1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
|
# mypy: allow-untyped-decorators
import functools
import logging
import math
import sys
import typing
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch._decomp as decomp
import torch._prims_common as utils
import torch.ao.quantization.fx._decomposed
from torch._decomp import (
core_aten_decompositions,
get_decompositions,
remove_decompositions,
)
from torch._decomp.decompositions import (
_grid_sampler_2d as decomp_grid_sampler_2d,
_index_add,
pw_cast_for_opmath,
)
from torch._decomp.decompositions_for_rng import extra_random_decomps
from torch._dynamo.utils import counters
from torch._environment import is_fbcode
from torch._higher_order_ops.out_dtype import out_dtype
from torch._inductor.utils import pad_listlike
from torch._prims_common import (
elementwise_dtypes,
ELEMENTWISE_TYPE_PROMOTION_KIND,
type_to_dtype,
)
from torch.fx.experimental.symbolic_shapes import definitely_true, guard_size_oblivious
from . import config, inductor_prims
from .utils import (
is_gpu,
needs_fallback_due_to_atomic_add_limitations,
use_scatter_fallback,
)
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
quantized = torch.ops.quantized
_quantized = torch.ops._quantized
quantized_decomposed = torch.ops.quantized_decomposed
inductor_decompositions = get_decompositions(
[
aten._adaptive_avg_pool2d_backward,
aten.index_select,
aten.addmv,
aten.arange,
aten.bitwise_and_,
aten.bitwise_or_,
aten.clamp_min_,
aten.dist,
aten.empty_like,
aten.flip,
aten.gelu,
aten.hardtanh,
aten.lcm,
aten.leaky_relu,
aten.linalg_vector_norm,
aten._log_softmax,
aten.max_pool2d_with_indices_backward,
aten._native_batch_norm_legit,
aten._native_batch_norm_legit_functional,
aten._native_batch_norm_legit_no_training,
aten._batch_norm_with_update,
aten._batch_norm_with_update_functional,
aten._batch_norm_no_update,
aten.batch_norm_backward,
aten.native_batch_norm,
aten.native_group_norm,
aten.native_layer_norm,
aten.nll_loss2d_backward,
aten.permute_copy,
aten.rrelu_with_noise_backward,
aten._softmax,
aten.sin_,
aten.sqrt_,
out_dtype,
aten._to_copy,
aten.tril_indices,
aten.triu_indices,
aten.upsample_bilinear2d.vec,
quantized.linear_dynamic_fp16_unpacked_weight,
_quantized.wrapped_quantized_linear,
]
)
decompositions = {**core_aten_decompositions(), **inductor_decompositions}
# Remove unwanted decompositions included via the core ATen decompositions from
# the Inductor decomp table.
decomps_to_exclude = [
aten._unsafe_index,
aten._unsafe_masked_index,
aten._unsafe_masked_index_put_accumulate,
aten._scaled_dot_product_flash_attention_for_cpu.default, # See comments in torch/_decomp/decompositions.py
aten._softmax_backward_data,
aten.clamp_max,
aten.clamp_min,
aten.index_add, # we conditionally call this decomp
aten.glu, # inductor lowers this directly
aten.select_scatter, # need to be in the ATen graph in order for it to work with the re-inplacing pass
aten.slice_scatter, # need to be in the ATen graph in order for it to work with the re-inplacing pass
aten.split.Tensor, # inductor lowers this directly
aten.squeeze, # inductor lowers this directly
aten.sum, # inductor lowers this directly
aten.unbind, # inductor lowers this directly
aten.baddbmm, # upcasts to fp32, perf issue
]
remove_decompositions(decompositions, decomps_to_exclude)
def register_decomposition(
ops: List[Union[torch._ops.OperatorBase, torch._ops.OpOverloadPacket]]
) -> Callable[..., Any]:
for op in [ops] if callable(ops) else ops: # type: ignore[attr-defined]
if op in decompositions:
log.warning("duplicate decomp: %s", ops)
return decomp.register_decomposition(ops, decompositions)
# TODO: for now, inductor doesn't handle asserts
# because the condition is symbol -> tensor in the graph.
@register_decomposition([aten._assert_async.msg])
def assert_async_msg_decomp(tensor: torch.Tensor, msg: str) -> None:
