_meta
def generate_numel_expr(self, kernel_name: str, tree, suffix: Optional[str] = None):
expr = f"{kernel_name}_{tree.prefix}numel"
if suffix is not None:
expr += f"_{suffix}"
self.writeline(f"{expr} = {pexpr(tree.numel)}")
# We can get symbolic expressions here, like s0*64
# It is fine to have them here, but we need to handle them correctly as their own type
# This is tricky to do, so we wrap in a custom type, distinct from scalars, but also from sympy*
# scalars as well.
# This is handled in `generate_args_decl` which has a correct comment of: TODO: only works for
# constant now, need type info. I agree, this needs type info, and while this is not true type info
# it suffices as a type hint for the purposes of producing the correct code for this type.
return SymbolicCallArg(expr, tree.numel)
def generate_workspace_allocation(self, ws: WorkspaceArg):
name = ws.get_name()
line = AllocateLine(self, ws)
if ws.zero_mode == WorkspaceZeroMode.UNINITIALIZED:
self.writeline(line)
elif ws.zero_mode == WorkspaceZeroMode.ZERO_ON_CALL:
self.writeline(line)
self.writeline(self.make_zero_buffer(name))
elif ws.zero_mode == WorkspaceZeroMode.ZERO_PER_GRAPH:
prior = self.allocated_workspaces.get(name)
if prior:
assert isinstance(prior, AllocateLine)
# expand existing allocation
prior.node = WorkspaceArg.maximum(prior.node, ws)
else:
self.writeline(line)
self.writeline(self.make_zero_buffer(name))
self.allocated_workspaces[name] = line
else:
raise AssertionError(ws.zero_mode)
if config.triton.autotune_at_compile_time:
self.kernel_autotune_calls.writeline(
PythonWrapperCodegen.make_allocation(
self,
name,
ws.device,
ws.dtype,
shape=(V.graph.sizevars.size_hint(ws.count),),
stride=(1,),
)
)
if ws.zero_mode != WorkspaceZeroMode.UNINITIALIZED:
self.kernel_autotune_calls.writeline(
PythonWrapperCodegen.make_zero_buffer(self, name)
)
def generate_workspace_deallocation(self, ws: WorkspaceArg):
if ws.zero_mode != WorkspaceZeroMode.ZERO_PER_GRAPH:
self.writeline(FreeIfNotReusedLine(self, ws))
def make_zero_buffer(self, name):
return f"{name}.zero_(){self.ending}"
def wrap_kernel_call(self, name, call_args):
return f"{name}({', '.join(call_args)}){self.ending}"
def generate_profiler_mark_wrapper_call(self, stack):
self.wrapper_call.writeline("from torch.profiler import record_function")
self.wrapper_call.writeline(
f"with record_function('graph_{V.graph.graph_id}_inductor_wrapper_call'):"
)
stack.enter_context(self.wrapper_call.indent())
def generate_start_graph(self):
self.wrapper_call.writeline("start_graph()")
def generate_end_graph(self):
self.wrapper_call.writeline(f"end_graph({config.profile_bandwidth_output!r})")
def generate_reset_kernel_saved_flags(self):
self.wrapper_call.splice(
f"""
for kernel in globals().values():
if isinstance(kernel, {triton_heuristics.__name__}.CachingAutotuner):
kernel.cuda_kernel_saved = False
"""
)
def generate_save_uncompiled_kernels(self):
"""
Precompile and save the CUBINs of the Triton kernels that haven't
been precompiled and saved as a side effect of running the generated
JIT model (Python wrapper). This can happen when the model contains
control flow: only one pass through the control flow operators covers
the kernels that are saved, the remaining kernels are not launched,
hence not saved. The main purpose of this codegen is to compile and
save the Triton kernels outside the active control flow path for
subsequent AOTInductor code generation and compilation.
