1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
# mypy: allow-untyped-defs
# pyre-strict
from __future__ import annotations
import heapq
import logging
import operator
import sys
from collections import defaultdict
from typing import Dict, List, Set, TYPE_CHECKING
import torch
from torch.multiprocessing.reductions import StorageWeakRef
from . import config, ir
from .dependencies import WeakDep
from .utils import (
contains_collective,
contains_wait,
find_recursive_deps_of_node,
find_recursive_users_of_node,
is_collective,
is_fallback_op,
is_wait,
)
log = logging.getLogger(__name__)
overlap_log = torch._logging.getArtifactLogger(__name__, "overlap")
if TYPE_CHECKING:
from .scheduler import BaseSchedulerNode
def sink_waits(snodes: List[BaseSchedulerNode]) -> List[BaseSchedulerNode]:
"""
Greedily schedules waits as late as possible.
"""
return _schedule_for_comm(
snodes, raise_comms=False, sink_waits=True, reorder_for_overlap=False
)
def raise_comms(snodes: List[BaseSchedulerNode]) -> List[BaseSchedulerNode]:
"""
Greedily schedules comms as early as possible.
"""
return _schedule_for_comm(
snodes, raise_comms=True, sink_waits=False, reorder_for_overlap=False
)
def reorder_compute_for_overlap(
snodes: List[BaseSchedulerNode],
) -> List[BaseSchedulerNode]:
"""
This achieves the following overall scheduling procedure:
Step 1: Given that we've currently scheduled comm N, we now schedule all compute nodes
that are required for comm N + 1 but do not depend on comm N, to run at the same time with comm N.
Step 2: If all those compute nodes are sufficient to overlap comm N, we're done.
Otherwise, we now need to look elsewhere to find compute that overlaps with comm N.
We prioritize compute nodes that are needed sooner.
Step 3: We schedule the compute nodes dependent on comm N and required for comm N + 1.
Step 4: We schedule comm N + 1.
Repeat this for subsequent comm nodes.
"""
return _schedule_for_comm(
snodes, raise_comms=True, sink_waits=True, reorder_for_overlap=True
)
def _schedule_for_comm(
snodes: List[BaseSchedulerNode],
raise_comms: bool,
sink_waits: bool,
reorder_for_overlap: bool,
) -> List[BaseSchedulerNode]:
"""
Schedule `snodes` for various comm optimization objectives.
Args:
snodes: the nodes to be scheduled.
raise_comms: whether to greedily schedule collectives as early as possible
sink_wait: whether to greedily schedule waits as late as possible
reorder_compute_for_overlap: whether to reorder compute nodes to
optimize for compute/communication overlapping.
Returns:
The new schedule order.
Some notes on the synergy between different options:
- `raise_comms` provides more overlapping oppurtunies for `reorder_compute_for_overlap`.
- When both `raise_comms` and `sink_waits` is `True`, `raise_comms` is prioritized.
"""
