1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
import functools
import math
from enum import IntEnum
import sympy
import torch
from . import ir
from .utils import get_dtype_size, sympy_product
from .virtualized import V
class NCCL_COLL(IntEnum):
ALL_REDUCE = 0
ALL_GATHER = 1
REDUCE_SCATTER = 2
class NVIDIA_GPU_TYPE(IntEnum):
VOLTA = 0
AMPERE = 1
HOPPER = 2
@functools.lru_cache
def get_gpu_type() -> NVIDIA_GPU_TYPE:
gpu_info = torch.utils.collect_env.get_gpu_info(torch.utils.collect_env.run) or ""
if "V100" in gpu_info:
return NVIDIA_GPU_TYPE.VOLTA
elif "A100" in gpu_info:
return NVIDIA_GPU_TYPE.AMPERE
elif "H100" in gpu_info:
return NVIDIA_GPU_TYPE.HOPPER
else:
# for other gpu types, assume Ampere
return NVIDIA_GPU_TYPE.AMPERE
def get_collective_type(node: ir.IRNode) -> NCCL_COLL:
if not isinstance(node, ir._CollectiveKernel):
raise ValueError(f"node is not a collective kernel: {node}")
kernel_name = node.python_kernel_name
assert kernel_name is not None
if "all_reduce" in kernel_name:
return NCCL_COLL.ALL_REDUCE
elif "all_gather" in kernel_name:
return NCCL_COLL.ALL_GATHER
elif "reduce_scatter" in kernel_name:
return NCCL_COLL.REDUCE_SCATTER
else:
raise ValueError(f"Unsupported collective kernel: {kernel_name}")
def get_collective_input_size_bytes(node: ir.IRNode) -> int:
sz_bytes = 0
for inp in node.inputs: # type: ignore[attr-defined]
numel = sympy_product(inp.layout.size)
if isinstance(numel, sympy.Integer):
# For ease of testing
numel = int(numel)
else:
numel = V.graph.sizevars.size_hint(numel, fallback=0)
sz_bytes += numel * get_dtype_size(inp.layout.dtype)
return sz_bytes
def get_collective_group_size(node: ir.IRNode) -> int:
if type(node) == ir._CollectiveKernel:
from torch.distributed.distributed_c10d import _get_group_size_by_name
return _get_group_size_by_name(node.constant_args[-1])
else:
raise TypeError(f"Unsupported collective type: {node}")
####################################################################################################################
# The following code and constants are adapted from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc #
####################################################################################################################
class NCCL_HW(IntEnum):
NVLINK = 0
PCI = 1
NET = 2
class NCCL_ALGO(IntEnum):
TREE = 0
RING = 1
class NCCL_PROTO(IntEnum):
# The ordering and enum values here matches original in
# https://github.com/NVIDIA/nccl/blob/0b083e52096c387bad7a5c5c65b26a9dca54de8c/src/include/devcomm.h#L28
# For difference between these protocols, see https://github.com/NVIDIA/nccl/issues/281#issuecomment-571816990
LL = 0 # Low-latency
# LL128 = 1 # Low-latency 128-byte
# SIMPLE = 2
# Latencies in us
# len(NCCL_ALGO) x len(NCCL_PROTO)
# NOTE: use array instead of tensor to prevent incompatibility with fake mode
baseLat = [
# Tree
[
6.8, # LL
],
# Ring
[
6.6, # LL
],
]
# Latencies in us
# len(NCCL_HW) x len(NCCL_ALGO) x len(NCCL_PROTO)
hwLat = [
# NVLINK
[
[0.6], # Tree (LL)
[0.6], # Ring (LL)
],
# PCI
[
[1.0], # Tree (LL)
[1.0], # Ring (LL)
],
# NET
[
[5.0], # Tree (LL)
[2.7], # Ring (LL)
],
]
# LL128 max BW per channel
llMaxBws = [
# Volta-N1/Intel-N2/Intel-N4
[
39.0,
39.0,
20.4,
],
# Ampere-N1/AMD-N2/AMD-N4
[
87.7,
22.5, # avg of ring & tree
19.0,
],
# Hopper-N1/AMD-N2/AMD-N4
[
87.7,
22.5, # avg of ring & tree
19.0,
],
]
def estimate_nccl_collective_runtime(node: ir.IRNode) -> float:
"""
Returns estimated NCCL collective runtime in nanoseconds (ns).