"""
self.wrapper_call.splice(
f"""
for kernel in globals().values():
if isinstance(kernel, {triton_heuristics.__name__}.CachingAutotuner):
if not kernel.cuda_kernel_saved:
if len(kernel.launchers) == 0:
kernel.precompile()
kernel.save_gpu_kernel(
grid=(0, 0, 0), # use dummy grid
stream="stream", # use dummy stream
launcher=kernel.launchers[0],
)
"""
)
def generate_default_grid(
self,
kernel_name: str,
grid_args: List[Any],
gpu: bool = True,
grid_callable: Optional[Callable[..., Any]] = None,
**grid_extra_kwags,
):
return grid_args
def prepare_triton_kernel_call(self, device_index, call_args):
def wrap_arg(arg):
if isinstance(arg, str):
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
return arg + ".item()" if should_unwrap_unspec_arg(arg) else arg
elif isinstance(arg, (int, float, bool, SymbolicCallArg)):
return str(arg)
else:
return pexpr(V.graph.sizevars.simplify(arg))
call_args = [wrap_arg(arg) for arg in call_args]
if device_index is None:
current_device = V.graph.get_current_device_or_throw()
device_index = current_device.index
return device_index, call_args
def generate_example_arg_value(self, arg, arg_type, raw_arg=None, index=None):
if isinstance(arg_type, torch_dtype):
if isinstance(raw_arg, ir.TMADescriptor):
# first we generate the underlying buffer
buf_name = raw_arg.tensor.get_name()
buf = V.graph.get_buffer(buf_name)
elif V.graph.try_get_buffer(arg) is not None:
buf_name = arg
buf = V.graph.get_buffer(arg)
else:
assert (
raw_arg is not None
), "V.graph.get_buffer(arg) and raw_arg can't be None at the same time"
buf_name = f"tmp_arg_{index}"
buf = raw_arg
size = tuple(
V.graph.sizevars.atomically_apply_size_hint(
e,
fallback=config.unbacked_symint_fallback,
)
for e in buf.get_size()
)
stride = tuple(
V.graph.sizevars.atomically_apply_size_hint(
e,
fallback=config.unbacked_symint_fallback,
)
for e in buf.get_stride()
)
device = buf.get_device()
dtype = buf.get_dtype()
offset = V.graph.sizevars.size_hint(
buf.get_layout().offset,
fallback=config.unbacked_symint_fallback,
)
value = f"generate_example_value({size}, {stride}, '{device}', {dtype}, {offset})"
self.kernel_autotune_calls.writeline(f"{buf_name} = {value}")
if isinstance(raw_arg, ir.TMADescriptor):
# generate another line initializing a host-side TMA
# descriptor from the underlying buffer created above
value = self._generate_tma_descriptor_call(
desc=raw_arg,
apply_size_hints=True,
)
buf_name = arg
self.kernel_autotune_calls.writeline(f"{buf_name} = {value}")
return buf_name
elif issubclass(arg_type, sympy.Basic) or isinstance(arg, SymbolicCallArg):
# arg is a symbol or symbolic expression
if isinstance(arg, str):
if arg in self._meta_vars:
return arg
if raw_arg is None:
return "None"
arg = raw_arg
if isinstance(arg, SymbolicCallArg):
arg = arg.inner_expr
if arg in V.graph.sizevars.inv_precomputed_replacements:
arg = V.graph.sizevars.inv_precomputed_replacements[arg]
return str(
V.graph.sizevars.atomically_apply_size_hint(
arg, fallback=config.unbacked_symint_fallback
)
)
elif isinstance(arg, (str, int, float, bool)):
return str(arg)
elif isinstance(arg, list):
return f"[{', '.join(self.generate_example_arg_value(a, type(a)) for a in arg)}]"
else:
raise NotImplementedError(f"Unsupported type {type(arg)}")
def _grid_dim_str(self, grid_per_dim):
if isinstance(grid_per_dim, list):
return (
"[" + ", ".join(self._grid_dim_str(item) for item in grid_per_dim) + "]"
)
else:
return pexpr(grid_per_dim)
def generate_kernel_call(
self,
kernel_name: str,
call_args,
grid=None,
device_index=None,
gpu=True,
triton=True,
arg_types=None,
raw_args=None,
grid_fn: str = "grid",
triton_meta=None,
autotune_configs=None,
grid_extra_kwargs="",
):
"""
Generates kernel call code.
gpu: Defines whether the backend is GPU. Otherwise the backend is CPU.
triton: Defines whether the backend uses Triton for codegen. Otherwise it uses the CUDA language when gpu=True,
and C++ when gpu=False.