# We assign each node a tuple of scores (score_0, score_1, score_2),
# decreasing in importance, with a lower value indicating a higher ranking:
#
# - score_0: the lowest comm_idx among the comm nodes that the node blocks.
# If a node doesn't block any comm nodes, its score_0 is set to
# sys.maxsize. This score ensures that comm nodes get scheduled as early as
# possible.
# - score_1: 1 if the node is a wait node, 0 otherwise. This score ensures
# that wait nodes are deferred as late as possible.
# - score_2: the index of the node in the original topological order. This
# score provides stability in case of ties.
#
# When only raise_comms is True, only score_0 and score_2 are considered.
# When only sink_waits is True, only score_1 and score_2 are considered.
# When neither is True, the original order is yielded.
buf_name_to_snode = {}
name_to_fused_node = {}
scores_0, scores_1, scores_2 = {}, {}, {}
for idx, snode in enumerate(snodes):
for buf_name in snode.get_buffer_names():
buf_name_to_snode[buf_name] = snode
for op_name in snode.get_operation_names():
name_to_fused_node[op_name] = snode
name_to_fused_node[snode.get_name()] = snode
node_name = snode.get_name()
scores_0[node_name] = sys.maxsize
scores_1[node_name] = 0
scores_2[node_name] = idx
comm_idx = 0
for snode in snodes:
if raise_comms and contains_collective(snode):
scores_0[snode.get_name()] = comm_idx
for anc in snode.ancestors:
anc_fused_name = name_to_fused_node[anc].get_name()
scores_0[anc_fused_name] = min(scores_0[anc_fused_name], comm_idx)
comm_idx += 1
elif sink_waits and contains_wait(snode):
scores_1[snode.get_name()] = 1
class Runnable:
def __init__(self, snode) -> None:
self.snode = snode
name = next(iter(snode.get_operation_names()))
fused_name = name_to_fused_node[name].get_name()
self.score = (
scores_0[fused_name],
scores_1[fused_name],
scores_2[fused_name],
)
def __lt__(self, other):
return self.score < other.score
unmet_deps: Dict[BaseSchedulerNode, Set[str]] = {
snode: {dep.name for dep in snode.unmet_dependencies} for snode in snodes
}
ready: List[Runnable] = []
buffer_users: Dict[str, Set[BaseSchedulerNode]] = defaultdict(set)
snode_to_cost = {snode: estimate_op_runtime(snode) for snode in snodes}
for snode, deps in unmet_deps.items():
if len(deps) == 0:
heapq.heappush(ready, Runnable(snode))
for dep in deps:
buffer_users[dep].add(snode)
scheduled = []
def schedule(snode):
"""
Schedules `snode` and put all unblocked nodes onto the ready queue.
"""
scheduled.append(snode)
for buf_name in snode.get_buffer_names():
for snode in buffer_users[buf_name]:
unmet_deps[snode].remove(buf_name)
if len(unmet_deps[snode]) == 0:
heapq.heappush(ready, Runnable(snode))
def get_overlapping_candidate():
"""
Return the next node in the ready queue that's neither a collective or
a wait.
"""
candidates = [
x
for x in ready
if not contains_collective(x.snode) and not contains_wait(x.snode)
]
if len(candidates) == 0:
return None
return min(candidates, key=lambda x: x.score)
def schedule_collective_for_overlap(snode):
"""
Schedules collective node `snode`, along with one or more compute nodes
to overlap with it. The strategy is described in the comment of
`reorder_compute_for_overlap`.
"""
assert contains_collective(snode)
schedule(snode)
collective_cost = snode_to_cost[snode]
while (
collective_cost > 0
and (candidate := get_overlapping_candidate()) is not None
):
ready.remove(candidate)
schedule(candidate.snode)
collective_cost -= snode_to_cost[candidate.snode]
heapq.heapify(ready)
while len(ready):
snode = heapq.heappop(ready).snode
if reorder_for_overlap and contains_collective(snode):
schedule_collective_for_overlap(snode)
else:
schedule(snode)
for snode, deps in unmet_deps.items():
assert len(deps) == 0, (
"Detected unscheduled nodes. "
f"Nodes with unmet dependencies: {unmet_deps}"
)
return scheduled
def decide_global_ordering_of_comms(
nodes: List[BaseSchedulerNode], name_to_buf, name_to_fused_node
) -> List[BaseSchedulerNode]:
"""
Decide global ordering of comms, by just enforcing the ordering that's in the input graph
(might not be the same ordering as the eager mode program).
TODO: Come up with a better approach
"""
if not torch.distributed.is_available():