return
# Following `assert_async_msg_decomp` and implement as non-op.
@register_decomposition([aten._functional_assert_async.msg])
def functional_assert_async_msg_decomp(tensor: torch.Tensor, msg: str) -> None:
return
@register_decomposition([aten.sym_constrain_range_for_size.default])
def sym_constrain_range_for_size(
symbol: torch.SymInt,
*,
min: Optional[torch.types.Number] = None,
max: Optional[torch.types.Number] = None,
) -> None:
return
@register_decomposition([aten.clamp])
@pw_cast_for_opmath
def clamp(
x: torch.Tensor,
min: Optional[torch.types.Number] = None,
max: Optional[torch.types.Number] = None,
) -> torch.Tensor:
if min is not None:
x = x.clamp_min(min)
if max is not None:
x = x.clamp_max(max)
return x
@register_decomposition([aten.full])
def full(
size: List[Union[int, torch.SymInt]],
fill_value: torch.types.Number,
**kwargs: Any,
) -> torch.Tensor:
dtype = kwargs.get("dtype")
if dtype is None:
kwargs["dtype"] = type_to_dtype(type(fill_value))
return torch.full(size, fill_value, **kwargs)
return NotImplemented
@register_decomposition([aten.index_add])
def index_add(
x: torch.Tensor,
dim: int,
index: torch.Tensor,
tensor: torch.Tensor,
*,
alpha: torch.types.Number = 1,
) -> torch.Tensor:
# If we are not in fbcode and dtype is bfloat16
# fallback to index_add kernel
# see https://github.com/pytorch/pytorch/issues/137425 for details
if not is_fbcode() and x.dtype == torch.bfloat16:
return NotImplemented
else:
return _index_add(x, dim, index, tensor, inplace=False, alpha=alpha)
# Not really sure how to put this into the main library. PrimTorch wants
# empty_permuted to go to the prim, and typically users don't really want
# to decompose to empty_strided (but inductor is OK with it, because we are
# cool with strides and everything goes to empty_strided)
@register_decomposition([aten.empty_permuted.default])
def empty_permuted(
size: List[Union[int, torch.SymInt]],
physical_layout: List[int],
**kwargs: Any,
) -> torch.Tensor:
perm = [0] * len(size)
for p, l in enumerate(physical_layout):
perm[l] = p
return torch.empty([size[l] for l in physical_layout], **kwargs).permute(perm)
@register_decomposition([aten.convolution_backward])
def convolution_backward(
grad_output: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
bias_sizes: List[int],
stride: Union[int, List[int]],
padding: Union[int, List[int]],
dilation: Union[int, List[int]],
transposed: bool,
output_padding: List[int],
groups: int,
output_mask: List[bool],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if not output_mask[2] or not is_gpu(grad_output.device.type):
return NotImplemented
grad_bias = aten.sum(grad_output, [0] + list(range(2, grad_output.dim())))
grad_inp, grad_weight, _ = aten.convolution_backward(
grad_output,
input,
weight,
bias_sizes,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
[output_mask[0], output_mask[1], False],
)
return (grad_inp, grad_weight, grad_bias)
@register_decomposition([aten.round.decimals])
def round_dec(x: torch.Tensor, decimals: int = 0) -> torch.Tensor:
ten_pow_decimals = 10.0**decimals
return aten.round(x * ten_pow_decimals) * (1.0 / ten_pow_decimals)
@register_decomposition([aten.bmm])
@pw_cast_for_opmath
def bmm(
self: torch.Tensor,
batch2: torch.Tensor,
) -> torch.Tensor:
if config.coordinate_descent_tuning and self.device.type != "cpu":
if guard_size_oblivious(self.shape[1] == 1) or guard_size_oblivious(
batch2.shape[2] == 1
):
out = (self.unsqueeze(-1) * batch2.unsqueeze(1)).sum(dim=2)
return out
if self.device.type == "cpu":
if guard_size_oblivious(self.size(1) == 1) and guard_size_oblivious(
batch2.size(-1) == 1
):
counters["inductor"]["decompose_bmm"] += 1
return torch.sum(
self.squeeze(1) * batch2.squeeze(-1), dim=1, keepdim=True
).unsqueeze(1)
return NotImplemented
@register_decomposition([aten.addmm])
@pw_cast_for_opmath
def addmm(
self: torch.Tensor,
mat1: torch.Tensor,
mat2: torch.Tensor,
beta: torch.types.Number = 1,
alpha: torch.types.Number = 1,
) -> torch.Tensor:
if self.device.type == "cpu":
if guard_size_oblivious(mat1.size(0) == 1) and guard_size_oblivious(
mat2.size(-1) == 1
):
counters["inductor"]["decompose_addmm"] += 1
out = torch.sum(
mat1.squeeze(0) * mat2.squeeze(-1), dim=0, keepdim=True
).unsqueeze(0)
return alpha * out + beta * self
if (
guard_size_oblivious(mat1.size(0) == 1)
and definitely_true(mat2.size(0) <= 16)
and definitely_true(mat2.size(1) <= 16)
):
counters["inductor"]["decompose_addmm"] += 1
out = (mat1.T * mat2).sum(dim=0, keepdim=True)
return alpha * out + beta * self
return NotImplemented
@register_decomposition([aten.mm])
@pw_cast_for_opmath
def mm(
self: torch.Tensor,
input2: torch.Tensor,
) -> torch.Tensor:
