File: compile_fx.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2044 lines) | stat: -rw-r--r-- 79,767 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
from __future__ import annotations

import contextlib
import functools
import io
import itertools
import json
import logging
import sys
import time
import warnings
from abc import ABC, abstractmethod
from itertools import count
from typing import (
    Any,
    Callable,
    ContextManager,
    Dict,
    Generator,
    List,
    Optional,
    Sequence,
    Tuple,
    TYPE_CHECKING,
    TypeVar,
    Union,
)
from typing_extensions import Never, override, ParamSpec, Protocol, TypedDict, Unpack
from unittest import mock

import torch._inductor.async_compile  # noqa: F401 required to warm up AsyncCompile pools
import torch.fx
import torch.utils._pytree as pytree
from functorch.compile import min_cut_rematerialization_partition
from torch import fx
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo import (
    compiled_autograd,
    config as dynamo_config,
    logging as dynamo_logging,
    utils as dynamo_utils,
)
from torch._dynamo.device_interface import get_interface_for_device
from torch._dynamo.repro.after_aot import wrap_compiler_debug
from torch._dynamo.utils import (
    counters,
    detect_fake_mode,
    dynamo_timed,
    flatten_graph_inputs,
    get_chromium_event_logger,
    lazy_format_graph_code,
    set_feature_use,
)
from torch._functorch import config as functorch_config
from torch._functorch.aot_autograd import (
    aot_export_module,
    make_boxed_func,
    SerializableAOTDispatchCompiler,
)
from torch._inductor.codecache import code_hash, FxGraphCache, output_code_log
from torch._inductor.cudagraph_utils import BoxedDeviceIndex, PlaceholderInfo
from torch._inductor.debug import save_args_for_compile_fx_inner
from torch._inductor.output_code import (
    CompiledAOTI,
    CompiledFxGraph,
    CompiledFxGraphConstantsWithGm,
    get_expanded_dims,
    index_expanded_dims,
    OutputCode,
)
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.utils import (
    BoxedBool,
    count_tangents,
    fresh_inductor_cache,
    InputType,
    is_gpu,
    should_assume_input_aligned,
    should_use_remote_fx_graph_cache,
    tensor_is_aligned,
)
from torch._logging import trace_structured
from torch._utils_internal import compile_time_strobelight_meta
from torch.fx import GraphModule
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols, SymExprPrinter
from torch.fx.passes.fake_tensor_prop import FakeTensorProp
from torch.monitor import _WaitCounter
from torch.utils._ordered_set import OrderedSet

from .._dynamo.backends.common import aot_autograd
from ..fx._lazy_graph_module import _use_lazy_graph_module
from ..fx.graph import _PyTreeCodeGen
from ..utils._triton import has_triton
from . import config, metrics
from .debug import DebugContext
from .decomposition import select_decomp_table
from .fx_passes.joint_graph import joint_graph_passes
from .fx_passes.post_grad import post_grad_passes, view_to_reshape
from .fx_passes.pre_grad import pre_grad_passes
from .graph import GraphLowering
from .ir import get_device_type, IRNode
from .output_code import complex_memory_overlap as complex_memory_overlap  # noqa: F401
from .triton_bundler import TritonBundler
from .utils import (
    align_inputs_from_check_idxs,
    clone_preserve_strides,
    copy_misaligned_inputs,
    get_cloned_parameter_buffer_name,
    get_first_incompatible_cudagraph_node,
    maybe_get_suppress_shape_guards_ctx,
    output_node,
    remove_unaligned_input_idxs,
    shape_env_from_inputs,
)
from .virtualized import V


if TYPE_CHECKING:
    from torch._inductor.output_code import _StrideExprStr
    from torch._ops import OpOverload

    from .ir import ExternKernelNode


_P = ParamSpec("_P")
_T = TypeVar("_T")

if TYPE_CHECKING or not config.is_fbcode():
    # no-op decorator
    def time_and_log(attr: str) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
        return dynamo_utils.identity

    def log_optimus_to_scuba(*args: object, **kwargs: object) -> None:
        pass

else:
    from torch._inductor.fb.utils import log_optimus_to_scuba, time_and_log

if TYPE_CHECKING:
    from torch._functorch._aot_autograd.schemas import (
        FQN,
        GraphInputName,
        GraphSignature,
    )

log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
post_grad_graphs_log = torch._logging.getArtifactLogger(__name__, "post_grad_graphs")
static_inputs_log = torch._logging.getArtifactLogger(
    __name__, "cudagraph_static_inputs"
)


def get_static_input_idxs(num_fixed: int) -> List[int]:
    # If we are inlining NNModules, we treat all torch.nn.Parameters as static for the purposes
    # of cudagraphs. Rather than copying these into cudagraph-owned memory
    # like we do for normal inputs on each run, we will re-record a cudagraph if these
    # parameter locations change.
    context = torch._guards.TracingContext.try_get()
    fixed = list(range(num_fixed))
    if not context or not context.fw_metadata:
        return fixed

    return fixed + context.fw_metadata.static_input_indices


def record_original_output_strides(gm: GraphModule) -> None:
    output_node = gm.graph.find_nodes(op="output")[0]
    output_strides = []
    for output in output_node.args[0]:
        if (
            isinstance(output, torch.fx.Node)
            and (val := output.meta.get("val")) is not None
            and isinstance(val, torch.Tensor)
        ):
            output_strides.append(val.stride())
        else:
            output_strides.append(None)
    output_node.meta["original_output_strides"] = output_strides


@functools.lru_cache(None)
def _step_logger() -> Callable[..., None]:
    return dynamo_logging.get_step_logger(log)


@functools.lru_cache(None)
def _warn_tf32_disabled() -> None:
    if (
        torch.cuda.is_available()
        and not torch.backends.cuda.matmul.allow_tf32
        and torch.cuda.get_device_capability() >= (8, 0)
    ):
        warnings.warn(
            "TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. "
            "Consider setting `torch.set_float32_matmul_precision('high')` for better performance."
        )


def _unlift_graph(
    mod: GraphModule, gm: GraphModule, graph_signature: GraphSignature
) -> GraphModule:
    from torch.export.unflatten import _assign_attr, _AttrKind

    state_dict: Dict[str, Union[torch.nn.parameter.Parameter, torch.Tensor]] = {}
    for name, param in mod.named_parameters(remove_duplicate=False):
        state_dict[name] = param
        _assign_attr(
            param,
            gm,
            name,
            attr_kind=_AttrKind.PARAMETER,
        )
    for name, buffer in mod.named_buffers(remove_duplicate=False):
        state_dict[name] = buffer
        _assign_attr(
            buffer,
            gm,
            name,
            attr_kind=_AttrKind.BUFFER,
        )

    placeholder_nodes = gm.graph.find_nodes(op="placeholder")
    lifted_inputs: List[Optional[FQN]] = []

    # In AOTI, module parameters and buffers are not lifted as graph inputs.
    # As a result, mutation to buffers has side effect which makes their initial
    # values different from Eager. So we clone them here as a copy.
    # We are not cloning for parameters, although it will be needed if we want to
    # support training.
    for node in placeholder_nodes:
        node_name = node.name
        if node_name in graph_signature.inputs_to_parameters:
            parameter_name = graph_signature.inputs_to_parameters[node_name]
            lifted_inputs.append(parameter_name)
        elif node_name in graph_signature.inputs_to_buffers:
            buffer_name = graph_signature.inputs_to_buffers[node_name]
            lifted_inputs.append(buffer_name)
            gm.meta[
                get_cloned_parameter_buffer_name(buffer_name)
            ] = clone_preserve_strides(state_dict[buffer_name])
        else:
            assert node_name in graph_signature.user_inputs
            lifted_inputs.append(None)

    from torch.export._unlift import _unlift

    outputs = list(gm.graph.nodes)[-1].args[0]
    mutated_outputs = []
    buffer_mutations = graph_signature.buffers_to_mutate
    user_input_mutations = graph_signature.user_inputs_to_mutate
    output_tokens = graph_signature.output_tokens
    for idx, out in enumerate(outputs):
        value: Optional[Union[FQN, GraphInputName]] = None

        if idx < len(buffer_mutations) + len(user_input_mutations) + len(output_tokens):
            if out.name in buffer_mutations:
                value = buffer_mutations[out.name]
            elif out.name in user_input_mutations:
                value = user_input_mutations[out.name]

        mutated_outputs.append(value)

    unlifted_gm = _unlift(
        gm,
        lifted_inputs,
        mutated_outputs,
        pytree.LeafSpec(),
        None,
        state_dict,
        {},
    )
    return unlifted_gm