return nodes
# If FSDP2 is used, we apply FSDP-specific passes.
if any(
is_fallback_op(
x.node,
{
torch.ops.fsdp.all_gather_copy_in.default,
torch.ops.fsdp.chunk_cat.default,
},
)
for x in nodes
):
nodes = enforce_comm_ordering_for_fsdp(nodes, name_to_buf, name_to_fused_node)
comm_nodes = [n for n in nodes if contains_collective(n)]
for i in range(1, len(comm_nodes)):
# Enforce ordering by making previous comm a `WeakDep` dependency of the next comm
mutating_buf = next(iter(comm_nodes[i].get_buffer_names()))
for buf in comm_nodes[i - 1].get_buffer_names():
comm_nodes[i].add_fake_dep(WeakDep(buf, mutating_buf=mutating_buf))
return nodes
def estimate_op_runtime(snode: BaseSchedulerNode) -> float:
"""
Returns estimated op runtime in nanoseconds (ns)
"""
if config.estimate_op_runtime == "default":
runtime = snode.get_estimated_runtime()
else:
assert callable(config.estimate_op_runtime)
runtime = config.estimate_op_runtime(snode)
return runtime
def node_summary(snode):
detail = ""
if isinstance(snode.node, ir.ExternKernelOut):
detail = f" ({snode.node.python_kernel_name})"
out_tensor_info = ""
layout = snode.node.get_output_spec()
if isinstance(layout, ir.Layout):
out_tensor_info = f" (size={layout.size}, stride={layout.stride})"
node_name = snode.node.maybe_get_name() or ""
return f"{snode.node.__class__.__name__}{detail}{out_tensor_info} ({node_name})"
def visualize_overlap(order):
total_est_runtime: float = 0.0
cur_comm_node = None
for snode in order:
if cur_comm_node is None:
if contains_collective(snode):
total_est_runtime += estimate_op_runtime(snode)
cur_comm_node = snode.node
elif is_wait(snode.node):
raise AssertionError(
"Wait is not expected when there is no collective running"
)
else: # exposed compute op
total_est_runtime += estimate_op_runtime(snode)
overlap_log.debug(f"{node_summary(snode)}") # noqa: G004
else: # cur_comm_node is not None
if contains_collective(snode):
raise AssertionError(
"Found two collectives running at the same time. "
"`visualize_overlap` needs to be updated to handle this case"
)
elif is_wait(snode.node): # end of this comm op
overlap_log.debug(f"{node_summary(snode)}") # noqa: G004
cur_comm_node = None
else: # overlapped compute op
overlap_log.debug(f"| {node_summary(snode)}") # noqa: G004
overlap_log.debug(
f"Est. runtime (ms): {total_est_runtime / 1000 / 1000}" # noqa: G004
)
def reorder_compute_and_comm_for_overlap(
snodes: List[BaseSchedulerNode],
) -> List[BaseSchedulerNode]:
order = snodes
for p in config.reorder_for_compute_comm_overlap_passes:
if isinstance(p, str) and p in globals():
p = globals()[p] # it is a builtin pass
if torch.distributed.get_rank() == 0:
overlap_log.debug(
f"==== Visualize overlap before reordering pass {p} ====" # noqa: G004
)
try:
visualize_overlap(order)
except Exception as e:
overlap_log.debug(str(e))
order = p(order) # type: ignore[operator]
if torch.distributed.get_rank() == 0:
overlap_log.debug(
f"==== Visualize overlap after reordering pass {p} ====" # noqa: G004
)
try:
visualize_overlap(order)
except Exception as e:
overlap_log.debug(str(e))
return order
def remove_fsdp2_unsharded_param_graph_input_usage(graph: torch.fx.Graph):
"""
This FX graph pass replaces uses of FSDP2 unsharded params with their corresponding
graph intermediates that were fsdp.copy_ into the unsharded params in the original graph.
NOTE: Can only apply this pass to any of the FSDP2 unsharded params that have this pattern
(or repetition of): `resize_(full) -> copy_ -> resize_(0)`. Because of this, for partial-graph case
where `resize_(full) -> copy_` is in one graph and `resize_(0)` is in another graph, we can't
remove these resize and copy ops and thus we will have worse performance there.
In other words, "do we try to remove all the resize_(full) -> copy_ -> resize_(0) nodes for this unsharded param"
is actually a per-unsharded-param decision, since for each unsharded param, we look at its resize sequence pattern
(in `check_resize_pattern()`) to determine if its set of resize and copy nodes can be removed.
"""
node_list = list(graph.nodes)
# Find all graph inputs and their resize counts
graph_input_to_resized_to_full_node_idxes = defaultdict(list)
graph_input_to_resized_to_0_node_idxes = defaultdict(list)
for idx, node in enumerate(node_list):
if (
node.op == "call_function"
and node.target == torch.ops.inductor.resize_storage_bytes_.default
):
assert (
node.args[0].op == "placeholder"
), f"""\
Resize can only operate on graph inputs, but got {node} which is resizing non-graph-input {node.args[0]}
"""
graph_input = node.args[0]
new_size = node.args[1]
if new_size > 0:
graph_input_to_resized_to_full_node_idxes[graph_input].append(idx)
else:
graph_input_to_resized_to_0_node_idxes[graph_input].append(idx)
def check_resize_pattern(graph_input):