The following heuristics are copied from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc.
We aim to estimate the runtime as accurately as possible.
Assumptions:
- only ring algorithm (NCCL_ALGO_RING) is used
- only Low-Latency protocol (NCCL_PROTO_LL) is used, i.e. Simple or LL128 is not used
- 8 gpus per node # TODO: Need to find a way to get accurate "gpus per node" and "# nodes" info.
- collective is one of: allreduce, reducescatter, allgather
"""
tensor_storage_size_bytes = get_collective_input_size_bytes(node)
# Convert bytes to GB
tensor_storage_size_GB = tensor_storage_size_bytes / 1024 / 1024 / 1024
# Currently assumes each node has 8 gpus. And when >1 node is used, assumes each node uses all 8 gpus.
# TODO: Need to find a way to get accurate "gpus per node" and "# nodes" info.
num_gpus_per_node = 8
group_size = get_collective_group_size(node)
nNodes = math.ceil(group_size / num_gpus_per_node)
nRanks = group_size # this is total # of gpus globally that participate in this collective op
if nRanks <= 1:
return 0
# Assumes ring algorithm
nccl_algo = NCCL_ALGO.RING
nccl_proto = NCCL_PROTO.LL
coll = get_collective_type(node)
# =============== bandwidth computation ===============
# First compute bandwidth in GB/s; then at the end, convert it to GB/ns
bwIntra = torch._inductor.config.intra_node_bw
bwInter = torch._inductor.config.inter_node_bw
compCapIndex = get_gpu_type()
index2 = nNodes - 1 if nNodes <= 2 else 2
# LL: for single node, we look at GPU type; for multi-node, we look at CPU type
index1 = compCapIndex if nNodes == 1 else 0
llMaxBw = llMaxBws[index1][index2]
# NOTE: each step of ring algorithm is synchronized,
# and is bottlenecked by the slowest link which is the inter-node interconnect.
# hence when nNodes >= 2, bw is inter-node bandwidth.
# NOTE: the original code in https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc
# have this as `if nNodes <= 2` which seems wrong. Corrected it here.
bw = bwIntra if nNodes == 1 else bwInter
nChannels = 2 # Assume # channels is 2
busBw = nChannels * bw
# Various model refinements
busBw = min(
llMaxBw,
busBw
* (1.0 / 4.0 if (nNodes > 1 or coll == NCCL_COLL.ALL_REDUCE) else 1.0 / 3.0),
)
if coll == NCCL_COLL.ALL_REDUCE:
nsteps = 2 * (nRanks - 1)
elif coll in (NCCL_COLL.REDUCE_SCATTER, NCCL_COLL.ALL_GATHER):
nsteps = nRanks - 1
# Convert bus BW to algorithm BW (tensor bytes / algoBW = actual execution time)
ratio = (1.0 * nRanks) / nsteps # type: ignore[possibly-undefined]
bandwidth = busBw * ratio
# Convert GB/s to GB/ns
bandwidth_GB_per_ns = bandwidth / 1e9
# =============== latency computation ===============
intraHw = NCCL_HW.NVLINK
if coll == NCCL_COLL.ALL_REDUCE:
if nNodes > 1:
nInterSteps = 2 * nNodes
else:
nInterSteps = 0
elif coll in (NCCL_COLL.REDUCE_SCATTER, NCCL_COLL.ALL_GATHER):
nInterSteps = nNodes - 1
# First compute latency in us; then at the end, convert it to ns
latency = baseLat[nccl_algo][nccl_proto]
intraLat = hwLat[intraHw][nccl_algo][nccl_proto]
interLat = hwLat[NCCL_HW.NET][nccl_algo][nccl_proto]
# Inter-node rings still have to launch nsteps * net overhead.
netOverhead = 0.0
if nNodes > 1:
netOverhead = 1.0 # getNetOverhead(comm);
intraLat = max(intraLat, netOverhead)
latency += (nsteps - nInterSteps) * intraLat + nInterSteps * interLat # type: ignore[possibly-undefined]
# Convert us to ns
latency_ns = latency * 1e3
# =============== final result ===============
transport_ns = tensor_storage_size_GB / bandwidth_GB_per_ns
return transport_ns + latency_ns
################################################################################################################
# The above code and constants are adapted from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc #
################################################################################################################
|