def _get_subgraph_names(gm: GraphModule) -> Generator[str, None, None]:
    for node in sorted(
        itertools.chain(
            gm.graph.find_nodes(op="call_function", target=torch.ops.higher_order.cond),
            gm.graph.find_nodes(
                op="call_function", target=torch.ops.higher_order.while_loop
            ),
        )
    ):
        if node.target == torch.ops.higher_order.cond:
            true_subgraph_name = node.args[1].name
            false_subgraph_name = node.args[2].name
            yield true_subgraph_name
            yield false_subgraph_name
        elif node.target == torch.ops.higher_order.while_loop:
            cond_subgraph_name = node.args[0].name
            body_subgraph_name = node.args[1].name
            yield cond_subgraph_name
            yield body_subgraph_name


def _recursive_pre_grad_passes(
    gm: GraphModule, example_inputs: Sequence[InputType]
) -> GraphModule:
    with dynamo_timed(
        "_recursive_pre_grad_passes",
        log_pt2_compile_event=True,
        dynamo_compile_column_us="pre_grad_pass_time_us",
    ):
        for subgraph_name in _get_subgraph_names(gm):
            subgraph = getattr(gm, subgraph_name)
            # as we don't have recursive example inputs, passing empty set here
            new_subgraph = _recursive_pre_grad_passes(subgraph, ())
            setattr(gm, subgraph_name, new_subgraph)
        return pre_grad_passes(gm, example_inputs)


def _recursive_joint_graph_passes(gm: GraphModule) -> None:
    with dynamo_timed(
        "_recursive_joint_graph_passes",
        log_pt2_compile_event=True,
        dynamo_compile_column_us="joint_graph_pass_time_us",
    ):
        for subgraph_name in _get_subgraph_names(gm):
            subgraph = getattr(gm, subgraph_name)
            _recursive_joint_graph_passes(subgraph)
        joint_graph_passes(gm)


def _recursive_post_grad_passes(gm: GraphModule, is_inference: bool = False) -> None:
    with dynamo_timed(
        "_recursive_post_grad_passes",
        log_pt2_compile_event=True,
        dynamo_compile_column_us="post_grad_pass_time_us",
    ):
        for subgraph_name in _get_subgraph_names(gm):
            subgraph = getattr(gm, subgraph_name)
            _recursive_post_grad_passes(subgraph, is_inference)
        post_grad_passes(gm, is_inference)


def split_const_gm(
    gm: GraphModule,
    skip_constructor: bool = True,
    lifted_constant_names: Optional[List[str]] = None,
    skip_folding_node_fn: Optional[Callable[[torch.fx.Node], bool]] = None,
) -> Tuple[GraphModule, Dict[str, int]]:
    """
    This function takes an GraphModule input "gm".
    The gm will be split into 2 components,
      1) const_gm, which consists the subgraph of gm that can be constant folded.
      2) gm (being inplace modified,) which returns the graph after constant folding.

    If an additional "lifted_constants" argument is passed in, we will assume the gm has
    been lifted and run the transformation accordingly.

    When a "skip_folding_node_fn" callback is passed, we will skip constant folding on
    the nodes for which the callback returns True.

    const_output_index is a mapping of corresponding node name from gm to the
    output index of const_gm.
    Returns (const_gm, const_output_index)
    """
    from torch._inductor.constant_folding import (
        CONST_MODULE_TAG,
        META_TAG,
        MODULE_TAG,
        replace_node_with_constant,
        run_and_get_constant_graph,
    )

    const_gm = run_and_get_constant_graph(
        gm, skip_constructor, lifted_constant_names, skip_folding_node_fn
    )
    const_result = const_gm() if lifted_constant_names is None else None

    const_outputs = {
        x.name: idx for idx, x in enumerate(tuple(const_gm.graph.nodes)[-1].args[0])
    }

    to_erase_node = []
    to_replace_node = []
    const_output_index = {}
    for node in gm.graph.nodes:
        if node.name in const_outputs:
            to_replace_node.append(node)
        elif node.meta[META_TAG] == CONST_MODULE_TAG and node.op != "placeholder":
            to_erase_node.append(node)

    for node in to_replace_node:
        new_const_name = "_FOLDED_CONST_" + node.name
        replace_node_with_constant(
            gm,
            node,
            (
                const_result[const_outputs[node.name]]  # type:ignore[index]
                if lifted_constant_names is None
                else None
            ),
            new_const_name,
        )
        const_output_index[new_const_name] = const_outputs[node.name]
    for node in to_erase_node[::-1]:
        if node.users:
            for n in node.users:
                assert n.meta[META_TAG] == MODULE_TAG, f"node: {node} user not empty."
        else:
            gm.graph.erase_node(node)
    gm.recompile()

    return const_gm, const_output_index


def is_tf32_warning_applicable(gm: GraphModule) -> bool:
    aten = torch.ops.aten
    tf32_ops = {
        aten.mm.default,
        aten.addmm.default,
        aten.bmm.default,
        aten.baddbmm.default,
    }
    for target in tf32_ops:
        for node in gm.graph.find_nodes(op="call_function", target=target):
            if (
                isinstance(node.meta.get("val", None), torch.Tensor)
                and node.meta["val"].dtype == torch.float32
                and node.meta["val"].device.type == "cuda"
            ):
                return True
    return False


def maybe_disable_comprehensive_padding(
    example_inputs: Sequence[InputType],
) -> contextlib.AbstractContextManager[None, None]:
    """
    For CPU backend, enable comprehensive padding causes some unit tests
    fail due to changing number of generated kernels. Skip for now.
    """
    has_gpu = any(
        is_gpu(t.device.type) for t in example_inputs if isinstance(t, torch.Tensor)
    )

    if config.disable_padding_cpu and config.comprehensive_padding and not has_gpu:
        perf_hint_log.info("Skip comprehensive padding on CPU")
        return config.patch(comprehensive_padding=False)
    elif config.aot_inductor.use_runtime_constant_folding:
        perf_hint_log.info(
            "Skip comprehensive padding for use_runtime_constant_folding"
        )
        return config.patch(comprehensive_padding=False)
    else:
        return contextlib.nullcontext()


def fake_tensor_prop(
    gm: GraphModule,
    example_inputs: Sequence[InputType],
    force_allow_non_fake_inputs: bool = False,
) -> torch._subclasses.FakeTensorMode:
    """
    If we can not detect fake mode from the context of inputs, create one.

    The created fake mode will be returned.
    """
    # Ensure that decomps that support symbolic shapes are used
    with enable_python_dispatcher():
        fake_mode = detect_fake_mode(example_inputs)
        if not fake_mode:
            fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
            FakeTensorProp(gm, mode=fake_mode).propagate(*example_inputs)
        else:
            ctx = (
                contextlib.nullcontext()
                if not force_allow_non_fake_inputs
                else mock.patch.object(fake_mode, "allow_non_fake_inputs", True)
            )
            with ctx:  # type: ignore[attr-defined]
                FakeTensorProp(gm, mode=fake_mode).propagate_dont_convert_inputs(
                    *example_inputs
                )

    return fake_mode


# pass config dict back to user
def get_patched_config_dict(
    config_patches: Optional[Union[str, Dict[str, Any]]] = None
) -> Dict[str, Any]:
    with config.patch(config_patches):
        return config.get_config_copy()


@contextlib.contextmanager
def with_fresh_cache_if_config() -> Generator[None, None, None]:
    if config.force_disable_caches:
        # Don't delete the cache dir because it has to survive beyond the
        # compile_fx call. Let's put the temp dirs under the default cache
        # dir so they're easier to locate.
        with fresh_inductor_cache(dir=cache_dir(), delete=False):
            yield
    else:
        yield


class _CompileFxKwargs(TypedDict, total=False):
    cudagraphs: Optional[BoxedBool]
    static_input_idxs: Sequence[int]
    is_backward: bool
    graph_id: Optional[int]
    cpp_wrapper: bool
    aot_mode: bool
    is_inference: bool
    layout_opt: Optional[bool]
    extern_node_serializer: Optional[Callable[[List[ExternKernelNode]], Any]]
    boxed_forward_device_index: Optional[BoxedDeviceIndex]


class _CompileFxCallable(Protocol):
    def __call__(
        self,
        gm: GraphModule,
        example_inputs: Sequence[InputType],
        **kwargs: Unpack[_CompileFxKwargs],
    ) -> OutputCode:
        ...


def compile_fx_inner(
    gm: GraphModule,
    example_inputs: Sequence[InputType],
    **kwargs: Unpack[_CompileFxKwargs],
) -> OutputCode:
    kwargs.setdefault("cudagraphs", None)
    kwargs.setdefault("static_input_idxs", ())
    kwargs.setdefault("is_backward", False)
    kwargs.setdefault("graph_id", None)
    kwargs.setdefault("cpp_wrapper", False)
    kwargs.setdefault("aot_mode", False)
    kwargs.setdefault("is_inference", False)
    kwargs.setdefault("boxed_forward_device_index", None)
    kwargs.setdefault("layout_opt", None)
    kwargs.setdefault("extern_node_serializer", None)

