1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
# mypy: allow-untyped-defs
from __future__ import annotations
import dataclasses
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
import torch
from torch._dynamo.utils import counters
from torch._inductor.utils import InputType
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
static_inputs_log = torch._logging.getArtifactLogger(
__name__, "cudagraph_static_inputs"
)
OutputType = List[Optional[Union[int, torch.Tensor]]]
ModelType = Callable[[List[InputType]], OutputType]
@dataclasses.dataclass(frozen=True)
class FunctionID:
"Unique counter of a function wrapped in cudagraphify_impl"
id: int
@dataclasses.dataclass(frozen=True)
class PlaceholderInfo:
"""
A serializable version of torch.fx.Node that contains information
pertinent to placeholder stack traces. We use these in logging and error messages
related to cudagraphs, and will cache these results.
"""
name: str
stack_trace: Optional[str]
# This field is recursive, but never cyclic (since a node never uses itself)
users: List[PlaceholderInfo]
mutating_use_stack_trace: Optional[str]
@dataclasses.dataclass(frozen=True)
class WrappedFunction:
"""
Represents a function that you want to record for CUDA graph replay,
with a little more metadata so we can identify if we have an applicable
CUDA graph in our CUDA graph tree for it.
"""
model: Callable[..., Any]
static_input_idxs: Sequence[int]
id: FunctionID
constants: Tuple[torch.Tensor, ...]
placeholders: Sequence[PlaceholderInfo]
mutated_input_idxs: Sequence[int]
def get_mutating_use_stack_trace_from_node(
placeholder_node: torch.fx.Node,
) -> Optional[str]:
# reinplaced uses might have a single, non-copy_ use
if len(placeholder_node.users) == 1:
return next(iter(placeholder_node.users)).meta.get("stack_trace", None)
for use in placeholder_node.users:
if use.target == torch.ops.aten.copy_.default:
if stack_trace := use.meta.get("stack_trace", None):
return stack_trace
return None
def get_mutating_use_stack_trace(placeholder_info: PlaceholderInfo) -> Optional[str]:
return placeholder_info.mutating_use_stack_trace
def to_placeholder_info(placeholder_node: torch.fx.Node) -> PlaceholderInfo:
name = placeholder_node.name
stack_trace = placeholder_node.meta.get("stack_trace", None)
users = []
mutating_use_stack_trace = None
# Only recurse to users once, since we only care about user's stack traces
if placeholder_node.op == "placeholder":
users = [to_placeholder_info(i) for i in placeholder_node.users]
mutating_use_stack_trace = get_mutating_use_stack_trace_from_node(
placeholder_node
)
return PlaceholderInfo(name, stack_trace, users, mutating_use_stack_trace)
def get_placeholder_info(graph: torch.fx.Graph) -> List[PlaceholderInfo]:
return [
to_placeholder_info(node) for node in graph.nodes if node.op == "placeholder"
]
def format_default_skip_message(reason: str) -> str:
return f"skipping cudagraphs due to {reason}"
def get_mutation_stack_trace(
placeholders: Sequence[PlaceholderInfo], mutation_indices: Sequence[int]
) -> str:
stack_trace: Optional[str] = ""
for idx in mutation_indices:
placeholder = placeholders[idx]
if stack_trace := get_mutating_use_stack_trace(placeholder):
break
msg = format_default_skip_message(
f"mutated inputs ({len(mutation_indices)} instances)"
)
if stack_trace:
return f"{msg}. Found from : \n {stack_trace}"
return msg
def check_for_mutation(
func: WrappedFunction,
inputs: List[InputType],
is_cuda_graph_recorded_tensor: Callable[[torch.Tensor], bool],
) -> Optional[str]:
# doesnt work for non-trees because the warmup run would apply mutation twice
if torch._inductor.config.triton.cudagraph_trees:
# checking if mutation is only on parameters/static inputs
mutation_indices: Sequence[int] = [
idx
for idx in func.mutated_input_idxs
if not (
idx in func.static_input_idxs
or is_cuda_graph_recorded_tensor(inputs[idx]) # type: ignore[arg-type]
)
]
else:
mutation_indices = func.mutated_input_idxs
static_inputs_log.debug(
"check mutation static input indices: %s", func.static_input_idxs
)
static_inputs_log.debug("check mutation mutation indices: %s", mutation_indices)
return (
get_mutation_stack_trace(func.placeholders, mutation_indices)
if mutation_indices
else None
)
def _get_use_stack_trace(node) -> Optional[str]:
for use in node.users:
if stack_trace := use.meta.get("stack_trace", None):
return stack_trace
return None
def check_multiple_devices_or_any_cpu_nodes(
device_node_mapping: Dict[torch.device, torch.fx.Node]
) -> Optional[str]:
if cpu_node := device_node_mapping.get(torch.device("cpu")):
msg = f"cpu device ({cpu_node.name})"
if stack_trace := _get_use_stack_trace(cpu_node):
return format_default_skip_message(f"{msg}. Found from : \n {stack_trace}")
