File: comm_analysis.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (264 lines) | stat: -rw-r--r-- 8,286 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import functools
import math
from enum import IntEnum

import sympy

import torch

from . import ir
from .utils import get_dtype_size, sympy_product
from .virtualized import V


class NCCL_COLL(IntEnum):
    ALL_REDUCE = 0
    ALL_GATHER = 1
    REDUCE_SCATTER = 2


class NVIDIA_GPU_TYPE(IntEnum):
    VOLTA = 0
    AMPERE = 1
    HOPPER = 2


@functools.lru_cache
def get_gpu_type() -> NVIDIA_GPU_TYPE:
    gpu_info = torch.utils.collect_env.get_gpu_info(torch.utils.collect_env.run) or ""
    if "V100" in gpu_info:
        return NVIDIA_GPU_TYPE.VOLTA
    elif "A100" in gpu_info:
        return NVIDIA_GPU_TYPE.AMPERE
    elif "H100" in gpu_info:
        return NVIDIA_GPU_TYPE.HOPPER
    else:
        # for other gpu types, assume Ampere
        return NVIDIA_GPU_TYPE.AMPERE


def get_collective_type(node: ir.IRNode) -> NCCL_COLL:
    if not isinstance(node, ir._CollectiveKernel):
        raise ValueError(f"node is not a collective kernel: {node}")

    kernel_name = node.python_kernel_name
    assert kernel_name is not None
    if "all_reduce" in kernel_name:
        return NCCL_COLL.ALL_REDUCE
    elif "all_gather" in kernel_name:
        return NCCL_COLL.ALL_GATHER
    elif "reduce_scatter" in kernel_name:
        return NCCL_COLL.REDUCE_SCATTER
    else:
        raise ValueError(f"Unsupported collective kernel: {kernel_name}")


def get_collective_input_size_bytes(node: ir.IRNode) -> int:
    sz_bytes = 0
    for inp in node.inputs:  # type: ignore[attr-defined]
        numel = sympy_product(inp.layout.size)
        if isinstance(numel, sympy.Integer):
            # For ease of testing
            numel = int(numel)
        else:
            numel = V.graph.sizevars.size_hint(numel, fallback=0)
        sz_bytes += numel * get_dtype_size(inp.layout.dtype)
    return sz_bytes


def get_collective_group_size(node: ir.IRNode) -> int:
    if type(node) == ir._CollectiveKernel:
        from torch.distributed.distributed_c10d import _get_group_size_by_name

        return _get_group_size_by_name(node.constant_args[-1])
    else:
        raise TypeError(f"Unsupported collective type: {node}")


####################################################################################################################
# The following code and constants are adapted from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc #
####################################################################################################################


class NCCL_HW(IntEnum):
    NVLINK = 0
    PCI = 1
    NET = 2


class NCCL_ALGO(IntEnum):
    TREE = 0
    RING = 1


class NCCL_PROTO(IntEnum):
    # The ordering and enum values here matches original in
    # https://github.com/NVIDIA/nccl/blob/0b083e52096c387bad7a5c5c65b26a9dca54de8c/src/include/devcomm.h#L28
    # For difference between these protocols, see https://github.com/NVIDIA/nccl/issues/281#issuecomment-571816990
    LL = 0  # Low-latency
    # LL128 = 1   # Low-latency 128-byte
    # SIMPLE = 2


# Latencies in us
# len(NCCL_ALGO) x len(NCCL_PROTO)
# NOTE: use array instead of tensor to prevent incompatibility with fake mode
baseLat = [
    # Tree
    [
        6.8,  # LL
    ],
    # Ring
    [
        6.6,  # LL
    ],
]

# Latencies in us
# len(NCCL_HW) x len(NCCL_ALGO) x len(NCCL_PROTO)
hwLat = [
    # NVLINK
    [
        [0.6],  # Tree (LL)
        [0.6],  # Ring (LL)
    ],
    # PCI
    [
        [1.0],  # Tree (LL)
        [1.0],  # Ring (LL)
    ],
    # NET
    [
        [5.0],  # Tree (LL)
        [2.7],  # Ring (LL)
    ],
]


# LL128 max BW per channel
llMaxBws = [
    # Volta-N1/Intel-N2/Intel-N4
    [
        39.0,
        39.0,
        20.4,
    ],
    # Ampere-N1/AMD-N2/AMD-N4
    [
        87.7,
        22.5,  # avg of ring & tree
        19.0,
    ],
    # Hopper-N1/AMD-N2/AMD-N4
    [
        87.7,
        22.5,  # avg of ring & tree
        19.0,
    ],
]


def estimate_nccl_collective_runtime(node: ir.IRNode) -> float:
    """
    Returns estimated NCCL collective runtime in nanoseconds (ns).