    # Need with_fresh_cache_if_config for compile_fx_inner even if we already have one for
    # compile_fx. The reason is the compilation for backward graph may happen after
    # compile_fx return and we may want to use the _LazyGraphModule for compiling
    # the backward graph as well.
    with contextlib.ExitStack() as stack:
        stack.enter_context(torch.utils._python_dispatch._disable_current_modes())
        stack.enter_context(_use_lazy_graph_module(dynamo_config.use_lazy_graph_module))
        stack.enter_context(
            dynamo_utils.dynamo_timed(
                "compile_fx_inner",
                phase_name="inductor_compile",
                log_pt2_compile_event=True,
                dynamo_compile_column_us="inductor_cumulative_compile_time_us",
            )
        )
        # NB: Why is this the dynamo_compile counter?  The rule here is that
        # if it gets an entry in the dynamo_compile table, we also want to
        # tick up the wait counter.  We have to displeasingly manually trigger
        # the counter here because we may dropped into compile_fx directly
        # from lazy backwards compilation.
        stack.enter_context(_WaitCounter("pytorch.wait_counter.dynamo_compile").guard())
        stack.enter_context(with_fresh_cache_if_config())
        stack.enter_context(DebugContext())

        get_chromium_event_logger().add_event_data(
            "inductor_compile",
            is_backward=kwargs["is_backward"],
        )

        return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")(
            gm,
            example_inputs,
            **kwargs,
        )


@time_and_log(attr="compilation time (in seconds)")
def _compile_fx_inner(
    gm: GraphModule,
    example_inputs: Sequence[InputType],
    **graph_kwargs: Unpack[_CompileFxKwargs],
) -> OutputCode:
    """
    Inductor API that compiles a single graph.

    If you change the argument list for this function, make sure you
    also update the call to save_args_for_compile_fx_inner below accordingly.
    """
    aot_mode: bool = graph_kwargs.setdefault("aot_mode", False)

    if dynamo_utils.count_calls(gm.graph) == 0 and not aot_mode:
        # trigger the real recompilation for _LazyGraphModule before returning
        # the forward method.
        from torch.fx._lazy_graph_module import _LazyGraphModule

        _LazyGraphModule.force_recompile(gm)
        return make_boxed_func(gm.forward)

    static_input_idxs: Sequence[int] = graph_kwargs.setdefault("static_input_idxs", ())
    static_inputs_log.debug("static input idxs compile_fx_inner: %s", static_input_idxs)
    inputs_to_check = get_input_idxs_to_check(example_inputs, static_input_idxs)

    assert isinstance(
        next(iter(reversed(gm.graph.nodes))).args[0], (tuple, list)
    ), f"inductor can only compile FX graphs which return a tuple/list, but got {gm.graph}"

    if (cudagraphs := graph_kwargs.get("cudagraphs")) is None:
        graph_kwargs["cudagraphs"] = cudagraphs = BoxedBool(config.triton.cudagraphs)
    if config.save_args:
        save_args_for_compile_fx_inner(
            gm,
            example_inputs,
            **graph_kwargs,
        )

    boxed_forward_device_index = graph_kwargs.get("boxed_forward_device_index")

    start = time.time()

    fx_graph_remote_cache = should_use_remote_fx_graph_cache()

    with _WaitCounter("pytorch.wait_counter.fx_codegen_and_compile").guard() as _:
        use_cache = (
            not config.force_disable_caches
            and (config.fx_graph_cache or fx_graph_remote_cache)
            and not aot_mode
        )
        local = config.fx_graph_cache
        remote = fx_graph_remote_cache
        set_feature_use("pytorch/remote_cache:fx_graph_memcache_version", use_cache)

        # TODO: This is a hack purely to get some info to extract_tensor_metadata_for_cache_key,
        # figure out how to not have to modify example inputs
        for i, input in enumerate(example_inputs):
            if (
                isinstance(input, torch.Tensor)
                and is_gpu(input.device.type)
                and i in static_input_idxs
            ):
                input._is_inductor_static = True  # type: ignore[attr-defined]

        mb_compiled_graph: Optional[OutputCode] = None
        key_info = None
        cache_info = None
        remote_cache = None
        constants = CompiledFxGraphConstantsWithGm(gm)
        # TODO: this time will be slightly inconsistent with the one computed
        # in prepare_key/load_with_key, dump those settings of "cache_event_time"
        start_time = time.time_ns()

        if use_cache:
            (key_info, cache_info) = FxGraphCache.prepare_key(
                gm, example_inputs, graph_kwargs, inputs_to_check, remote
            )

            # Attempt a cache lookup
            if key_info is not None:
                key, debug_lines = key_info
                if remote:
                    remote_cache = FxGraphCache.get_remote_cache()
                mb_compiled_graph, cache_info = FxGraphCache.load_with_key(
                    key,
                    debug_lines,
                    example_inputs,
                    local,
                    remote_cache,
                    is_backward=graph_kwargs.get("is_backward", False),
                    constants=constants,
                )

        # CACHE BYPASS: Compile the graph, don't save it to the cache
        # (this can happen either because cache was disabled, or we
        # determined the input is uncacheable)
        if cache_info is None or cache_info["cache_state"] == "bypass":
            assert mb_compiled_graph is None
            mb_compiled_graph = fx_codegen_and_compile(
                gm, example_inputs, inputs_to_check, **graph_kwargs
            )

        # CACHE MISS: Compile the graph and save to cache
        elif cache_info["cache_state"] == "miss":
            assert mb_compiled_graph is None
            assert key_info is not None
            TritonBundler.begin_compile()
            try:
                mb_compiled_graph = fx_codegen_and_compile(
                    gm, example_inputs, inputs_to_check, **graph_kwargs
                )
                assert mb_compiled_graph is not None
                mb_compiled_graph._time_taken_ns = time.time_ns() - start_time
                cache_key = key_info[0]
                mb_compiled_graph._fx_graph_cache_key = cache_key
                (
                    triton_bundle,
                    triton_bundler_meta,
                ) = TritonBundler.collect()
                mb_compiled_graph.set_triton_bundle(triton_bundle)
            finally:
                TritonBundler.end_compile()
            if triton_bundler_meta is not None:
                cache_info["triton_bundler_meta"] = str(triton_bundler_meta)
            cache_info["time_taken_ns"] = mb_compiled_graph._time_taken_ns
            FxGraphCache._save_graph(
                cache_key,
                mb_compiled_graph,
                example_inputs,
                local,
                remote_cache,
            )

        # CACHE HIT: not much to really do, just make sure the cache key
        # is recorded on the graph
        else:
            assert cache_info["cache_state"] == "hit"
            assert mb_compiled_graph is not None
            assert key_info is not None
            cache_key = key_info[0]
            mb_compiled_graph._fx_graph_cache_key = cache_key

        assert mb_compiled_graph is not None
        compiled_graph = mb_compiled_graph

        # Logging and observability: we log a single chromium event
        # and a tlparse log for every cache action.
        # In the event of a bypass, we also logged to the remote table earlier
        # with log_cache_bypass.
        chromium_log = get_chromium_event_logger()
        cache_state = (
            cache_info["cache_state"] if cache_info is not None else "disabled"
        )
        # Here for grepping:
        # fx_graph_cache_hit
        # fx_graph_cache_miss
        # fx_graph_cache_bypass
        # fx_graph_cache_disabled
        chromium_log.log_instant_event(
            f"fx_graph_cache_{cache_state}",
            start_time,
            metadata=cache_info,
        )
        # Add event data about cache hits/miss
        # TODO: add remote cache get/put timings here too
        chromium_log.add_event_data(
            "inductor_compile",
            cache_state=cache_state,
            cache_event_time=start_time,
            key=cache_info.get("key") if cache_info else None,
            components=cache_info.get("components") if cache_info else None,
            cache_bypass_reason=cache_info.get("cache_bypass_reason")
            if cache_info
            else "cache not enabled",
            remote_cache_enabled=remote,
            local_cache_enabled=local,
        )

        # Don't clog up the main tlparse output with disabled cache
        if cache_info is not None:
            torch._logging.trace_structured(
                "artifact",
                metadata_fn=lambda: {
                    "name": f"fx_graph_cache_{cache_state}",
                    "encoding": "json",
                },
                payload_fn=lambda: json.dumps(cache_info),
            )

        compiled_graph.post_compile(example_inputs, cudagraphs, constants)

    log.debug("FX codegen and compilation took %.3fs", time.time() - start)

    _step_logger()(
        logging.INFO,
        "torchinductor done compiling "
        f"{'BACKWARDS' if graph_kwargs['is_backward'] else 'FORWARDS'} "
        f"graph {graph_kwargs['graph_id']}",
    )
    return compiled_graph


class FxCompile(ABC):
    # TODO: We should probably eventually add some kind of async version of this
    # so we can kick off a compile and then go do other things - but we'll need
    # to know what kind of API we want for that first.
    @abstractmethod
    def codegen_and_compile(
        self,
        gm: GraphModule,
        example_inputs: Sequence[InputType],
        inputs_to_check: Sequence[int],
        graph_kwargs: _CompileFxKwargs,
    ) -> OutputCode:
        ...