"""
if not (triton or gpu):
self.writeline(self.wrap_kernel_call(kernel_name, call_args))
return
device_index, call_args_str = self.prepare_triton_kernel_call(
device_index, call_args
)
call_args_str = ", ".join(call_args_str)
stream_name = PythonWrapperCodegen.write_get_raw_stream(
self, device_index, V.graph
)
if not triton:
stream_ptr = f"c_void_p({stream_name})"
self.writeline(
f"{kernel_name}.{kernel_name}({call_args_str}, {stream_ptr})"
)
return
self.write_triton_header_once()
if (
config.triton.autotune_at_compile_time
and kernel_name not in self.kernel_autotune_names
):
# Create example args for autotune in a separate epilogue
assert arg_types is not None and len(call_args) == len(
arg_types
), "call_args and arg_types do not match"
tensor_args = {}
all_args = []
if raw_args is None:
# create a dummy raw_args for uniform behavior in the following loop
raw_args = [None] * len(call_args)
else:
assert len(raw_args) == len(
call_args
), "call_args and raw_args do not match"
for i, (arg, arg_type, raw_arg) in enumerate(
zip(call_args, arg_types, raw_args)
):
key = None
if isinstance(arg, str) and "=" in str(arg):
# arg may be passed in a kwarg style, and then we need to extract its value
key, arg = arg.split("=")
if isinstance(arg_type, torch_dtype):
# workspace allocation is already generated by `generate_workspace_allocation()`
# in `TritonKernel.call_kernel()`.
if re.match(r"^(workspace|semaphore)", arg):
arg_str = arg
tensor_args[arg] = arg_str
elif arg not in tensor_args:
arg_str = self.generate_example_arg_value(
arg, arg_type, raw_arg, i
)
tensor_args[arg] = arg_str
else:
arg_str = tensor_args[arg]
else:
arg_str = self.generate_example_arg_value(arg, arg_type, raw_arg, i)
all_args.append(arg_str if key is None else f"{key}={arg_str}")
if grid is None:
grid_str = grid_fn
else:
grid_str = ", ".join(
self.generate_example_arg_value(g, type(g)) for g in grid
)
if grid_extra_kwargs:
grid_str = f"{grid_str}, {grid_extra_kwargs}"
grid_str = f"{grid_fn}({grid_str})"
self.kernel_autotune_calls.writeline(
f"{kernel_name}.run({', '.join(all_args)}, grid={grid_str}, stream={stream_name})"
)
self.kernel_autotune_calls.writeline(
f"del {', '.join(arg for arg in tensor_args.values())}\n",
)
self.kernel_autotune_names.add(kernel_name)
if V.graph.cpp_wrapper:
# For cpp wrapper, no need to continue codegen for the main body
return
if grid is None:
grid_str = grid_fn
else:
grid_str = ", ".join(
PythonWrapperCodegen._grid_dim_str(self, item) for item in grid
)
if grid_extra_kwargs:
grid_str = f"{grid_str}, {grid_extra_kwargs}"
grid_str = f"{grid_fn}({grid_str})"
# add debug printer code for triton kernel calls at (jit) inductor level
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.set_printer_args(call_args, kernel_name, arg_types, None)
with debug_printer_manager:
self.writeline(
f"{kernel_name}.run({call_args_str}, grid={grid_str}, stream={stream_name})"
)
def writeline(self, line):
self.lines.append(line)
def writelines(self, lines):
for line in lines:
self.writeline(line)
def enter_context(self, ctx):
self.lines.append(LineContext(ctx))
def val_to_arg_str(self, s, type_=None):
from torch.utils._triton import dtype_to_string, has_triton_package
if has_triton_package():
import triton
if isinstance(s, SymTypes):
return pexpr(s.node.expr)
elif isinstance(s, sympy.Expr):
return pexpr(s)
elif isinstance(s, (tuple, list)):
@dataclasses.dataclass
class Shim:
ref: Any
def __repr__(self):
return self.ref
# Explicitly call the Python version of val_to_arg_str
return repr(
type(s)(Shim(PythonWrapperCodegen.val_to_arg_str(self, a)) for a in s)
)
elif isinstance(s, torch._ops.OpOverload):
return _get_qualified_name(s)
elif isinstance(s, (ir.Buffer, ir.MutableBox, ReinterpretView)):