# Check the number of resize-to-full and resize-to-0 nodes are equal,
# and that for each (resize-to-full, resize-to-0) pair, the resize-to-full node
# always happens before the resize-to-0 node.
# This is the precondition for being able to remove all the resize and copy nodes
# for this specific unsharded param.
resized_to_full_idxes = graph_input_to_resized_to_full_node_idxes.get(
graph_input, []
)
resized_to_0_idxes = graph_input_to_resized_to_0_node_idxes.get(graph_input, [])
if not len(resized_to_full_idxes) == len(resized_to_0_idxes):
log.warning(
f"""
Unequal number of resize-to-full and resize-to-0 nodes for graph input {graph_input}:
{len(resized_to_full_idxes)} vs. {len(resized_to_0_idxes)}.
Skipping `remove_fsdp2_unsharded_param_graph_input_usage` FX graph pass.
""" # noqa: G004
)
return False
# Check the sequence: (resize_to_full -> resize_to_0)+
for resize_to_full_idx, resize_to_0_idx in zip(
resized_to_full_idxes, resized_to_0_idxes
):
if resize_to_full_idx >= resize_to_0_idx:
log.warning(
f"""
For graph input {graph_input}: resize-to-full node {node_list[resize_to_full_idx]} at index {resize_to_full_idx}
happens after resize-to-0 node {node_list[resize_to_0_idx]} at index {resize_to_0_idx}.
Skipping `remove_fsdp2_unsharded_param_graph_input_usage` FX graph pass for that unsharded param.
""" # noqa: G004
)
return False
return True
# Find all eligible unsharded params and their corresponding graph intermediates.
unsharded_param_to_fsdp_copy_node_idxes = defaultdict(list)
for idx, node in enumerate(node_list):
if node.op == "call_function" and node.target == torch.ops.fsdp.copy_.default:
fsdp_copy_node = node
unsharded_param = node.args[0]
assert (
unsharded_param.op == "placeholder"
), f"""
Assumed all FSDP2 `unsharded_param`s to be graph input, but it's not true!
Offending node: {unsharded_param}. Graph: {graph}
"""
if check_resize_pattern(unsharded_param):
unsharded_param_to_fsdp_copy_node_idxes[unsharded_param].append(idx)
def is_allowed_mutation(node):
return (
node.target == torch.ops.fsdp.copy_.default
or node.target == torch.ops.inductor.resize_storage_bytes_.default
)
def is_node_mutating_unsharded_param_or_its_alias(node, unsharded_params):
# Check whether the node is mutating any of the unsharded params or their aliases.
mutated_arg_idxes = (
[
i
for i, x in enumerate(node.target._schema.arguments)
if x.alias_info is not None and x.alias_info.is_write
]
if isinstance(node.target, torch._ops.OpOverload)
else []
)
mutated_node_arg_storages = {
StorageWeakRef(node.args[i].meta["val"].untyped_storage())
for i in mutated_arg_idxes
}
storages_of_unsharded_params = {
StorageWeakRef(unsharded_param.meta["val"].untyped_storage())
for unsharded_param in unsharded_params
}
return len(mutated_node_arg_storages & storages_of_unsharded_params) > 0
# Check no user mutation on any unsharded_param
for node in node_list:
if (
node.op == "call_function"
and isinstance(node.target, torch._ops.OpOverload)
and node.target._schema.is_mutable
and not is_allowed_mutation(node)
):
assert not is_node_mutating_unsharded_param_or_its_alias(
node, unsharded_param_to_fsdp_copy_node_idxes.keys()
), f"""\
User mutation on FSDP2 unsharded param is not allowed when Traceable FSDP2 is used. Violating node: {node}
"""
# For each `fsdp.copy_(unsharded_param, Y)`, replace downstream usage of `unsharded_param` with `Y`.
#
# NOTE: Because of "layer reuse" use case, there could be multiple `fsdp.copy_` to the same `unsharded_param` graph input.