class _InProcessFxCompile(FxCompile):
    @override
    def codegen_and_compile(
        self,
        gm: GraphModule,
        example_inputs: Sequence[InputType],
        inputs_to_check: Sequence[int],
        graph_kwargs: _CompileFxKwargs,
    ) -> OutputCode:
        # Sorry about the mess, we need graph_kwargs to continue to be able
        # to propagate it further on
        # TODO: _CompileFxKwargs actually has stronger types than in the
        # signature, need to tighten it up
        assert "cudagraphs" in graph_kwargs and graph_kwargs["cudagraphs"] is not None
        cudagraphs: BoxedBool = graph_kwargs["cudagraphs"]
        static_input_idxs: Sequence[int] = graph_kwargs.get("static_input_idxs", ())
        is_backward: bool = graph_kwargs.get("is_backward", False)
        graph_id: Optional[int] = graph_kwargs.get("graph_id", None)
        cpp_wrapper: bool = graph_kwargs.get("cpp_wrapper", False)
        aot_mode: bool = graph_kwargs.get("aot_mode", False)
        is_inference: bool = graph_kwargs.get("is_inference", False)
        layout_opt: Optional[bool] = graph_kwargs.get("layout_opt", None)
        extern_node_serializer: Optional[
            Callable[[List[ExternKernelNode]], Any]
        ] = graph_kwargs.get("extern_node_serializer", None)
        boxed_forward_device_index: Optional[BoxedDeviceIndex] = graph_kwargs.get(
            "boxed_forward_device_index", None
        )

        with _WaitCounter(
            "pytorch.wait_counter.actual_codegen_and_compile"
        ).guard(), dynamo_utils.preserve_rng_state():
            if (sleep_sec := config.sleep_sec_TESTING_ONLY) is not None:
                import time

                log.warning(
                    "Sleeping for %s since sleep_sec_TESTING_ONLY is set", sleep_sec
                )
                time.sleep(sleep_sec)

            if is_tf32_warning_applicable(gm):
                _warn_tf32_disabled()

            inductor_counters = counters["inductor"].copy()

            # lift the maximum depth of the Python interpreter stack
            # to adapt large/deep models
            sys.setrecursionlimit(max(sys.getrecursionlimit(), 2000))

            _step_logger()(
                logging.INFO,
                "torchinductor compiling "
                f"{'BACKWARDS' if is_backward else 'FORWARDS'} "
                f"graph {graph_id}",
            )

            def log_graph_runnable() -> str:
                fd = io.StringIO()
                torch._dynamo.repro.after_aot.save_graph_repro(
                    fd, gm, example_inputs, "inductor", save_dir=None
                )
                return fd.getvalue()

            torch._logging.trace_structured(
                "artifact",
                metadata_fn=lambda: {
                    "name": "fx_graph_runnable",
                    "encoding": "string",
                },
                payload_fn=lambda: log_graph_runnable(),
            )

            V.debug.fx_graph(gm, example_inputs)
            # TODO: Should we actually dump this?  It should be redundant with the aot
            # structured logs...
            # trace_structured("inductor_input_graph", payload_fn=lambda: gm.print_readable(print_output=False))

            shape_env = shape_env_from_inputs(example_inputs)

            # Convert view to reshape in the graph. This is necessary primarily for
            # layout optimization. Do it unconditionally for uniformity.
            #
            # It's needed because when we do layout optimization, an contiguous tensor
            # in eager mode may becomes a channels last tensor. A view op previously
            # can be applied to the contiguous tensor may not be able to be applied
            # on the channels tensor any more. An error like
            #   RuntimeError: view size is not compatible with input tensor's size and stride
            #   (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
            # will be printed.
            #
            # Replace view op to reshape op in this case.
            # As an example, timm_resnest/botnet26t_256/convnext_base etc. will fail if we don't do this.
            #
            # Also this has to be done before FakeTensorProp below to avoid the failed
            # .view() call.
            view_to_reshape(gm)

            # It is safe to run FakeTensorProp under no_grad because by the time
            # we're in inductor, we assume that AOTAutograd has already "taken care"
            # of autograd, so there should be no more autograd-related API's in the
            # graph.
            with torch.no_grad():
                fake_mode = fake_tensor_prop(gm, example_inputs)

            record_original_output_strides(gm)

            # pattern matcher passes might not preserve striding information
            # on node.meta["val"]. if in the future we rely on these being
            # correct we will need to fix.

            with V.set_fake_mode(fake_mode):
                # has some issues with memory in training
                cuda_context = get_cuda_device_context(gm)
                with cuda_context:
                    _recursive_post_grad_passes(gm, is_inference=is_inference)
                V.debug.fx_graph_transformed(gm, example_inputs)
                post_grad_graphs_log.debug(
                    "%s",
                    lazy_format_graph_code(
                        "AFTER POST GRAD",
                        gm,
                        include_stride=True,
                        include_device=True,
                        colored=True,
                    ),
                )
                trace_structured(
                    "inductor_post_grad_graph",
                    payload_fn=lambda: gm.print_readable(
                        print_output=False, include_stride=True, include_device=True
                    ),
                )
                if config.is_fbcode():
                    log_optimus_to_scuba(
                        extra_logging={"pt2_configs": str(get_patched_config_dict())}
                    )

            with V.set_fake_mode(fake_mode), maybe_disable_comprehensive_padding(
                example_inputs
            ):
                const_output_index = None
                const_graph = None
                const_code = None

                if aot_mode and config.aot_inductor.use_runtime_constant_folding:
                    const_gm, const_output_index = split_const_gm(gm)

                    const_graph = GraphLowering(
                        const_gm,
                        example_inputs=[],
                        shape_env=shape_env,
                        graph_id=graph_id,
                        cpp_wrapper=cpp_wrapper,
                        aot_mode=aot_mode,
                        extern_node_serializer=extern_node_serializer,
                        is_inference=is_inference,
                        is_backward=is_backward,
                        is_const_graph=True,
                    )
                    with V.set_graph_handler(const_graph):
                        assert cpp_wrapper, "AOT mode only supports C++ wrapper"
                        const_graph.run()

                        const_code, _ = const_graph.codegen_with_cpp_wrapper()

                graph = GraphLowering(
                    gm,
                    # example_inputs will be used by AOTInductor to dry-run the generated code for Triton kernel tuning.
                    # For the forward pass, we have the real inputs to be used as example_inputs. For the backward pass,
                    # we currently use fake tensors and defake them later.
                    example_inputs=example_inputs,
                    shape_env=shape_env,
                    graph_id=graph_id,
                    cpp_wrapper=cpp_wrapper,
                    aot_mode=aot_mode,
                    extern_node_serializer=extern_node_serializer,
                    is_inference=is_inference,
                    is_backward=is_backward,
                    const_output_index=const_output_index,
                    const_code=const_code,
                    const_module=const_graph,
                    inputs_to_check=inputs_to_check,
                )
                metrics_helper = metrics.CachedMetricsHelper()
                with V.set_graph_handler(graph):
                    graph.run(*example_inputs)
                    output_strides: List[Optional[Tuple[_StrideExprStr, ...]]] = []
                    if graph.graph_outputs is not None:
                        # We'll put the output strides in the compiled graph so we
                        # can later return them to the caller via TracingContext
                        p = SymExprPrinter()
                        for out in graph.graph_outputs:
                            if (
                                isinstance(out, IRNode)
                                and out.has_tensor_output()
                                and len(free_unbacked_symbols(out.get_stride())) == 0
                            ):
                                # Convert to string for eval on the load path
                                output_strides.append(
                                    tuple(p.doprint(s) for s in out.get_layout().stride)
                                )
                            else:
                                output_strides.append(None)

                    _check_triton_bf16_support(graph)

                    # TODO: The switching between AOT mode and not here is a bit
                    # messy, but it's localized to the block of code below so I'm
                    # not going to touch it for now

                    compiled_fn: Any

                    with dynamo_timed(
                        "GraphLowering.compile_to_fn", log_pt2_compile_event=True
                    ):
                        if graph.aot_mode:
                            from .codecache import AotCodeCompiler

                            assert (
                                graph.cpp_wrapper
                            ), "AOT mode only supports C++ wrapper"
                            code, linemap = graph.codegen_with_cpp_wrapper()
                            output_code_log.debug("Output code: \n%s", code)

                            serialized_extern_kernel_nodes = None
                            if graph.extern_kernel_nodes:
                                serialized_extern_kernel_nodes = (
                                    graph.extern_node_serializer(
                                        graph.extern_kernel_nodes
                                    )
                                )
                                output_code_log.debug(
                                    "Serialized Extern Kernel Nodes: \n%s",
                                    serialized_extern_kernel_nodes,
                                )