return s.codegen_reference()
elif has_triton_package() and isinstance(s, triton.language.dtype): # type: ignore[possibly-undefined]
return dtype_to_string(s)
else:
return repr(s)
# The following methods are for memory management
def make_buffer_allocation(self, buffer: BufferLike):
device = buffer.get_device()
dtype = buffer.get_dtype()
shape = tuple(buffer.get_size())
stride = tuple(buffer.get_stride())
return self.make_allocation(buffer.get_name(), device, dtype, shape, stride)
def make_allocation(self, name, device, dtype, shape, stride):
if device.type in ("cpu", "cuda", "xpu"):
# optimized path for faster allocations, saving ~2us versus the stuff below
return (
f"{name} = empty_strided_{device.type}("
f"{self.codegen_python_shape_tuple(shape)}, "
f"{self.codegen_python_shape_tuple(stride)}, "
f"{dtype})"
)
# all other devices:
return (
f"{name} = empty_strided("
f"{self.codegen_python_shape_tuple(shape)}, "
f"{self.codegen_python_shape_tuple(stride)}, "
f"device='{device.type}', dtype={dtype})"
)
def make_tensor_alias(self, new_name, old_name, comment=""):
return f"{self.declare}{new_name} = {old_name}{self.ending} {self.comment} {comment}"
def make_buffer_free(self, buffer: BufferLike):
return f"del {buffer.get_name()}"
def make_free_by_names(self, names_to_del: List[str]):
return f"del {', '.join(name for name in names_to_del)}"
def codegen_exact_buffer_reuse(self, old_name: str, new_name: str, del_line: str):
return f"{self.declare_maybe_reference}{new_name} = {old_name}{del_line}{self.ending} {self.comment} reuse"
def make_buffer_reuse(self, old: BufferLike, new: BufferLike, delete_old: bool):
assert old.get_dtype() == new.get_dtype()
old_name = old.get_name()
new_name = new.get_name()
del_line = ";"
if old_name not in V.graph.get_output_names() and delete_old:
del_line = f"; {self.make_buffer_free(old)}"
if old.get_size() == new.get_size() and old.get_stride() == new.get_stride():
return self.codegen_exact_buffer_reuse(old_name, new_name, del_line)
reinterpret_view = self.codegen_reinterpret_view(
old, new.get_size(), new.get_stride(), 0, self.wrapper_call.writeline
)
return (
f"{self.declare_maybe_reference}{new_name} = "
f"{self.move_begin}{reinterpret_view}{self.move_end}{del_line}"
f" {self.comment} reuse"
)
def codegen_deferred_allocation(self, name, layout):
self.writeline(
DeferredLine(
name,
f"{self.declare_maybe_reference}{name} = "
f"{self.move_begin}{layout.view.codegen_reference()}{self.move_end}{self.ending}"
f" {self.comment} alias",
)
)
def codegen_allocation(self, buffer: ir.Buffer):
name = buffer.get_name()
if (
name in V.graph.removed_buffers
or name in self.allocated
or isinstance(buffer, ir.DonatedBuffer)
):
return
self.allocated.add(name)
if isinstance(
buffer.get_defining_op(),
(ir.ExternKernelAlloc, ir.MultiOutput),
):
return
layout = buffer.get_output_spec()
if isinstance(layout, ir.MutationLayoutSHOULDREMOVE):
return
if isinstance(layout, ir.NoneLayout):
return
if isinstance(layout, ir.NonOwningLayout):
assert isinstance(
layout.view, ir.ReinterpretView
), f"unexpected {type(layout.view)}: {layout.view}"
assert isinstance(layout.view.data, ir.StorageBox), type(layout.view.data)
assert isinstance(layout.view.data.data, ir.Buffer), type(layout.view.data)
self.codegen_allocation(layout.view.data.data)
self.codegen_deferred_allocation(name, layout)
return
if isinstance(layout, ir.CommBufferLayout):
self.writeline(CommBufferAllocateLine(self, buffer))
return
self.writeline(AllocateLine(self, buffer))
def codegen_free(self, buffer):
name = buffer.get_name()
# can be freed but not reused
if isinstance(buffer, ir.InputBuffer):
self.writeline(self.make_buffer_free(buffer))
return
if isinstance(buffer.get_output_spec(), ir.CommBufferLayout):