# Our matrix vector multiplies only achieve peak bandwidth with coordinate descent tuning.
# todo: Look into why and fix it (hopefully)
if config.coordinate_descent_tuning and self.device.type != "cpu":
if guard_size_oblivious(self.shape[0] == 1) or guard_size_oblivious(
input2.shape[1] == 1
):
return (self.unsqueeze(2) * input2.unsqueeze(0)).sum(dim=1)
if self.device.type == "cpu":
if (
guard_size_oblivious(self.size(-1) == 1)
and guard_size_oblivious(self.size(0) > 0)
and guard_size_oblivious(input2.size(0) == 1)
and (self.dtype == input2.dtype)
and definitely_true((torch.numel(self) + torch.numel(input2)) <= 32)
):
counters["inductor"]["decompose_mm"] += 1
return torch.cat([self[i, :] * input2 for i in range(self.size(0))])
if guard_size_oblivious(self.size(0) == 1) and guard_size_oblivious(
input2.size(-1) == 1
):
counters["inductor"]["decompose_mm"] += 1
return torch.sum(
self.squeeze(0) * input2.squeeze(-1), dim=0, keepdim=True
).unsqueeze(0)
return NotImplemented
# This pass does two things:
# - Eliminate cat when there is only one tensor input
# - Normalize cat calls, so that legacy empty 1-D tensors are removed (NB: we
# don't remove ALL empty tensors, only the naughty ones)
@register_decomposition([aten.cat.default])
def cat(
tensors: List[torch.Tensor],
dim: int = 0,
) -> torch.Tensor:
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
def non_empty_tensor(x: torch.Tensor) -> bool:
# For better or worse, this is a valid cat:
#
# torch.cat([torch.randn(2, 2, 4), torch.randn(0), torch.randn(3, 2, 4)])
#
# We'd like to eliminate naughtiness like this for downstream passes
# like split_cat. The easiest way is to just drop such inputs
# (guarding that they are non-zero).
#
# Is it permissible for this filtering to be size-oblivious? A case
# where this could matter is cat([(2, 2), (u0,)], dim=0); if u0
# happened to be zero, we would have liked to have filtered it out.
# But actually, the ONLY way this could have passed is if u0 == 0,
# so by the time we get here we have already installed a deferred
# runtime assert forcing u0 to be zero. So if this hasn't happened,
# we know that the unbacked SymInt has appropriate size and there are
# no problems.
if len(x.shape) == 1 and guard_size_oblivious(x.shape[0] == 0):
return False
if dim < len(x.shape) and guard_size_oblivious(x.shape[dim] == 0):
return False
return True
filtered_tensors = list(filter(non_empty_tensor, tensors))
if len(filtered_tensors) == 1:
return filtered_tensors[0].clone()
elif 1 < len(filtered_tensors) < len(tensors):
# on the first call, when we remove empty tensors, we redispatch recursively
return aten.cat.default(filtered_tensors, dim)
# optimization, avoid concat for single, repeated input
if len(filtered_tensors) > 1 and all(
t is filtered_tensors[0] for t in filtered_tensors
):
inp = filtered_tensors[0]
shape = list(inp.shape)
dim = dim + len(inp.shape) if dim < 0 else dim
shape.insert(dim, len(filtered_tensors))
return inp.unsqueeze(dim).expand(*shape).flatten(dim, dim + 1).clone()
# when no 'filtering' has occurred, we raise to prevent infinite recursion (no more decomposition needed)
return NotImplemented
@register_decomposition([aten.angle])
def angle(x: torch.Tensor) -> torch.Tensor:
if x.is_complex():
return torch.where(
torch.isnan(x.real), float("nan"), torch.atan2(x.imag, x.real)
)
# when x is real number
# if x >= 0, return 0
# if x < 0, return pi
# if x is nan, return nan
_, dtype = elementwise_dtypes(
x,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
pi = torch.scalar_tensor(math.pi, dtype=dtype, device=x.device)
ret = torch.where(x < 0, pi, 0.0)
return torch.where(torch.isnan(x), float("nan"), ret)
@register_decomposition([aten.add])
def add(
x: torch.Tensor,
y: torch.Tensor,
*,
alpha: Optional[torch.types.Number] = None,
) -> torch.Tensor:
# Require both x and y to be complex tensors.
x_is_complex_tensor = torch.is_tensor(x) and x.is_complex()
y_is_complex_tensor = torch.is_tensor(y) and y.is_complex()
if not x_is_complex_tensor or not y_is_complex_tensor:
return NotImplemented
z = y
if alpha is not None:
z = alpha * y
complex_type = torch.promote_types(x.dtype, y.dtype)