                            additional_files = graph.wrapper_code.additional_files

                            with dynamo_timed(
                                "AotCodeCompiler.compile", log_pt2_compile_event=True
                            ):
                                # Directly return the file path with the compiled code
                                compiled_fn = AotCodeCompiler.compile(
                                    graph,
                                    code,
                                    serialized_extern_kernel_nodes,
                                    device_type=graph.device_type,
                                    additional_files=additional_files,
                                )
                        else:
                            compiled_fn = graph.compile_to_module().call

                    num_bytes, nodes_num_elem, node_runtimes = graph.count_bytes()
                    metrics.num_bytes_accessed += num_bytes
                    metrics.node_runtimes += node_runtimes
                    metrics.nodes_num_elem += nodes_num_elem

                    if (
                        cudagraphs
                        and config.triton.cudagraph_skip_dynamic_graphs
                        and not V.graph.disable_cudagraphs_reason
                        and torch._inductor.utils.any_is_symbolic(*example_inputs)
                    ):
                        stack_trace = None
                        for node in gm.graph.nodes:
                            meta_val = node.meta.get("val", None)
                            if (
                                node.op == "placeholder"
                                or not isinstance(meta_val, torch.Tensor)
                                or not torch._inductor.utils.any_is_symbolic(meta_val)
                            ):
                                continue

                            if stack_trace := node.meta.get("stack_trace", None):
                                break
                        disable = "graph with symbolic shapes inputs and config.triton.cudagraph_skip_dynamic_graphs=True."
                        if stack_trace:
                            disable = f"{disable} Found from {stack_trace}\n"
                        else:
                            disable = f"{disable}\n"
                        V.graph.disable_cudagraphs_reason = disable

                    if cudagraphs and not V.graph.disable_cudagraphs_reason:
                        maybe_incompat_node = get_first_incompatible_cudagraph_node(gm)
                        if maybe_incompat_node:
                            disable = f"disabling cudagraphs due to incompatible op {maybe_incompat_node.target}"
                            if stack_trace := maybe_incompat_node.meta.get(
                                "stack_trace", None
                            ):
                                disable = f"{disable} Found from {stack_trace}\n"
                            V.graph.disable_cudagraphs_reason = disable

                    if V.aot_compilation is True:
                        assert isinstance(compiled_fn, (str, list))
                        return CompiledAOTI(compiled_fn)

                    # TODO: Hoist this above V.aot_compilation
                    if cudagraphs and not V.graph.disable_cudagraphs_reason:
                        from torch._inductor.cudagraph_utils import (
                            check_lowering_disable_cudagraph,
                        )

                        V.graph.disable_cudagraphs_reason = (
                            check_lowering_disable_cudagraph(
                                V.graph.device_node_mapping
                            )
                        )

                    return CompiledFxGraph(
                        compiled_fn,
                        graph,
                        gm,
                        output_strides,
                        V.graph.disable_cudagraphs_reason,
                        metrics_helper.get_deltas(),
                        counters["inductor"] - inductor_counters,
                        cudagraphs,
                        example_inputs,
                        static_input_idxs,
                        graph_kwargs,
                        inputs_to_check,
                        boxed_forward_device_index,
                    )


def fx_codegen_and_compile(
    gm: GraphModule,
    example_inputs: Sequence[InputType],
    # This is derivable from the other inputs to this function, but we pass it
    # in explicitly because it's nontrivial to compute
    inputs_to_check: Sequence[int],
    **graph_kwargs: Unpack[_CompileFxKwargs],
) -> OutputCode:
    scheme: FxCompile = _InProcessFxCompile()

    return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs)


def get_input_idxs_to_check(
    inputs: Sequence[InputType],
    static_input_idxs: Sequence[int],
) -> Sequence[int]:
    """
    This function runs at compile time, and generates a list of indices for which we
    might need to do a copy to preserve alignment requirements.
    """
    ids_to_check = []

    for i, input in enumerate(inputs):
        if not isinstance(input, torch.Tensor):
            # non-tensors don't need alignment
            continue
        if not is_gpu(input.device.type):
            # right now we only care for gpu tensors
            continue
        with maybe_get_suppress_shape_guards_ctx():
            # suppress guards so that tensor_is_aligned and should_assume_input_aligned
            # do not add guards on input's storage offset
            if i in static_input_idxs and tensor_is_aligned(input):
                continue
            if not should_assume_input_aligned(input):
                continue

        # if we get here, then
        # (a) our triton code assumes that the input is aligned
        # (b) we can't be sure ahead of time that the input will actually be aligned.
        # therefore, at runtime, we'll need to check that the input is aligned
        # (and if not, clone it to make it aligned.)
        ids_to_check.append(i)

    return ids_to_check


def cudagraphify(
    model: Callable[..., Any],
    static_input_idxs: Sequence[int] = (),
    *,
    device_index: int,
    stack_traces: List[Optional[str]],
    is_backward: bool,
    is_inference: bool,
    constants: Tuple[torch.Tensor, ...] = (),
    placeholders: Sequence[PlaceholderInfo] = (),
    mutated_input_idxs: Tuple[int, ...] = (),
) -> Callable[..., Any]:
    from torch._inductor.cudagraph_trees import (
        cudagraphify_impl as new_cudagraphify_impl,
    )

    cudagraphify_fn: Callable[..., Any]
    if config.triton.cudagraph_trees:
        cudagraphify_fn = functools.partial(
            new_cudagraphify_impl,
            device_index=device_index,
            stack_traces=stack_traces,
            is_backward=is_backward,
            is_inference=is_inference,
            constants=constants,
            placeholders=placeholders,
            mutated_input_idxs=mutated_input_idxs,
        )
    else:
        cudagraphify_fn = cudagraphify_impl

    compiled_fn = None

    def run(new_inputs: Sequence[InputType]) -> Any:
        nonlocal compiled_fn
        if compiled_fn is None:
            with dynamo_utils.dynamo_timed(
                "cudagraphify",
                log_pt2_compile_event=True,
            ), dynamo_utils.preserve_rng_state():
                compiled_fn = cudagraphify_fn(model, new_inputs, static_input_idxs)
        return compiled_fn(new_inputs)

    return run


def static_input(x: torch.Tensor) -> torch.Tensor:
    """
    Copy and input while preserving strides
    """
    return torch.empty_strided(x.size(), x.stride(), dtype=x.dtype, device=x.device)


def index_expanded_dims_and_copy_(
    dst: torch.Tensor,
    src: torch.Tensor,
    expanded_dims: List[int],
) -> None:
    "Index into expanded dimensions of both dst and src then copy_"
    dst = index_expanded_dims(dst, expanded_dims)
    src = index_expanded_dims(src, expanded_dims)
    dst.copy_(src)


def cudagraphify_impl(
    model: Callable[..., Any],
    inputs: List[torch.Tensor],
    static_input_idxs: Sequence[int] = (),
) -> Callable[[List[InputType]], Any]:
    """
    Assumes inputs[static_input_idxs[i]] are always the same memory address
    """
    check_input_idxs = get_input_idxs_to_check(inputs, static_input_idxs)  # type: ignore[arg-type]
    static_input_idxs: OrderedSet[int] = OrderedSet(
        remove_unaligned_input_idxs(inputs, static_input_idxs)  # type: ignore[arg-type]
    )
    copy_misaligned_inputs(inputs, check_input_idxs)  # type: ignore[arg-type]

    assert isinstance(inputs, list)

    inps_expanded_dims = [
        get_expanded_dims(x) if idx not in static_input_idxs else []
        for idx, x in enumerate(inputs)
    ]

    # allocate static tensor inputs
    static_inputs = [
        x
        if not isinstance(x, torch.Tensor)
        else static_input(x)
        if idx not in static_input_idxs
        else x.detach()
        for idx, x in enumerate(inputs)
    ]

    # copy over input values for fresh allocations
    for idx, (x, expanded_dims) in enumerate(zip(inputs, inps_expanded_dims)):
        if isinstance(x, torch.Tensor) and idx not in static_input_idxs:
            index_expanded_dims_and_copy_(static_inputs[idx], x, expanded_dims)

    # warmup
    torch.cuda.synchronize()
    stream = torch.cuda.Stream()
    stream.wait_stream(torch.cuda.current_stream())
    # copy static_inputs because it will be cleared in model
    with torch.cuda.stream(stream):
        model(list(static_inputs))
    stream.synchronize()
    torch.cuda.current_stream().wait_stream(stream)
    torch.cuda.synchronize()