# e.g.
# ```
# fsdp_copy_1 = fsdp.copy_(unsharded_param_1, Y1)
# ... (use of unsharded_param_1) -> Subgraph 1
# fsdp_copy_2 = fsdp.copy_(unsharded_param_1, Y2)
# ... (use of unsharded_param_1) -> Subgraph 2
# fsdp_copy_3 = fsdp.copy_(unsharded_param_1, Y3)
# ... (use of unsharded_param_1) -> Subgraph 3
# ```
# We must do the replacement only within each subgraph.
for (
unsharded_param,
fsdp_copy_node_idxes,
) in unsharded_param_to_fsdp_copy_node_idxes.items():
for i, fsdp_copy_node_idx in enumerate(fsdp_copy_node_idxes):
fsdp_copy_node = node_list[fsdp_copy_node_idx]
assert fsdp_copy_node.args[0] is unsharded_param
_, replacement = fsdp_copy_node.args
# subgraph_start_idx is exclusive
subgraph_start_idx = fsdp_copy_node_idx + 1
# subgraph_end_idx is exclusive (also intentionally don't replace args in return op)
subgraph_end_idx = (
fsdp_copy_node_idxes[i + 1]
if i < len(fsdp_copy_node_idxes) - 1
else len(node_list) - 1
)
subgraph_nodes = node_list[subgraph_start_idx:subgraph_end_idx]
assert not any(
is_node_mutating_unsharded_param_or_its_alias(node, [unsharded_param])
for node in subgraph_nodes
), f"""\
Assumed no ops mutating unsharded param {unsharded_param} in subgraph {subgraph_nodes}, but it's not true!
Graph: {graph}
"""
for node in subgraph_nodes:
if (
node.op == "call_function"
and unsharded_param in node.args
and node.target != torch.ops.inductor.resize_storage_bytes_.default
): # TODO(yf225): implement replacement in kwargs
new_args = tuple(
replacement if arg is unsharded_param else arg
for arg in node.args
)
node.args = new_args
# Delete `fsdp.copy_(unsharded_param, Y)` nodes
for (
unsharded_param,
fsdp_copy_node_idxes,
) in unsharded_param_to_fsdp_copy_node_idxes.items():
for i, fsdp_copy_node_idx in enumerate(fsdp_copy_node_idxes):
fsdp_copy_node = node_list[fsdp_copy_node_idx]
graph.erase_node(fsdp_copy_node)
# Delete `resize_(unsharded_param, ...)` nodes
for node in node_list:
if (
node.op == "call_function"
and node.target == torch.ops.inductor.resize_storage_bytes_.default
and node.args[0] in unsharded_param_to_fsdp_copy_node_idxes
):
graph.erase_node(node)
def reinplace_fsdp_all_gather(graph: torch.fx.Graph) -> None:
try:
import torch.distributed.fsdp._fully_shard._fsdp_collectives
assert torch.distributed.is_available()
# Assert existence of these ops
assert (
torch.ops._c10d_functional.all_gather_into_tensor
and torch.ops._c10d_functional.all_gather_into_tensor_out
)
except (ImportError, AttributeError, AssertionError):
return
from .pattern_matcher import (
CallFunction,
KeywordArg,
Match,
PatternMatcherPass,
register_graph_pattern,
)
"""
all_gather_copy_in = torch.ops.fsdp.all_gather_copy_in.default(...);
getitem = all_gather_copy_in[0];
(getitem_1 = all_gather_copy_in[1];) # optional
all_gather_into_tensor = torch.ops._c10d_functional.all_gather_into_tensor.default(getitem, ...);
->
all_gather_copy_in = torch.ops.fsdp.all_gather_copy_in.default(...);
getitem = all_gather_copy_in[0];
getitem_1 = all_gather_copy_in[1];
all_gather_into_tensor = torch.ops._c10d_functional.all_gather_into_tensor_out.default(getitem, ..., out=getitem_1);
"""
def remove_unused_getitem(g):
