File: comm_lowering.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (350 lines) | stat: -rw-r--r-- 12,383 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# mypy: allow-untyped-defs
import logging
from typing import cast, Tuple

import torch
import torch.utils._pytree as pytree
from torch._inductor.utils import is_symbolic
from torch.utils._ordered_set import OrderedSet

from . import config, ir
from .virtualized import V


log = logging.getLogger(__name__)


# NOTE [lowering-time collective optimization]
#
# In collective communication libraries such as NCCL, every rank maintains
# communication buffers that are remotely accessible by some peers. Depending
# on the underlying transport, remote accessibility may be established via
# mechanisms such as ib_reg_mr, CUDA P2P, or CUDA multicast. Typically, these
# buffers are private to the communication library by default, and
# communication ops copy user data in and out of these buffers.
#
# To prevent these copies, an optimization commonly known as "user buffer
# registration" can be employed. This allows direct establishment of remote
# accessibility on user buffers, eliminating the need for copying. However,
# this optimization introduces stringent usage requirements, which are
# typically hard to satisfy without being intrusive to the user code:
#
# - Establishing remote accessibility is expensive and often done ahead of
# time. In such implementations, all ranks must agree on the set of allocations
# used for every collective op. Failing to meet this requirement can
# lead to runtime errors or even silent correctness issues.
# - Even if the collective communication library supports gracefully falling
# back to "unregistered" implementations, the fallback mechanism would nullify
# the optimization.
# - Some communication mechanisms impose stricter requirements than others. For
# example, CUDA's multicast + multi-mem instructions require all ranks to agree
# not only on the allocations used for every collective but also on the offsets
# within these allocations.
#
# To support all different mechanisms with optimal results, we aim to satisfy
# the strictest requirement for this family of optimizations - we ensures that
# every collective op invocation is guaranteed to operate on the same
# allocation, at the same offset, in every iteration.
#
# For eligible collective ops, we identify communication buffers at lowering
# time and optionally choose to lower the op to a different kernel
# (ommunication libraries like NCCL handle both registered and non-registered
# buffers transparently within the same op, though some may require different
# ops for different cases). Later, the codegen will perform "persistent
# allocation" to satisfy the aforementioned constraints, and optionally,
# perform buffer planning to optimize overall memory usage.
def can_realize_as_comm_buffer(
    x: ir.TensorBox, comm_buffer_type: ir.CommBufferType
) -> bool:
    """
    Check if an input can be realized as a comm buffer of the specified
    `comm_buffer_type`.
    """
    data = _get_data(x)

    if isinstance(data, ir.Loops):
        return True

    layout = data.get_output_spec()
    if isinstance(layout, ir.CommBufferLayout):
        return True

    if isinstance(layout, ir.FlexibleLayout) and not is_symbolic(data.get_numel()):
        return True

    return False


def realize_as_comm_buffer(
    x: ir.TensorBox, comm_buffer_type: ir.CommBufferType, group_name: str
) -> None:
    """
    Realize an input as a comm buffer of the specified `comm_buffer_type`.

    Specifically, this realizes the underlying buffer if it's still unrealized
    and changes the layout of the buffer to `ir.CommBufferLayout`.
    """
    x.realize()
    buffer = _get_data(x)
    assert isinstance(buffer, ir.Buffer)

    layout = buffer.get_output_spec()
    if isinstance(layout, ir.CommBufferLayout):
        return

    if not isinstance(layout, ir.FlexibleLayout):
        raise AssertionError(
            "A buffer can only be realized as a comm buffer if it "
            f"has `FlexibleLayout` (got {layout})."
        )

    if is_symbolic(buffer.get_numel()):
        raise AssertionError(
            "A buffer with symbolic shape cannot be converted to "
            f"a comm buffer (got {layout})."
        )

    buffer.layout = ir.CommBufferLayout(
        layout=layout,
        comm_buffer_type=comm_buffer_type,
        group_name=group_name,
    )


def _get_data(x: ir.TensorBox) -> ir.IRNode:
    if isinstance(x.data, ir.BaseView):
        # TensorBox -> *View -> StorageBox -> IRNode
        return x.data.unwrap_view().data
    elif isinstance(x.data, ir.StorageBox):
        # TensorBox -> StorageBox -> IRNode
        return cast(ir.Buffer, x.data.data)
    else:
        raise AssertionError(
            "Expect the data attr of a `TensorBox` to be either "
            f"an `ir.BaseView` or `ir.StorageBox` (got {x.data})."
        )