# Comm buffers are not eligible for in-place reuse. Their reuse is
# achieved exclusively via buffer planning.
self.writeline(CommBufferFreeLine(self, buffer))
return
if not self.can_reuse(buffer):
return
self.freed.add(name)
self.writeline(FreeIfNotReusedLine(self, buffer))
def can_reuse(self, input_buffer, output_buffer=None):
name = input_buffer.get_name()
return not (
name in V.graph.removed_buffers
or (
name in V.graph.graph_inputs
and not isinstance(
V.graph.graph_inputs_original[name], ir.DonatedBuffer
)
)
or name in V.graph.constants
or name in V.graph.torchbind_constants
or name in V.graph.never_reuse_buffers
or name in self.freed
)
def did_reuse(self, buffer, reused_buffer):
# Check whether a given buffer was reused by a possible reuser in the wrapper codegen
# Can be consulted from inside ir codegen, e.g. to determine whether a copy is needed
return (
buffer.get_name() in self.reuses
and self.reuses[buffer.get_name()] == reused_buffer.get_name()
)
def codegen_inplace_reuse(self, input_buffer: ir.Buffer, output_buffer: ir.Buffer):
assert buffer_reuse_key(input_buffer) == buffer_reuse_key(output_buffer)
self.codegen_allocation(input_buffer)
self.freed.add(input_buffer.get_name())
self.allocated.add(output_buffer.get_name())
self.reuses[output_buffer.get_name()] = input_buffer.get_name()
self.writeline(ReuseLine(self, input_buffer, output_buffer))
def codegen_unbacked_symbol_decl(self, symbol):
name = str(symbol)
if name in self.unbacked_symbol_decls:
return name
else:
# When in CppWrapperCpu, we should only generate the declaration once
self.unbacked_symbol_decls.add(name)
return self.declare + name
def codegen_subgraph_by_inlining(self, subgraph, outer_inputs, outer_outputs):
# TODO (desertfire) - This function is the old way of supporting
# subgraph codegen by inlining subgraphs in the output code. For python
# wrapper, we have moved to lifting subgraphs as functions, supported by
# `codegen_subgraph` function.
#
# However this does not work with cpp wrapper. With cpp wrapper, we make
# two passes and the kernels are shared from the first pass to the next.
# Therefore, both the Python and CppWrapper need to share the some
# codegen infra. For now, CppWrapperCpu has not been updated to lift the
# subgraph as functions. Therefore for cpp_wrapper first pass with
# PythonWrapper, we still fallback to the old way of inlining subgraphs
# in the output code. Once we update CppWrapperCpu, we can remove this
# function.
def _codegen_subgraph_prefix():
assert len(subgraph.graph.graph_inputs) == len(outer_inputs)
for inner_input, outer_input in zip(
subgraph.graph.graph_inputs, outer_inputs
):
self.writeline(
f"{self.declare}{inner_input} = {outer_input}{self.ending}"
)
def _codegen_subgraph_suffix():
assert len(subgraph.graph.graph_outputs) == len(outer_outputs)
for inner_output, outer_output in zip(
subgraph.graph.graph_outputs, outer_outputs
):
self.writeline(
f"{outer_output} = {inner_output.codegen_reference()}{self.ending}"
)
try:
self.push_codegened_graph(subgraph.graph)
self.writeline(f"{self.comment} subgraph: {subgraph.name}")
_codegen_subgraph_prefix()
parent_graph = V.graph
with V.set_graph_handler(subgraph.graph):
subgraph.graph.codegen_subgraph(
parent_graph=parent_graph,
)
_codegen_subgraph_suffix()
finally:
self.pop_codegened_graph()
def codegen_subgraph_prefix(self, subgraph, outer_inputs, outer_outputs):