return format_default_skip_message(msg)
if (
len(device_node_mapping) == 1
and next(iter(device_node_mapping.keys())).type == "cuda"
):
return None
keys_repr = (repr(key) for key in device_node_mapping.keys())
return format_default_skip_message(f"multiple devices: {', '.join(keys_repr)}")
def check_lowering_disable_cudagraph(
device_node_mapping: Dict[torch.device, torch.fx.Node]
):
return check_multiple_devices_or_any_cpu_nodes(device_node_mapping)
def log_cudagraph_skip_and_bump_counter(msg):
perf_hint_log.warning(msg)
counters["inductor"]["cudagraph_skips"] += 1
@dataclasses.dataclass
class BoxedDeviceIndex:
value: Optional[int]
def set(self, device_idx: Optional[int]):
assert device_idx is None or isinstance(device_idx, int)
self.value = device_idx
def check_for_mutation_ignore_cuda_graph_managed_tensor(
gm: torch.fx.GraphModule, compiled_graph, static_input_idxs: Sequence[int]
) -> Optional[str]:
default_msg = format_default_skip_message("mutated inputs")
# doesnt work for non-trees because the warmup run would apply mutation twice
if torch._inductor.config.triton.cudagraph_trees:
unique_idxs = set(static_input_idxs)
# checking if mutation is only on parameters/static inputs
mutation_indices = [
idx for idx in compiled_graph.mutated_input_idxs if idx not in unique_idxs
]
has_mutation = len(mutation_indices) != 0
if not has_mutation:
return None
placeholders = get_placeholder_info(gm.graph)
return get_mutation_stack_trace(placeholders, mutation_indices)
else:
has_mutation = len(compiled_graph.mutated_inputs) != 0
return None if not has_mutation else default_msg
def get_placeholder_stack_trace(placeholder: PlaceholderInfo) -> Optional[str]:
"""
Gets the first non-empty stack trace of a placeholder or its users.
"""
if placeholder.stack_trace:
return placeholder.stack_trace
for user in placeholder.users:
if user.stack_trace:
return user.stack_trace
return None
class CheckInvariantStatus(Enum):
# Check invariant succeeded
SUCCESS = 1
# Previously managed data pointers are not stable
CudagraphManagedIdxMismatch = 2
# Static tensor input addresses are not stable
StaticInputIdxMismatch = 3
# Expected dead indices before graph are live
ExpectedDeadIndicesBeforeGraphMismatch = 4
def __str__(self) -> str:
if self.name == "CudagraphManagedIdxMismatch":
return "cudagraph managed tensor data pointer changed"
elif self.name == "StaticInputIdxMismatch":
return "static input data pointer changed"
elif self.name == "ExpectedDeadIndicesBeforeGraphMismatch":
return "expected dead indices before graph are live"
else:
return f"{self.name}: {self.value}"
def log_data_ptr_mismatch(
placeholders: Sequence[PlaceholderInfo],
inputs: List[InputType],
recorded_data_ptr: Sequence[Optional[int]],
target_idxs: Sequence[int],
mismatch: CheckInvariantStatus,
) -> str:
"""
Logs the mismatch between input data pointers and recorded data pointers.
This checks only idxs in target_idxs.
"""
assert len(inputs) == len(recorded_data_ptr) and len(inputs) == len(
placeholders
), "length mismatch between inputs, recorded_data_ptr, and placeholders"
t_tensors = [inputs[i] for i in target_idxs]
t_data_ptrs = [recorded_data_ptr[i] for i in target_idxs]
error_msg = f"{mismatch}.\n"
for i, (tensor, data_ptr) in enumerate(zip(t_tensors, t_data_ptrs)):
assert isinstance(tensor, torch.Tensor)
index = target_idxs[i]
if tensor.data_ptr() != data_ptr:
placeholder = placeholders[index]
error_msg = (
f"{error_msg}input name: {placeholder.name}. "
f"data pointer changed from {data_ptr} to {tensor.data_ptr()}. "
f"input stack trace: {get_placeholder_stack_trace(placeholder)}\n"
)
return error_msg
def maybe_warning_due_to_dynamic_shape(
fn_cache: Dict[Tuple[int, ...], Callable[..., Any]],
new_int_key: Any,
) -> bool:
num_cudagraphs = len(fn_cache.keys()) + 1
def warn_msg():
return (
"CUDAGraph supports dynamic shapes by recording a new graph for each "
"distinct input size. Recording too many CUDAGraphs may lead to "
f"extra overhead. We have observed {num_cudagraphs} distinct sizes. "
"Please consider the following options for better performance: "
"a) padding inputs to a few fixed number of shapes; or b) set "
"torch._inductor.config.triton.cudagraph_skip_dynamic_graphs=True. "
"Set torch._inductor.config.triton.cudagraph_dynamic_shape_warn_limit=None "
"to silence this warning."
)
if (
torch._inductor.config.triton.cudagraph_dynamic_shape_warn_limit
and num_cudagraphs
> torch._inductor.config.triton.cudagraph_dynamic_shape_warn_limit
):
perf_hint_log.warning(warn_msg())
return True
return False
@dataclasses.dataclass(frozen=True)
class CudagraphCachedInfo:
"""
Info needed to realign inputs
"""
placeholders: Sequence[PlaceholderInfo]
stack_traces: List[Optional[str]]
cudagraph_fail_reasons: List[str]
|