    # record
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph, stream=stream, capture_error_mode="thread_local"):
        static_outputs = model(list(static_inputs))
    if not isinstance(static_outputs, (list, tuple)):
        static_outputs = (static_outputs,)

    if config.size_asserts:

        def run(new_inputs: List[InputType]) -> Callable[[List[InputType]], Any]:
            assert len(static_inputs) == len(new_inputs)
            for idx, (dst, src, expanded_dims) in enumerate(
                zip(static_inputs, new_inputs, inps_expanded_dims)
            ):
                if not isinstance(dst, torch.Tensor):
                    continue
                assert isinstance(src, torch.Tensor)
                if idx in static_input_idxs:
                    assert dst.data_ptr() == src.data_ptr()
                else:
                    # TODO - could make one single op of multiple slices
                    # and avoid dispatch.
                    # Could also pre-index the `dst` tensors
                    index_expanded_dims_and_copy_(dst, src, expanded_dims)
            new_inputs.clear()
            graph.replay()
            return static_outputs

    else:
        copy_indices = [
            idx for idx in range(len(static_inputs)) if idx not in static_input_idxs
        ]

        def run(new_inputs: List[InputType]) -> Callable[[List[InputType]], Any]:
            for idx in copy_indices:
                expanded_dims = inps_expanded_dims[idx]
                src = new_inputs[idx]
                assert isinstance(src, torch.Tensor)
                index_expanded_dims_and_copy_(static_inputs[idx], src, expanded_dims)
            new_inputs.clear()
            graph.replay()
            return static_outputs

    return align_inputs_from_check_idxs(run, check_input_idxs)


def compile_fx_aot(
    model_: GraphModule,
    example_inputs_: List[InputType],
    inner_compile: _CompileFxCallable = compile_fx_inner,
    config_patches: Optional[Dict[str, str]] = None,
) -> Union[List[str], str]:
    assert isinstance(model_, GraphModule), model_

    config_patches: Dict[str, Any] = (
        {"cpp_wrapper": True}
        if config_patches is None
        else {**config_patches, "cpp_wrapper": True}
    )

    output_path = config_patches.get(
        "aot_inductor.output_path", config.aot_inductor.output_path
    )

    if output_path:
        assert not output_path.endswith(".pt2"), (
            "The output path for aot_compile should not have an extension with .pt2 "
            "this is for specifying the output path for the .so in AOTInductor. "
            "If you would like to package the AOTInductor generated files "
            "into a pt2, please call `torch._inductor.aoti_compile_and_package`."
        )
    else:
        config_patches = {
            **config_patches,
            "aot_inductor.output_path": code_hash(model_.code),
        }

    extern_node_serializer = config_patches.pop("extern_node_serializer", None)
    saved_compile_id = model_.meta.get("dynamo_compile_id", None)
    saved_compile_context = torch._guards.CompileContext(saved_compile_id)
    with V.set_aot_compilation(True), torch._guards.compile_context(
        saved_compile_context
    ):
        compiled_artifacts = compile_fx(
            model_,
            example_inputs_,
            inner_compile=functools.partial(
                inner_compile,
                aot_mode=True,
                extern_node_serializer=extern_node_serializer,
            ),
            config_patches=config_patches,
        )

        assert isinstance(compiled_artifacts, CompiledAOTI)

        return compiled_artifacts.filename


_graph_counter = count(0)


def fw_compiler_freezing(
    aot_autograd_model: GraphModule,
    aot_example_inputs: Sequence[InputType],
    dynamo_model: GraphModule,
    num_example_inputs: int,
    inner_compile: Callable[..., Any],
    cudagraphs: BoxedBool,
    graph_id: int,
    forward_device: BoxedDeviceIndex,
) -> Callable[[List[object]], Sequence[torch.Tensor]]:
    from torch._inductor.freezing import convert_conv_weights_to_channels_last, freeze

    # partition_fn won't be called
    _recursive_joint_graph_passes(aot_autograd_model)

    layout_opt = GraphLowering.decide_layout_opt(aot_autograd_model, is_inference=True)
    if layout_opt:
        # make sure meta['val'] is properly setup
        fake_tensor_prop(aot_autograd_model, aot_example_inputs, True)
        convert_conv_weights_to_channels_last(aot_autograd_model)

    opt_model, preserved_arg_indices = freeze(
        dynamo_model,
        aot_autograd_model,
        aot_example_inputs,  # type: ignore[arg-type]
    )

    setattr(opt_model, "_has_frozen_params", True)  # noqa: B010

    aot_example_inputs = [aot_example_inputs[ind] for ind in preserved_arg_indices]
    num_fixed = len(preserved_arg_indices) - num_example_inputs

    fake_mode = detect_fake_mode(aot_example_inputs)

    # for freezing, all graph outputs should be user visible
    *_, model_outputs_node = opt_model.graph.nodes
    model_outputs = model_outputs_node.args[0]
    model_outputs_node.meta["user_visible_output_idxs"] = [
        idx for idx, n in enumerate(model_outputs) if isinstance(n, torch.fx.Node)
    ]

    static_input_idxs = list(range(num_fixed))
    wrapper_new_args_unwrapped_indices: List[int] = []
    # constant params will be real tensors, not fake
    tracing_context = torch._guards.TracingContext.try_get()
    unwrapped_args_offsets = [0]
    max_offset_idx = 0
    if tracing_context is not None:
        assert tracing_context.params_flat_unwrap_subclasses is not None
        params_flat_unwrap = tracing_context.params_flat_unwrap_subclasses
        max_offset_idx = max(0, len(params_flat_unwrap) - 1)
        preserved_indices_params_flat = set()
        unwrapped_idxs = tracing_context.params_unwrapped_to_flat_index
        assert unwrapped_idxs is not None
        current_offset = 0
        if len(params_flat_unwrap) > 0:
            unwrapped_args_offsets = []

        for i in range(len(params_flat_unwrap)):
            if i not in preserved_arg_indices:
                params_flat_unwrap[i] = None
                if i > 0 and unwrapped_idxs[i] == unwrapped_idxs[i - 1]:
                    current_offset += 1
            else:
                preserved_indices_params_flat.add(unwrapped_idxs[i])
            unwrapped_args_offsets.append(current_offset)

        # Deallocate wrapped params, if all subelements were deallocated
        assert tracing_context.params_flat is not None
        for i in range(len(tracing_context.params_flat)):
            if i not in preserved_indices_params_flat:
                tracing_context.params_flat[i] = None

        if tracing_context.fw_metadata:
            static_input_idxs += tracing_context.fw_metadata.static_input_indices

    with mock.patch.object(fake_mode, "allow_non_fake_inputs", True):
        optimized_function = inner_compile(
            opt_model,
            aot_example_inputs,
            static_input_idxs=static_input_idxs,
            cudagraphs=cudagraphs,
            graph_id=graph_id,
            is_inference=True,
            boxed_forward_device_index=forward_device,
            layout_opt=layout_opt,
        )

    # aot_inductor codegens a call that takes in just the inputs, so we don't return a wrapper
    # that drops constant-ified params
    if V.aot_compilation is True:
        return optimized_function

    def wrapper(args: List[object]) -> Sequence[torch.Tensor]:
        args_new = [
            args[i - unwrapped_args_offsets[min(i, max_offset_idx)]]
            for i in preserved_arg_indices
        ]
        args.clear()
        return optimized_function(args_new)

    wrapper._boxed_call = True  # type: ignore[attr-defined]

    return wrapper


def get_cpp_wrapper_config() -> Dict[str, object]:
    return {
        # Set autotune_at_compile_time to True as default if the option is not explicitly set
        "triton.autotune_at_compile_time": config.triton.autotune_at_compile_time
        if config.triton.autotune_at_compile_time is not None
        else has_triton(),
        "triton.autotune_cublasLt": False,
        "triton.cudagraphs": False,  # TODO: to be removed
        "triton.store_cubin": True,
    }


def get_cuda_device_context(gm: torch.fx.GraphModule) -> ContextManager[None]:
    """
    Returns a cuda device context manager if there is a single device in the graph
    """
    if not torch.cuda.is_available():
        return contextlib.nullcontext()

    placeholder_nodes = gm.graph.find_nodes(op="placeholder")
    input_devices: OrderedSet[torch.device] = OrderedSet(
        node.meta["val"].device
        for node in placeholder_nodes
        if isinstance(node.meta.get("val"), torch.Tensor)
    )

    out_devices: OrderedSet[torch.device] = OrderedSet(
        arg.meta["val"].device
        for arg in output_node(gm).args[0]
        if isinstance(arg, fx.Node) and isinstance(arg.meta.get("val"), torch.Tensor)
    )
    cuda_devices: OrderedSet[torch.device] = OrderedSet(
        device for device in (input_devices | out_devices) if device.type == "cuda"
    )

    return (
        torch.cuda.device(next(iter(cuda_devices)))  # type: ignore[return-value]
        if len(cuda_devices) == 1
        else contextlib.nullcontext()
    )


def compile_fx(
    model_: GraphModule,
    example_inputs_: Sequence[InputType],
    inner_compile: Callable[..., OutputCode] = compile_fx_inner,
    config_patches: Optional[Dict[str, Any]] = None,
    decompositions: Optional[Dict[OpOverload, Callable[..., Any]]] = None,
) -> Union[Callable[[List[object]], Sequence[torch.Tensor]], str, List[str]]:
    """
    Main entry point for compiling given FX graph.  Despite the fact that this
    lives in :mod:`torch._inductor`, this function is responsible for calling
    into AOT Autograd (and we will eventually get a callback to
    ``inner_compile`` to perform actual compilation.  In other words, this
    function orchestrates end-to-end compilation for the inductor backend when
    you use :func:`torch.compile`.