    The following heuristics are copied from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc.
    We aim to estimate the runtime as accurately as possible.

    Assumptions:
    - only ring algorithm (NCCL_ALGO_RING) is used
    - only Low-Latency protocol (NCCL_PROTO_LL) is used, i.e. Simple or LL128 is not used
    - 8 gpus per node  # TODO: Need to find a way to get accurate "gpus per node" and "# nodes" info.
    - collective is one of: allreduce, reducescatter, allgather
    """
    tensor_storage_size_bytes = get_collective_input_size_bytes(node)
    # Convert bytes to GB
    tensor_storage_size_GB = tensor_storage_size_bytes / 1024 / 1024 / 1024

    # Currently assumes each node has 8 gpus. And when >1 node is used, assumes each node uses all 8 gpus.
    # TODO: Need to find a way to get accurate "gpus per node" and "# nodes" info.
    num_gpus_per_node = 8
    group_size = get_collective_group_size(node)
    nNodes = math.ceil(group_size / num_gpus_per_node)
    nRanks = group_size  # this is total # of gpus globally that participate in this collective op

    if nRanks <= 1:
        return 0

    # Assumes ring algorithm
    nccl_algo = NCCL_ALGO.RING
    nccl_proto = NCCL_PROTO.LL
    coll = get_collective_type(node)

    # =============== bandwidth computation ===============
    # First compute bandwidth in GB/s; then at the end, convert it to GB/ns

    bwIntra = torch._inductor.config.intra_node_bw
    bwInter = torch._inductor.config.inter_node_bw

    compCapIndex = get_gpu_type()
    index2 = nNodes - 1 if nNodes <= 2 else 2
    # LL: for single node, we look at GPU type; for multi-node, we look at CPU type
    index1 = compCapIndex if nNodes == 1 else 0
    llMaxBw = llMaxBws[index1][index2]

    # NOTE: each step of ring algorithm is synchronized,
    # and is bottlenecked by the slowest link which is the inter-node interconnect.
    # hence when nNodes >= 2, bw is inter-node bandwidth.
    # NOTE: the original code in https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc
    # have this as `if nNodes <= 2` which seems wrong. Corrected it here.
    bw = bwIntra if nNodes == 1 else bwInter
    nChannels = 2  # Assume # channels is 2
    busBw = nChannels * bw

    # Various model refinements
    busBw = min(
        llMaxBw,
        busBw
        * (1.0 / 4.0 if (nNodes > 1 or coll == NCCL_COLL.ALL_REDUCE) else 1.0 / 3.0),
    )

    if coll == NCCL_COLL.ALL_REDUCE:
        nsteps = 2 * (nRanks - 1)
    elif coll in (NCCL_COLL.REDUCE_SCATTER, NCCL_COLL.ALL_GATHER):
        nsteps = nRanks - 1

    # Convert bus BW to algorithm BW (tensor bytes / algoBW = actual execution time)
    ratio = (1.0 * nRanks) / nsteps  # type: ignore[possibly-undefined]
    bandwidth = busBw * ratio
    # Convert GB/s to GB/ns
    bandwidth_GB_per_ns = bandwidth / 1e9

    # =============== latency computation ===============
    intraHw = NCCL_HW.NVLINK

    if coll == NCCL_COLL.ALL_REDUCE:
        if nNodes > 1:
            nInterSteps = 2 * nNodes
        else:
            nInterSteps = 0
    elif coll in (NCCL_COLL.REDUCE_SCATTER, NCCL_COLL.ALL_GATHER):
        nInterSteps = nNodes - 1

    # First compute latency in us; then at the end, convert it to ns
    latency = baseLat[nccl_algo][nccl_proto]
    intraLat = hwLat[intraHw][nccl_algo][nccl_proto]
    interLat = hwLat[NCCL_HW.NET][nccl_algo][nccl_proto]

    # Inter-node rings still have to launch nsteps * net overhead.
    netOverhead = 0.0
    if nNodes > 1:
        netOverhead = 1.0  # getNetOverhead(comm);
    intraLat = max(intraLat, netOverhead)
    latency += (nsteps - nInterSteps) * intraLat + nInterSteps * interLat  # type: ignore[possibly-undefined]
    # Convert us to ns
    latency_ns = latency * 1e3

    # =============== final result ===============
    transport_ns = tensor_storage_size_GB / bandwidth_GB_per_ns
    return transport_ns + latency_ns


################################################################################################################
# The above code and constants are adapted from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc #
################################################################################################################