# Remove `getitem_X = all_gather_copy_in[1]` which is never used.
node_list = list(g.nodes)
for n in node_list:
if (
n.target == operator.getitem
and n.args[0].target is torch.ops.fsdp.all_gather_copy_in.default
and n.args[1] == 1
):
g.erase_node(n)
graph_pass = PatternMatcherPass()
@register_graph_pattern(
CallFunction(
torch.ops._c10d_functional.all_gather_into_tensor.default,
CallFunction(
operator.getitem,
CallFunction(
torch.ops.fsdp.all_gather_copy_in.default,
KeywordArg("all_gather_inputs"),
KeywordArg("inp_split_sizes"),
KeywordArg("all_gather_input_numel"),
KeywordArg("world_size"),
KeywordArg("rank"),
KeywordArg("dtype"),
KeywordArg("device"),
),
KeywordArg("item_idx"),
),
KeywordArg("group_size"),
KeywordArg("group_name"),
),
pass_dict=graph_pass,
extra_check=lambda match: match.kwargs["item_idx"] == 0,
)
def reinplace_all_gather(match: Match, *args, **kwargs):
def repl(
*args,
):
copy_in_args = args[:-2]
group_size = args[-2]
group_name = args[-1]
all_gather_copy_in = torch.ops.fsdp.all_gather_copy_in.default(
*copy_in_args
)
getitem = all_gather_copy_in[0]
getitem_1 = all_gather_copy_in[1]
all_gather_into_tensor = (
torch.ops._c10d_functional.all_gather_into_tensor_out.default(
getitem, group_size, group_name, out=getitem_1
)
)
return all_gather_into_tensor
match.replace_by_example(
repl,
[
kwargs["all_gather_inputs"],
kwargs["inp_split_sizes"],
kwargs["all_gather_input_numel"],
kwargs["world_size"],
kwargs["rank"],
kwargs["dtype"],
kwargs["device"],
kwargs["group_size"],
kwargs["group_name"],
],
)
remove_unused_getitem(graph)
graph_pass.apply(graph) # type: ignore[arg-type]
def get_op_idx(snode):
assert not isinstance(
snode,
(
torch._inductor.scheduler.FusedSchedulerNode,
torch._inductor.scheduler.GroupedSchedulerNode,
),
)
return int(snode.get_name()[2:])
def enforce_comm_ordering_for_fsdp(
snodes: List[torch._inductor.scheduler.BaseSchedulerNode],
name_to_buf: Dict[str, torch._inductor.scheduler.SchedulerBuffer],
name_to_fused_node: Dict[str, BaseSchedulerNode],
) -> List[torch._inductor.scheduler.BaseSchedulerNode]:
from . import scheduler
new_order: list[BaseSchedulerNode] = []
scheduled = set()
ag_exists = False
rs_exists = False
ag_grouped_node_to_wait_grouped_node = {}
rs_grouped_node_to_wait_grouped_node = {}
snode_name_to_final_snode = {}
def _create_group_node(snodes_to_group):
group_node = scheduler.GroupedSchedulerNode.create(snodes_to_group)
for snode in snodes_to_group:
snode_name_to_final_snode[snode.get_name()] = group_node
snode_name_to_final_snode[group_node.get_name()] = group_node
return group_node
# Create grouped nodes for specific sets of ops
for snode in snodes:
# Case 1: Handle AllGather
if is_collective(
snode.node, op=torch.ops._c10d_functional.all_gather_into_tensor_out.default
) and any(
is_fallback_op(
name_to_fused_node[x].node, torch.ops.fsdp.all_gather_copy_in.default
)
for x in snode.ancestors
):
ag_exists = True
ag_snode = snode
ag_related_snode_set: set[scheduler.BaseSchedulerNode] = set()
# Find the "cast + copy_in + getitem + all_gather" code block
find_recursive_deps_of_node(
ag_snode,
ag_related_snode_set,
name_to_buf,
name_to_fused_node,
)
# Find the "all_gather + all_gather_wait_tensor + copy_out" code block
allowed_ops = {
torch.ops._c10d_functional.all_gather_into_tensor_out.default,
torch.ops._c10d_functional.wait_tensor.default,
torch.ops.fsdp.split_with_sizes_copy.default,
}
find_recursive_users_of_node(
ag_snode,
ag_related_snode_set,
name_to_buf,
name_to_fused_node,
criteria_cb=lambda x: not (
isinstance(x, scheduler.NopKernelSchedulerNode)
or (
isinstance(x, scheduler.ExternKernelSchedulerNode)
and x.node.op_overload in allowed_ops # type: ignore[union-attr]
)
),
)
# sort nodes by original operation order
ag_related_snodes = sorted(
ag_related_snode_set, key=lambda x: get_op_idx(x)
)
