1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
import functools
import itertools
import logging
import multiprocessing
import os
import pickle
import struct
import subprocess
import sys
import threading
import traceback
from concurrent.futures import Future, ProcessPoolExecutor
from concurrent.futures.process import BrokenProcessPool
from typing import Any, BinaryIO, Callable, Dict, Tuple, TypeVar
from typing_extensions import Never, ParamSpec
# _thread_safe_fork is needed because the subprocesses in the pool can read
# justknobs, e.g., in the Triton compiler. For internal, the import installs
# functionality to destroy singletons before forking and re-enable them after.
import torch._thread_safe_fork # noqa: F401
from torch._inductor import config
from torch._inductor.compile_worker.watchdog import _async_compile_initializer
log = logging.getLogger(__name__)
_P = ParamSpec("_P")
_T = TypeVar("_T")
def _pack_msg(job_id: int, length: int) -> bytes:
return struct.pack("nn", job_id, length)
def _unpack_msg(data: bytes) -> Tuple[int, int]:
if not data:
return -1, -1
return struct.unpack("nn", data)
msg_bytes = len(_pack_msg(0, 0))
def _send_msg(write_pipe: BinaryIO, job_id: int, job_data: bytes = b"") -> None:
length = len(job_data)
write_pipe.write(_pack_msg(job_id, length))
if length > 0:
write_pipe.write(job_data)
write_pipe.flush()
def _recv_msg(read_pipe: BinaryIO) -> Tuple[int, bytes]:
job_id, length = _unpack_msg(read_pipe.read(msg_bytes))
data = read_pipe.read(length) if length > 0 else b""
return job_id, data
def _get_ld_library_path() -> str:
path = os.environ.get("LD_LIBRARY_PATH", "")
if config.is_fbcode():
from libfb.py.parutil import get_runtime_path
runtime_path = get_runtime_path()
if runtime_path:
lib_path = os.path.join(runtime_path, "runtime", "lib")
path = os.pathsep.join([lib_path, path]) if path else lib_path
return path
class _SubprocExceptionInfo:
"""
Carries exception info from subprocesses across the wire. traceback
objects are not pickleable, so we store the trace as a string and
use it for the message in the exception thrown in the main process.
"""
def __init__(self, details: str) -> None:
self.details = details
class SubprocException(Exception):
"""
Thrown when a job in a subprocess raises an Exception.
"""
def __init__(self, details: str) -> None:
super().__init__(f"An exception occurred in a subprocess:\n\n{details}")
class SubprocPool:
"""
Mimic a concurrent.futures.ProcessPoolExecutor, but wrap it in
a subprocess.Popen() to try to avoid issues with forking/spawning
"""
def __init__(self, nprocs: int) -> None:
entry = os.path.join(os.path.dirname(__file__), "__main__.py")
subproc_read_fd, write_fd = os.pipe()
read_fd, subproc_write_fd = os.pipe()
self.write_pipe = os.fdopen(write_fd, "wb")
self.read_pipe = os.fdopen(read_fd, "rb")
cmd = [
sys.executable,
entry,
f"--workers={nprocs}",
f"--parent={os.getpid()}",
f"--read-fd={str(subproc_read_fd)}",
f"--write-fd={str(subproc_write_fd)}",
]
self.process = subprocess.Popen(
cmd,
env={
**os.environ,
# We need to set the PYTHONPATH so the subprocess can find torch.
"PYTHONPATH": os.pathsep.join(sys.path),
# We don't want to re-warm the pool when the subprocess imports
# torch._inductor.codecache since the warming process is what
# creates the SubprocPool in the first place.
"TORCH_WARM_POOL": "0",
# Some internal usages need a modified LD_LIBRARY_PATH.
"LD_LIBRARY_PATH": _get_ld_library_path(),
},
pass_fds=(subproc_read_fd, subproc_write_fd),
)
self.write_lock = threading.Lock()
self.read_thread = threading.Thread(target=self._read_thread, daemon=True)
self.futures_lock = threading.Lock()
self.pending_futures: Dict[int, Future[Any]] = {}
self.job_id_count = itertools.count()
self.running = True
# Start thread last to ensure all member variables are initialized
# before any access.
self.read_thread.start()
def submit(
self, job_fn: Callable[_P, _T], *args: _P.args, **kwargs: _P.kwargs
) -> Future[_T]:
if args or kwargs:
job_fn = functools.partial(job_fn, *args, **kwargs)
job_data = pickle.dumps(job_fn, pickle.HIGHEST_PROTOCOL)
future: Future[_T]
with self.futures_lock:
job_id = next(self.job_id_count)
self.pending_futures[job_id] = future = Future()
future.set_running_or_notify_cancel()
with self.write_lock:
if not self.running:
raise RuntimeError("submit() on closed pool")
_send_msg(self.write_pipe, job_id, job_data)
return future
def _read_thread(self) -> None:
try:
while True:
job_id, data = _recv_msg(self.read_pipe)
if job_id < 0:
if self.running:
log.warning("SubprocPool unclean exit")
self.read_pipe.close()
return
result = pickle.loads(data)
with self.futures_lock:
if not self.running:
return
if isinstance(result, _SubprocExceptionInfo):
# An exception occurred in the submitted job
self.pending_futures[job_id].set_exception(
SubprocException(result.details)
)
elif isinstance(result, Exception):