_bufs_to_skip_wait: OrderedSet[Tuple[int, str]] = OrderedSet()


def mark_as_skip_wait(x: ir.IRNode) -> None:
    """
    If a non-blocking collective is lowered as a blocking collective, the wait
    node in the original graph becomes useless and we can skip the lowering it.
    """
    _bufs_to_skip_wait.add((id(V.graph), x.get_name()))


def should_skip_wait(x: ir.IRNode) -> bool:
    return (id(V.graph), x.get_name()) in _bufs_to_skip_wait


def _should_lower_as_one_shot_all_reduce(
    inp: ir.TensorBox, reduce_op: str, group_name: str
):
    from torch.distributed._symmetric_memory import is_symm_mem_enabled_for_group

    inp_size = inp.get_numel() * inp.get_dtype().itemsize
    return (
        config._collective.auto_select
        and is_symm_mem_enabled_for_group(group_name)
        and can_realize_as_comm_buffer(inp, ir.CommBufferType.SYMM_MEM)
        and reduce_op in ("sum",)
        and inp_size <= config._collective.one_shot_all_reduce_threshold_bytes
    )


def _one_shot_all_reduce(inp: ir.TensorBox, reduce_op, group_name):
    realize_as_comm_buffer(inp, ir.CommBufferType.SYMM_MEM, group_name)
    return pytree.tree_map(
        ir.TensorBox.create,
        ir.FallbackKernel.create(
            torch.ops.symm_mem.one_shot_all_reduce.default,
            inp,
            reduce_op,
            group_name,
        ),
    )


def register_comm_lowerings():
    try:
        torch.ops._c10d_functional.all_reduce
    except AttributeError:
        log.info(
            "Inductor support for distributed collectives depends on building "
            "torch.distributed"
        )
        return

    from .lowering import clone, copy_, register_lowering

    c10d = torch.ops._c10d_functional

    @register_lowering(c10d.all_reduce)  # type: ignore[misc]
    def _all_reduce(inp: ir.TensorBox, reduce_op: str, group_name: str) -> ir.TensorBox:
        if _should_lower_as_one_shot_all_reduce(inp, reduce_op, group_name):
            return _one_shot_all_reduce(inp, reduce_op, group_name)

        # Lower as c10d.all_reduce_
        inp = clone(inp)
        if config.reorder_for_compute_comm_overlap:
            # The horizontal fusion of this clone often severely delays the
            # scheduling of the all_reduce_ node. Horizontally fusing this
            # clone can almost never out-perform scheduling the all_reduce_
            # earlier. Also in most cases, this clone is eliminated via
            # in-place reuse. Therefore, we tell the scheduler to not fuse it.
            inp.realize()
            V.graph.no_fuse_buffer_names.add(inp.get_name())
        inp = ir.ExternKernel.require_contiguous(inp)
        ir._CollectiveKernel.create_inplace(
            c10d.all_reduce_.default, inp, reduce_op, group_name
        )
        return inp

    @register_lowering(c10d.all_reduce_)  # type: ignore[misc]
    def _all_reduce_(
        inp: ir.TensorBox, reduce_op: str, group_name: str
    ) -> ir.TensorBox:
        if _should_lower_as_one_shot_all_reduce(inp, reduce_op, group_name):
            ret = copy_(
                inp,
                _one_shot_all_reduce(inp, reduce_op, group_name),
            )
            mark_as_skip_wait(ret)
            return inp

        # Lower as c10d.all_reduce_
        inp = ir.ExternKernel.require_contiguous(inp)
        ir._CollectiveKernel.create_inplace(
            c10d.all_reduce_.default, inp, reduce_op, group_name
        )
        return inp