# In the "reuse layer" case, some ops in the 2nd all-gather code block could also
# depend on ops in the 1st all-gather code block, and we don't want to group them together.
end_idx_of_current_ag_block = len(ag_related_snodes)
copy_out_count = 0
for i in range(len(ag_related_snodes)):
cur_snode = ag_related_snodes[i]
if is_fallback_op(
cur_snode.node, torch.ops.fsdp.split_with_sizes_copy.default
):
copy_out_count += 1
if copy_out_count > 1:
end_idx_of_current_ag_block = i
break
ag_related_snodes = ag_related_snodes[:end_idx_of_current_ag_block]
# Group "cast + copy_in + getitem + all_gather" into one GroupedSchedulerNode
wait_node_idx = None
for i in range(len(ag_related_snodes) - 1):
if isinstance(ag_related_snodes[i + 1].node, ir._WaitKernel):
wait_node_idx = i + 1
break
assert wait_node_idx is not None
ag_group_node = _create_group_node(ag_related_snodes[:wait_node_idx])
# Group "all_gather_wait_tensor + copy_out" into one GroupedSchedulerNode
ag_wait_group_node = _create_group_node(ag_related_snodes[wait_node_idx:])
ag_grouped_node_to_wait_grouped_node[ag_group_node] = ag_wait_group_node
# Case 2: Handle ReduceScatter
elif is_fallback_op(snode.node, torch.ops.fsdp.chunk_cat.default):
rs_exists = True
rs_snode = snode
# Find the "reduce_scatter copy-in + reduce_scatter comm + reduce_scatter wait" code block
rs_related_snode_set: set[scheduler.BaseSchedulerNode] = set()
find_recursive_users_of_node(
rs_snode,
rs_related_snode_set,
name_to_buf,
name_to_fused_node,
)
# sort nodes by original operation order
rs_related_snodes = sorted(
rs_related_snode_set, key=lambda x: get_op_idx(x)
)
# Group "reduce_scatter copy-in + reduce_scatter comm" into one GroupedSchedulerNode
wait_node_idx = None
for i in range(len(rs_related_snodes) - 1):
if isinstance(rs_related_snodes[i + 1].node, ir._WaitKernel):
wait_node_idx = i + 1
break
assert wait_node_idx is not None
rs_group_node = _create_group_node(rs_related_snodes[:wait_node_idx])
# Group "reduce_scatter wait + related output nodes" into one GroupedSchedulerNode
rs_wait_group_node = _create_group_node(rs_related_snodes[wait_node_idx:])
rs_grouped_node_to_wait_grouped_node[rs_group_node] = rs_wait_group_node
assert len(snode_name_to_final_snode) > 0
if ag_exists:
assert len(ag_grouped_node_to_wait_grouped_node) > 0
if rs_exists:
assert len(rs_grouped_node_to_wait_grouped_node) > 0
# Build the new node schedule, taking GroupedSchedulerNode into account
for snode in snodes:
if snode.get_name() in snode_name_to_final_snode:
snode = snode_name_to_final_snode[snode.get_name()]
if snode in scheduled:
continue
new_order.append(snode)
scheduled.add(snode)
# Enforce AllGather ordering: previous AllGather's "wait then copy_out" group node must run
# before next AllGather's "copy_in then AG" group node
prev_ag_wait = None
for ag_group_node, wait_group_node in ag_grouped_node_to_wait_grouped_node.items():
if prev_ag_wait is not None:
mutating_buf = next(iter(ag_group_node.get_buffer_names()))
for o in prev_ag_wait.get_outputs():
ag_group_node.add_fake_dep(
WeakDep(o.get_name(), mutating_buf=mutating_buf)
)
prev_ag_wait = wait_group_node
# Enforce ReduceScatter ordering: previous ReduceScatter's "wait" group node must run
# before next ReduceScatter's "copy_in then RS" group node
prev_rs_wait = None
for rs_group_node, wait_group_node in rs_grouped_node_to_wait_grouped_node.items():
if prev_rs_wait is not None:
mutating_buf = next(iter(rs_group_node.get_buffer_names()))
for o in prev_rs_wait.get_outputs():
rs_group_node.add_fake_dep(
WeakDep(o.get_name(), mutating_buf=mutating_buf)
)
prev_rs_wait = wait_group_node
return new_order # type: ignore[return-value]
|