# An exception occurred in some of our subprocess machinery.
self.pending_futures[job_id].set_exception(result)
else:
self.pending_futures[job_id].set_result(result)
del self.pending_futures[job_id]
except Exception:
log.exception("failure in SubprocPool._read_thread")
def shutdown(self) -> None:
try:
with self.write_lock:
if not self.running:
return
self.running = False
_send_msg(self.write_pipe, -1)
self.write_pipe.close()
self.process.wait(300)
except OSError as e:
log.warning("Ignored OSError in pool shutdown: %s", e)
finally:
with self.futures_lock:
for future in self.pending_futures.values():
if not future.cancel():
future.set_exception(RuntimeError("SubprocPool closed"))
self.pending_futures.clear()
class SubprocMain:
"""Communicates with a SubprocPool in the parent process, called by __main__.py"""
def __init__(self, nprocs: int, read_pipe: BinaryIO, write_pipe: BinaryIO) -> None:
self.read_pipe = read_pipe
self.write_pipe = write_pipe
self.write_lock = threading.Lock()
self.nprocs = nprocs
self.pool = self._new_pool(nprocs, True)
self.running = True
def _new_pool(self, nprocs: int, warm: bool) -> ProcessPoolExecutor:
pool = ProcessPoolExecutor(
nprocs,
mp_context=multiprocessing.get_context("fork"),
initializer=functools.partial(_async_compile_initializer, os.getpid()),
)
multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize)
if warm:
_warm_process_pool(pool, nprocs)
return pool
def main(self) -> None:
while True:
job_id, data = _recv_msg(self.read_pipe)
if job_id < 0:
return self._shutdown()
self.submit(job_id, data)
def _shutdown(self) -> None:
with self.write_lock:
self.running = False
try:
_send_msg(self.write_pipe, -1)
self.write_pipe.close()
except BrokenPipeError:
pass # parent process already shutdown
self.read_pipe.close()
self.pool.shutdown()
def submit(self, job_id: int, data: bytes) -> None:
while self.running:
try:
self._submit_inner(job_id, data)
return
except BrokenProcessPool:
# If any subprocess in the pool crashes, we get a BrokenProcessPool
# exception and the whole pool becomes unusable. Handle crashes by
# recreating the pool and resubmitting.
self.pool = self._new_pool(self.nprocs, False)
def _submit_inner(self, job_id: int, data: bytes) -> None:
future = self.pool.submit(functools.partial(SubprocMain.do_job, data))
def callback(_: Future[Any]) -> None:
if not self.running:
return
try:
result = future.result()
except Exception as e:
log.exception("Error in subprocess")
result = pickle.dumps(e, pickle.HIGHEST_PROTOCOL)
assert isinstance(result, bytes)
with self.write_lock:
if self.running:
_send_msg(self.write_pipe, job_id, result)
return
future.add_done_callback(callback)
@staticmethod
def do_job(data: bytes) -> bytes:
# do the pickle/unpickle in the sub-subproc
job = pickle.loads(data)
try:
result = job()
except Exception as e:
result = _SubprocExceptionInfo(traceback.format_exc())
return pickle.dumps(result, pickle.HIGHEST_PROTOCOL)
def _warm_process_pool(pool: ProcessPoolExecutor, n: int) -> None:
# We have to fork processes for compiler workers, but the more memory and other resources that are loaded, the
# slower the os.fork time is, quite drastically. It also holds the GIL so we can't put it on another thread.
# Examples:
# A simple x + x + x script: 10ms seconds in the middle of the program, 2ms at startup
# tf_efficientnet_b0 benchmark: 50ms! in the middle of the program , 3ms at startup
# So we want to start the workers early when it is still cheap, and also to allow the workers to get
# ready before we have work for them.
# ProcessPoolExecutor also does not launch the workers until it finds a point when all the workers are idle.
# But if we waited until then fork time will be long and we will be waiting for the processes to initialize.
# We force them to start here with some YOLOing of the internal methods.
if hasattr(pool, "_start_queue_management_thread"):
pool._start_queue_management_thread()
else:
for _ in range(n):
pool._adjust_process_count()
if hasattr(pool, "_start_executor_manager_thread"):
pool._start_executor_manager_thread()
class TestException(RuntimeError):
pass
def raise_testexc() -> Never:
raise TestException
|