# All inputs of hops must be explicitly passed in.
# Free tensors and basic symbols should have been explictily lifted as inputs in dynamo.
assert len(outer_inputs) == len(
subgraph.graph.graph_input_names
), f"graph_input_names:{subgraph.graph.graph_input_names}, outer_inputs: {outer_inputs}"
for inner_input, outer_input in zip(
subgraph.graph.graph_input_names, outer_inputs
):
self.writeline(f"{self.declare}{inner_input} = {outer_input}{self.ending}")
def codegen_subgraph_call(self, subgraph, outer_inputs, outer_outputs):
# Get the input and output names of the subgraph
input_names = subgraph.graph.graph_input_names
inner_inputs = ", ".join(input_names)
if len(input_names) == 1:
inner_inputs += ","
outer_output_names = ", ".join(outer_outputs) + (
"," if len(outer_outputs) == 1 else ""
)
# Create a list of inputs for the subgraph call
self.writeline(f"{subgraph.graph.name}_args = [{inner_inputs}]")
for inner_input in input_names[: len(outer_inputs)]:
self.writeline(f"del {inner_input}")
# Call the subgraph launcher function
self.writeline(
f"({outer_output_names}) = {subgraph.graph.name}({subgraph.graph.name}_args)"
)
def codegen_subgraph(self, subgraph, outer_inputs, outer_outputs):
# Codegen subgraph by recursively calling the codegen for the subgraph.
# This lifts the subgraph as a function in the output code.
if V.graph.aot_mode:
self.codegen_subgraph_by_inlining(subgraph, outer_inputs, outer_outputs)
return
self.push_codegened_graph(subgraph.graph)
self.writeline(f"{self.comment} subgraph: {subgraph.name}")
self.codegen_subgraph_prefix(subgraph, outer_inputs, outer_outputs)
parent_graph = V.graph
subgraph.graph.cpp_wrapper = parent_graph.cpp_wrapper
if subgraph.graph.name not in self.already_codegened_subgraphs:
# If it is already codegened, the parent wrapper already has
# subgraph fn by name subgraph.graph.name
with V.set_graph_handler(subgraph.graph):
# Call the codegen of subgraph recursively
subgraph_code, _ = subgraph.graph.codegen()
self.already_codegened_subgraphs.add(subgraph.graph.name)
self.define_subgraph_launcher_fn(subgraph_code)
self.codegen_subgraph_call(subgraph, outer_inputs, outer_outputs)
def codegen_invoke_subgraph(self, invoke_subgraph):
name = invoke_subgraph.get_name()
self.writeline(f"{name} = [None] * {len(invoke_subgraph.outputs)}")
outer_inputs = [buf.codegen_reference() for buf in invoke_subgraph.inputs]
outer_outputs = [f"{name}[{i}]" for i in range(len(invoke_subgraph.outputs))]
self.codegen_subgraph(invoke_subgraph.subgraph, outer_inputs, outer_outputs)
def codegen_conditional(self, conditional):
name = conditional.get_name()
outer_inputs = [buf.codegen_reference() for buf in conditional.operands]
outer_outputs = [f"{name}[{i}]" for i in range(len(conditional.outputs))]
predicate = conditional.predicate.codegen_reference()
if not isinstance(conditional.predicate, ir.ShapeAsConstantBuffer):
# move the Tensor predicate to host
predicate = f"{predicate}.item()"
self.writeline(f"{name} = [None] * {len(conditional.outputs)}")
self.writeline(f"if {predicate}:")
self.writeline(EnterSubgraphLine(self, conditional.true_subgraph.graph))
self.codegen_subgraph(conditional.true_subgraph, outer_inputs, outer_outputs)
self.writeline(ExitSubgraphLine(self))
self.writeline("else:")
self.writeline(EnterSubgraphLine(self, conditional.false_subgraph.graph))
self.codegen_subgraph(conditional.false_subgraph, outer_inputs, outer_outputs)
self.writeline(ExitSubgraphLine(self))
def codegen_while_loop(self, while_loop):
name = while_loop.get_name()
outer_carried_inputs = [
buf.codegen_reference() for buf in while_loop.carried_inputs
]
outer_additional_inputs = [
buf.codegen_reference() for buf in while_loop.additional_inputs
]
self.writeline(f"{name} = [None] * {len(outer_carried_inputs)}")
for i, inp in enumerate(outer_carried_inputs):
# set the initial state before the loop
self.writeline(f"{name}[{i}] = {inp}")
cond_outer_inputs = [
*[f"{name}[{i}]" for i in range(len(outer_carried_inputs))],
*outer_additional_inputs,
]
cond_outer_outputs = [f"{name}_cond_result"]