    NB: This function TAKES OWNERSHIP of the input ``model_`` and can potentially
    mutate it!  Make a copy if you need to preserve the original GraphModule.
    """

    # Some arguments trigger a recursive call to compile_fx.  Handle these
    # short circuits first, before anything else

    if config_patches:
        with config.patch(config_patches):
            return compile_fx(
                model_,
                example_inputs_,
                # need extra layer of patching as backwards is compiled out of scope
                inner_compile=config.patch(config_patches)(inner_compile),
                decompositions=decompositions,
            )

    # TODO: This probably shouldn't be a recursive call
    if config.cpp_wrapper:
        with config.patch(
            {
                "cpp_wrapper": False,  # reset to break recursive call to compile_fx
                **get_cpp_wrapper_config(),
            }
        ), V.set_real_inputs(example_inputs_):
            inputs_: Sequence[InputType] = example_inputs_

            if isinstance(model_, GraphModule):
                fake_inputs = [
                    node.meta.get("val")
                    for node in model_.graph.nodes
                    if node.op == "placeholder"
                ]
                # Replace non-tensor (constant) inputs with Nones, since these are not being
                # used anyways by the graph
                fake_inputs = [
                    inp if isinstance(inp, torch.Tensor) else None
                    for inp in fake_inputs
                ]

                if any(v is not None for v in fake_inputs):
                    # Validate devices before switching to fake tensors.
                    for idx, fi, i in zip(count(), fake_inputs, inputs_):
                        if fi is not None:
                            assert isinstance(i, torch.Tensor)
                            if fi.device != i.device:
                                raise ValueError(
                                    f"Device mismatch between fake input and example input at position #{idx}: "
                                    f"{fi.device} vs {i.device}. If the model was exported via torch.export(), "
                                    "make sure torch.export() and torch.aot_compile() run on the same device."
                                )
                    inputs_ = fake_inputs  # type: ignore[assignment]
            return compile_fx(
                model_,
                inputs_,
                inner_compile=functools.partial(inner_compile, cpp_wrapper=True),
                decompositions=decompositions,
            )

    recursive_compile_fx = functools.partial(
        compile_fx,
        inner_compile=inner_compile,
        decompositions=decompositions,
    )

    if not graph_returns_tuple(model_):
        return make_graph_return_tuple(
            model_,
            example_inputs_,
            recursive_compile_fx,
        )

    if isinstance(model_, GraphModule) and isinstance(
        model_.graph._codegen, _PyTreeCodeGen
    ):
        # this graph is the result of dynamo.export()
        return handle_dynamo_export_graph(
            model_,
            example_inputs_,
            recursive_compile_fx,
        )

    # Do the actual work

    with _use_lazy_graph_module(
        dynamo_config.use_lazy_graph_module
    ), enable_python_dispatcher():
        # Pre-grad passes cannot be run if we weren't given a GraphModule.
        # Dynamo will always produce a GraphModule, but this handles cases
        # where a user directly passes a plain Module with the intention of
        # having AOTAutograd trace it.
        # TODO: Get rid of this?
        if isinstance(model_, GraphModule):
            model_ = _recursive_pre_grad_passes(model_, example_inputs_)

        # TODO: Move this before recursive pre-grad passes
        # NB: This short circuit never occurs for Dynamo produced graphs
        # (which are pre-flattened)
        if any(isinstance(x, (list, tuple, dict)) for x in example_inputs_):
            return flatten_graph_inputs(
                model_,
                example_inputs_,
                recursive_compile_fx,
            )

        assert not config._raise_error_for_testing

        num_example_inputs = len(example_inputs_)

        # Although cudagraphs may have been enabled via config, various
        # conditions (which are tested within the bowels of Inductor) may
        # force cudagraphs to be disabled.  This mutable box lets us retrieve
        # the final determination if cudagraphs actually can be used or not.
        cudagraphs = BoxedBool(config.triton.cudagraphs)

        # See [Backward Generation Handling]
        forward_device = BoxedDeviceIndex(None)

        # TODO: The modern style is to use CompileId from TracingContext to
        # identify Inductor compilation.  However, this CompileId cannot
        # uniquely identify multiple Inductor compilations that arise from
        # DDPOptimizer
        graph_id = next(_graph_counter)

        decompositions = (
            decompositions if decompositions is not None else select_decomp_table()
        )

        def fw_compiler_base(
            gm: GraphModule,
            example_inputs: Sequence[InputType],
            is_inference: bool,
        ) -> OutputCode:
            with dynamo_utils.dynamo_timed("compile_fx.<locals>.fw_compiler_base"):
                if is_inference:
                    # partition_fn won't be called
                    _recursive_joint_graph_passes(gm)

                fixed = torch._inductor.utils.num_fw_fixed_arguments(
                    num_example_inputs, len(example_inputs)
                )

                model_outputs_node = output_node(gm)
                if config.keep_output_stride:
                    model_outputs = pytree.arg_tree_leaves(*model_outputs_node.args)
                    num_model_outputs = len(model_outputs)

                    context = torch._guards.TracingContext.try_get()
                    # See Note [User Outputs in the inductor graph]
                    if context is not None and context.fw_metadata and not is_inference:
                        original_output_start_index = (
                            context.fw_metadata.num_mutated_inp_runtime_indices
                        )
                    else:
                        original_output_start_index = 0

                    if isinstance(model_, GraphModule):
                        *_, orig_model_outputs_node = model_.graph.nodes
                        assert orig_model_outputs_node.op == "output"
                        orig_model_outputs, _ = pytree.tree_flatten(
                            orig_model_outputs_node.args
                        )
                        num_orig_model_outputs = len(orig_model_outputs)
                    else:
                        num_orig_model_outputs = num_model_outputs

                    assert num_orig_model_outputs <= num_model_outputs

                    # Note [User Outputs in the inductor graph]
                    # We makes the following assumption
                    # For inference
                    #   len(orig_model_outputs) == len(model_outputs)
                    # For training
                    #   len(orig_model_outputs) <= len(model_outputs)
                    # During training, most of the time the model_outputs starts with
                    # original module's outputs followed by saved activations.
                    # But this can be not true if the model have inplace updated tensors.
                    # AOTAutograd will make those tensors being returned before the original
                    # module's output.
                    # To make things safe, we'll use original_output_start_index field
                    # set by AOTAutograd to decide where the original module outputs start.
                    orig_output_end_idx = (
                        original_output_start_index + num_orig_model_outputs
                    )
                    # Sanity check: we are about to splice out the "user" outputs from the full set
                    # of "graph" outputs. Make sure we're within bounds.
                    assert orig_output_end_idx <= num_model_outputs

                    model_outputs_node.meta["user_visible_output_idxs"] = [
                        idx
                        for idx in range(
                            original_output_start_index, orig_output_end_idx
                        )
                        if isinstance(model_outputs[idx], torch.fx.Node)
                    ]
                else:
                    model_outputs_node.meta["user_visible_output_idxs"] = []

                return inner_compile(
                    gm,
                    example_inputs,
                    static_input_idxs=get_static_input_idxs(fixed),
                    cudagraphs=cudagraphs,
                    graph_id=graph_id,
                    is_inference=is_inference,
                    boxed_forward_device_index=forward_device,
                )

        fw_compiler: Callable[
            [GraphModule, Sequence[InputType]], OutputCode
        ] = functools.partial(fw_compiler_base, is_inference=False)
        fw_compiler = SerializableAOTDispatchCompiler(OutputCode, fw_compiler)

        if config.freezing and not torch.is_grad_enabled():
            inference_compiler: Callable[..., Any] = functools.partial(
                fw_compiler_freezing,
                dynamo_model=model_,
                num_example_inputs=num_example_inputs,
                inner_compile=inner_compile,
                cudagraphs=cudagraphs,
                graph_id=graph_id,
                forward_device=forward_device,
            )
        else:
            inference_compiler = functools.partial(fw_compiler_base, is_inference=True)
            inference_compiler = SerializableAOTDispatchCompiler(
                OutputCode, inference_compiler
            )

        def partition_fn(
            gm: GraphModule,
            joint_inputs: Sequence[object],
            **kwargs: object,
        ) -> Tuple[GraphModule, GraphModule]:
            cuda_context = get_cuda_device_context(gm)
            with cuda_context:
                _recursive_joint_graph_passes(gm)
            return min_cut_rematerialization_partition(
                gm, joint_inputs, **kwargs, compiler="inductor"
            )