    @register_lowering(c10d.all_reduce_coalesced)
    def _all_reduce_coalesced(inputs, reduce_op, group_name):
        inputs = [clone(inp) for inp in inputs]
        ir._CollectiveKernel.create_inplace(
            c10d.all_reduce_coalesced_.default,
            inputs,
            reduce_op,
            group_name,
        )
        return inputs

    @register_lowering(c10d.all_reduce_coalesced_)
    def _all_reduce_coalesced_(inputs, reduce_op, group_name):
        ir._CollectiveKernel.create_inplace(
            c10d.all_reduce_coalesced_.default,
            inputs,
            reduce_op,
            group_name,
        )
        return inputs

    @register_lowering(c10d.all_gather_into_tensor)
    def _all_gather_into_tensor(inp, group_size, group_name):
        return ir.TensorBox.create(
            ir._CollectiveKernel.create_out_of_place(
                c10d.all_gather_into_tensor.default,
                inp,
                group_size,
                group_name,
            )
        )

    @register_lowering(c10d.all_gather_into_tensor_coalesced)
    def _all_gather_into_tensor_coalesced(inputs, group_size, group_name):
        return pytree.tree_map(
            ir.TensorBox.create,
            ir._CollectiveKernel.create_out_of_place(
                c10d.all_gather_into_tensor_coalesced.default,
                inputs,
                group_size,
                group_name,
            ),
        )

    @register_lowering(c10d.all_gather_into_tensor_out)
    def _all_gather_into_tensor_out(inp, group_size, group_name, *, out):
        ir._CollectiveKernel.create_inplace(
            c10d.all_gather_into_tensor_out.default,
            inp,
            group_size,
            group_name,
            out=out,
        )
        return out

    @register_lowering(c10d.reduce_scatter_tensor)
    def _reduce_scatter_tensor(inp, reduce_op, group_size, group_name):
        return ir.TensorBox.create(
            ir._CollectiveKernel.create_out_of_place(
                c10d.reduce_scatter_tensor.default,
                inp,
                reduce_op,
                group_size,
                group_name,
            )
        )

    @register_lowering(c10d.reduce_scatter_tensor_coalesced)
    def _reduce_scatter_tensor_coalesced(inputs, reduce_op, group_size, group_name):
        return pytree.tree_map(
            ir.TensorBox.create,
            ir._CollectiveKernel.create_out_of_place(
                c10d.reduce_scatter_tensor_coalesced.default,
                inputs,
                reduce_op,
                group_size,
                group_name,
            ),
        )

    @register_lowering(c10d.all_to_all_single)
    def _all_to_all_single(inp, output_split_sizes, input_split_sizes, group_name):
        return ir.TensorBox.create(
            ir._CollectiveKernel.create_out_of_place(
                c10d.all_to_all_single.default,
                inp,
                output_split_sizes,
                input_split_sizes,
                group_name,
            )
        )

    @register_lowering(c10d.broadcast)
    def _broadcast(inp, src, group_name):
        inp = clone(inp)
        ir._CollectiveKernel.create_inplace(
            c10d.broadcast_.default, inp, src, group_name
        )
        return inp

    @register_lowering(c10d.broadcast_)
    def _broadcast_(inp, src, group_name):
        ir._CollectiveKernel.create_inplace(
            c10d.broadcast_.default, inp, src, group_name
        )
        return inp

    @register_lowering(torch.ops._dtensor.shard_dim_alltoall)
    def _shard_dim_alltoall(inp, gather_dim, shard_dim, group_name):
        return ir.TensorBox.create(
            ir._CollectiveKernel.create_out_of_place(
                torch.ops._dtensor.shard_dim_alltoall.default,
                inp,
                gather_dim,
                shard_dim,
                group_name,
            )
        )

    @register_lowering(c10d.wait_tensor)
    def _wait_tensor(inp):
        if should_skip_wait(inp):
            return inp

        ir._WaitKernel.create_wait(c10d.wait_tensor.default, inp)
        return inp