body_outer_inputs = list(
cond_outer_inputs
) # same inputs for cond_fn and body_fn
# Carry over the state from body_fn. Note: We only carry over
# the carried_inputs part of the inputs, the additional ones
# are passed in as they're before.
body_outer_outputs = body_outer_inputs[: len(outer_carried_inputs)]
self.writeline("while True:")
self.writeline(EnterSubgraphLine(self, while_loop.cond_subgraph.graph))
self.codegen_subgraph(
while_loop.cond_subgraph, cond_outer_inputs, cond_outer_outputs
)
self.writeline(
f"if not {cond_outer_outputs[0]}.item(): break"
) # condition doesn't hold
self.writeline(ExitSubgraphLine(self))
self.writeline(EnterSubgraphLine(self, while_loop.body_subgraph.graph))
self.codegen_subgraph(
while_loop.body_subgraph, body_outer_inputs, body_outer_outputs
)
self.writeline(ExitSubgraphLine(self))
@staticmethod
def statically_known_int_or_none(x):
try:
if getattr(x, "free_symbols", None):
# _maybe_evaluate_static will return (s0 // (2 // s0)) as 2, but
# the actual codegen will still generate the full expression here.
return None
if isinstance(x, int):
return x
val = V.graph._shape_env._maybe_evaluate_static(x)
if val is None:
return val
return int(val) # type: ignore[call-overload]
except Exception:
return None
@staticmethod
def statically_known_list_of_ints_or_none(lst):
result = []
for x in lst:
num = PythonWrapperCodegen.statically_known_int_or_none(x)
if num is None:
return None
result.append(num)
return result
@staticmethod
def is_statically_known_list_of_ints(lst):
return (
PythonWrapperCodegen.statically_known_list_of_ints_or_none(lst) is not None
)
@staticmethod
def static_shape_for_buffer_or_none(buffer):
return PythonWrapperCodegen.statically_known_list_of_ints_or_none(
buffer.get_size()
)
@staticmethod
def can_prove_buffer_has_static_shape(buffer):
return PythonWrapperCodegen.static_shape_for_buffer_or_none(buffer) is not None
class SubgraphPythonWrapperCodegen(PythonWrapperCodegen):
"""
A wrapper codegen that generates code for a subgraph. For most of the
methods, we rely on the implementation in the PythonWrapperCodegen. But we
override a few functions to produce cleaner code (like avoiding writing
imports twice in the output code)
"""
def __init__(self, subgraph_name, parent_wrapper):
# It is necessary to set the subgraph_name before calling super __init__
# because __init__ calls set_launcher_fn_name
self.subgraph_name = subgraph_name
self.parent_wrapper = parent_wrapper
super().__init__()
def set_launcher_fn_name(self) -> None:
# This sets up the name of the function containing the launcher code of
# the subgraph.
self.launcher_fn_name = self.subgraph_name
def write_header(self) -> None:
pass
def add_benchmark_harness(self, output):
pass
def benchmark_compiled_module(self, output):
pass
def write_async_compile_wait(self):
pass
def next_kernel_suffix(self) -> str:
# Ensures that subgraphs kernels do not clash with each other
return self.parent_wrapper.next_kernel_suffix()
@cache_on_self
def write_triton_header_once(self) -> None:
# TODO: Uncomment in future. This will be needed to support subgraph
# codegen for cpp wrapper.
# if config.triton.autotune_at_compile_time:
# import_str = self.triton_header_str()
# self.kernel_autotune_calls.splice(import_str)
self.parent_wrapper.write_triton_header_once()
@cache_on_self
def write_get_raw_stream_header_once(self) -> None:
# TODO: Uncomment in future. This will be needed to support subgraph
# codegen for cpp wrapper.
# if config.triton.autotune_at_compile_time:
# self.kernel_autotune_calls.writeline(
# V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
# )
self.parent_wrapper.write_get_raw_stream_header_once()
|