        @compile_time_strobelight_meta(phase_name="backward")
        def bw_compiler(
            gm: GraphModule, example_inputs: Sequence[InputType]
        ) -> OutputCode:
            from torch._dynamo.convert_frame import compile_lock

            with dynamo_utils.dynamo_timed(
                "compile_fx.<locals>.bw_compiler"
            ), compile_lock:
                model_outputs_node = output_node(gm)
                if config.bw_outputs_user_visible:
                    model_outputs = pytree.arg_tree_leaves(*model_outputs_node.args)
                    model_outputs_node.meta["user_visible_output_idxs"] = [
                        idx
                        for idx, n in enumerate(model_outputs)
                        if isinstance(n, torch.fx.Node)
                    ]
                else:
                    model_outputs_node.meta["user_visible_output_idxs"] = []

                fixed = count_tangents(gm)
                with config.patch(
                    get_cpp_wrapper_config()
                ) if config.cpp_wrapper else contextlib.nullcontext():
                    return inner_compile(
                        gm,
                        example_inputs,
                        static_input_idxs=list(range(fixed)),
                        cudagraphs=cudagraphs,
                        is_backward=True,
                        graph_id=graph_id,
                        boxed_forward_device_index=forward_device,
                    )

        bw_compiler = SerializableAOTDispatchCompiler(OutputCode, bw_compiler)

        fake_mode = detect_fake_mode(
            example_inputs_
        ) or torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
        tracing_context = (
            torch._guards.TracingContext.try_get()
            or torch._guards.TracingContext(fake_mode)
        )

        if V.aot_compilation is True:
            with functorch_config.patch(unlift_effect_tokens=True):
                gm, graph_signature = aot_export_module(
                    model_,
                    example_inputs_,
                    trace_joint=False,
                    decompositions=decompositions,
                )
            unlifted_gm = _unlift_graph(model_, gm, graph_signature)
            if "dynamo_flat_name_to_original_fqn" in model_.meta:
                unlifted_gm.meta["dynamo_flat_name_to_original_fqn"] = model_.meta[
                    "dynamo_flat_name_to_original_fqn"
                ]

            if "dynamo_compile_id" in model_.meta:
                unlifted_gm.meta["dynamo_compile_id"] = model_.meta["dynamo_compile_id"]

            # Disable amp as in aot_dispatch_autograd (https://github.com/pytorch/pytorch/pull/86515)
            # In inference_compiler (fw_compiler_base), _recursive_joint_graph_passes will call into
            # _sfdp_init() to register patterns.
            # When fallback_random is set to True, the sdpa patterns will be traced during runtime.
            # If amp is turned on, the traced FP32 patterns will have prims.convert_element_type which
            # will be the same as the generated FP16 patterns.
            disable_amp = torch._C._is_any_autocast_enabled()
            context = (
                torch._C._DisableAutocast if disable_amp else contextlib.nullcontext
            )
            with V.set_fake_mode(fake_mode), compiled_autograd._disable(), context():
                return inference_compiler(unlifted_gm, example_inputs_)

        with V.set_fake_mode(fake_mode), torch._guards.tracing(
            tracing_context
        ), compiled_autograd._disable(), functorch_config.patch(
            unlift_effect_tokens=True
        ):
            return aot_autograd(
                fw_compiler=fw_compiler,
                bw_compiler=bw_compiler,
                inference_compiler=inference_compiler,
                decompositions=decompositions,
                partition_fn=partition_fn,
                keep_inference_input_mutations=True,
                cudagraphs=cudagraphs,
            )(model_, example_inputs_)


def graph_returns_tuple(gm: GraphModule) -> bool:
    """True if a FX graph returns a tuple"""
    if not isinstance(gm, GraphModule):
        return True  # can't check this, assume true
    (rv,) = output_node(gm).args
    if isinstance(rv, (list, tuple)):
        return True
    if (
        isinstance(rv, torch.fx.node.Node)
        and hasattr(rv.target, "_schema")
        and len(rv.target._schema.returns) > 1
        and all(str(ret.type) == "Tensor" for ret in rv.target._schema.returns)
    ):
        # for graphs whose result is one node with multiple outputs
        return True
    return False


def make_graph_return_tuple(
    gm: GraphModule,
    inputs: Sequence[InputType],
    compile_gm: Callable[..., Any],
) -> Callable[..., Any]:
    """
    Mutate gm so it returns a tuple.  This is only needed for graphs
    not created by torchdynamo that return non-tuples.
    """
    node = output_node(gm)
    (rv,) = node.args
    rv, spec = pytree.tree_flatten(rv)
    with gm.graph.inserting_before(node):
        gm.graph.output(rv)
    gm.graph.erase_node(node)
    assert graph_returns_tuple(gm)

    compiled_fn = compile_gm(gm, inputs)

    @functools.wraps(compiled_fn)
    def wrapper(*args: Any, **kwargs: Any) -> Any:
        return pytree.tree_unflatten(compiled_fn(*args, **kwargs), spec)

    return wrapper


def handle_dynamo_export_graph(
    gm: GraphModule,
    inputs: Sequence[InputType],
    compile_gm: Callable[..., Any],
) -> Callable[..., Any]:
    """
    `torch._dynamo.export` embeds pytrees in the FX graph codegen object,
    convert that to a normal FX graph so inductor can compile it.
    """
    codegen = gm.graph._codegen
    gm.graph._codegen = torch.fx.graph.CodeGen()
    gm.recompile()

    compiled_fn = compile_gm(gm, codegen.process_inputs(*inputs))

    @functools.wraps(compiled_fn)  # type: ignore[misc]
    def wrapper(*args: Any) -> Any:
        return codegen.process_outputs(compiled_fn(*codegen.process_inputs(*args)))

    return wrapper


def _check_triton_bf16_support(graph: GraphLowering) -> None:
    def warn_and_skip(device: Optional[torch.device]) -> Never:
        from torch._dynamo.exc import SkipFrame

        assert device is not None

        device_interface = get_interface_for_device(device.type)
        device_props = device_interface.get_device_properties(device)
        warnings.warn(
            f"{device_props.name} does not support bfloat16 compilation natively, skipping"
        )
        raise SkipFrame("BF16 is not supported")

    for node in itertools.chain(graph.graph_inputs.values(), graph.graph_outputs):
        if not isinstance(node, IRNode):
            continue
        device_type = get_device_type(node)
        if (
            not device_type
            or not is_gpu(device_type)
            or node.get_dtype() != torch.bfloat16
        ):
            continue
        # Print warning and skip frame if attempting to compile for bfloat16
        # on device without hardware support for dtype
        device_interface = get_interface_for_device(device_type)
        if device_interface.is_bf16_supported(including_emulation=False):
            return
        warn_and_skip(node.get_device())


def _aoti_flatten_inputs(
    gm: torch.fx.GraphModule,
    args: Union[List[Any], Tuple[Any, ...]],
    kwargs: Optional[Dict[str, Any]] = None,
    *,
    options: Optional[Dict[str, Any]] = None,
) -> Tuple[List[Any], Dict[str, Any]]:
    """
    Flatten the inputs to the graph module and return the flat inputs and options.
    Add "aot_inductor.serialized_in_spec" and "aot_inductor.serialized_out_spec" to the options.
    """
    from .compile_fx import graph_returns_tuple

    assert graph_returns_tuple(gm), (
        "Graph output must be a tuple(). This is so that we can avoid "
        "pytree processing of the outputs. Please change the module to "
        "have tuple outputs."
    )

    # We will serialize the pytree info into the .so as constant strings
    in_spec = None
    out_spec = None
    if isinstance(gm.graph._codegen, torch.fx.graph._PyTreeCodeGen):
        codegen = gm.graph._codegen
        gm.graph._codegen = torch.fx.graph.CodeGen()
        gm.recompile()

        if codegen.pytree_info.in_spec is not None:
            in_spec = codegen.pytree_info.in_spec
        if codegen.pytree_info.out_spec is not None:
            out_spec = codegen.pytree_info.out_spec

    else:
        if hasattr(gm, "_in_spec"):
            in_spec = gm._in_spec
        if hasattr(gm, "_out_spec"):
            out_spec = gm._out_spec

    serialized_in_spec = pytree.treespec_dumps(in_spec) if in_spec is not None else ""
    serialized_out_spec = (
        pytree.treespec_dumps(out_spec) if out_spec is not None else ""
    )

    flat_args_with_path, received_spec = pytree.tree_flatten_with_path(
        (args, kwargs or {})
    )

    # Replace non-tensor (constant) inputs with Nones, since these are not being
    # used anyways by the graph
    flat_example_inputs = [
        x[1] if isinstance(x[1], torch.Tensor) else None for x in flat_args_with_path
    ]

    if in_spec is not None and received_spec != in_spec:
        raise ValueError(  # noqa: B904
            "Trying to flatten user inputs with exported input tree spec: \n"
            f"{in_spec}\n"
            "but actually got inputs with tree spec of: \n"
            f"{received_spec}"
        )

    options = (
        {
            "aot_inductor.serialized_in_spec": serialized_in_spec,
            "aot_inductor.serialized_out_spec": serialized_out_spec,
        }
        if options is None
        else {
            **options,
            "aot_inductor.serialized_in_spec": serialized_in_spec,
            "aot_inductor.serialized_out_spec": serialized_out_spec,
        }
    )
    return flat_example_inputs, options