# For complex typed `x`, `x.view(x.real.dtype)` doubles the last dimension and can cause problem
# when broadcasting the add.
def reshape_tensor_complex(tensor: torch.Tensor) -> torch.Tensor:
"""Reshape tensor from [*initial_dims, last_dim] to *initial_dims, last_dim/2, 2]"""
# Get the current shape of the tensor
*initial_dims, last_dim = tensor.shape
# Check if the last dimension is even. We should never reach here since `x.view(x.real.dtype)`
# doubles the last dimension for complex numbers.
if last_dim % 2 != 0:
raise AssertionError(
"The size of the last dimension must be even to reshape it to [..., last_dim/2, 2]"
)
# Reshape the tensor
new_shape = (*initial_dims, last_dim // 2, 2)
reshaped_tensor = tensor.view(new_shape)
return reshaped_tensor
x_reshaped = reshape_tensor_complex(x.view(x.real.dtype))
z_reshaped = reshape_tensor_complex(z.view(y.real.dtype))
result = torch.flatten(x_reshaped + z_reshaped, start_dim=-2).view(complex_type)
return result
@register_decomposition([aten.conj_physical])
def conj_physical(self: torch.Tensor) -> torch.Tensor:
assert not self.is_complex(), "TODO: implement this"
return self
@register_decomposition([aten.lift, aten.detach_])
def lift(self: torch.Tensor) -> torch.Tensor:
return self
@register_decomposition([aten.fmin, prims.fmin])
def fmin(self: torch.Tensor, other: torch.Tensor) -> torch.Tensor:
return torch.where(torch.isnan(other) | (other > self), self, other)
@register_decomposition([aten.fmax, prims.fmax])
def fmax(self: torch.Tensor, other: torch.Tensor) -> torch.Tensor:
return torch.where(torch.isnan(other) | (other < self), self, other)
@register_decomposition(aten.amax)
def amax(
self: torch.Tensor,
dim: Optional[int] = None,
keepdim: bool = False,
) -> torch.Tensor:
if self.dtype == torch.bool:
return torch.any(self, dim=dim, keepdim=keepdim)
return NotImplemented
@register_decomposition(aten.amin)
def amin(
self: torch.Tensor,
dim: Optional[int] = None,
keepdim: bool = False,
) -> torch.Tensor:
if self.dtype == torch.bool:
return torch.all(self, dim=dim, keepdim=keepdim)
return NotImplemented
@register_decomposition([aten.narrow_copy])
def narrow_copy(
self: torch.Tensor,
dim: int,
start: int,
length: int,
) -> torch.Tensor:
return torch.narrow(self, dim, start, length).clone()
@register_decomposition([aten.view_copy.default])
def view_copy_default(
self: torch.Tensor,
size: List[Union[int, torch.SymInt]],
) -> torch.Tensor:
return aten.view(self, size).clone()
@register_decomposition([aten.view_copy.dtype])
def view_copy_dtype(
self: torch.Tensor,
dtype: torch.dtype,
) -> torch.Tensor:
return self.to(dtype).clone()
def get_like_layout(
tensor: torch.Tensor,
memory_format: Optional[torch.memory_format] = None,
) -> torch.memory_format:
# TODO: _to_copy tensor to stride permutation
if memory_format is torch.preserve_format or memory_format is None:
return utils.suggest_memory_format(tensor)
else:
return memory_format
@register_decomposition(aten.rand_like)
def rand_like(
self: torch.Tensor,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return torch.rand(
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randn_like)
def randn_like(
self: torch.Tensor,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return torch.randn(
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.full_like)
def full_like(
self: torch.Tensor,
fill_value: Union[int, float],
*,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
device: Optional[torch.device] = None,
pin_memory: bool = False,
requires_grad: bool = False,
memory_format: torch.memory_format = torch.preserve_format,
) -> torch.Tensor:
return torch.full(
[*self.size()],
fill_value,
dtype=dtype or self.dtype,
layout=layout or self.layout,
device=device or self.device,
requires_grad=requires_grad,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint_like.default)
def randint_like(
self: torch.Tensor,
high: int,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return aten.randint.low(
0,
high,
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint_like.low_dtype)
def randint_like_low(
self: torch.Tensor,
low: int,
high: int,
*,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
memory_format: Optional[torch.memory_format] = None,
**kwargs: Any,
) -> torch.Tensor:
return aten.randint.low(
low,
high,
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint.default)
def randint(
high: int,
size: List[Union[int, torch.SymInt]],
**kwargs: Any,
) -> torch.Tensor:
return aten.randint.low(0, high, size, **kwargs)
@register_decomposition(quantized.linear_dynamic_fp16_unpacked_weight.default)
def linear_dynamic_fp16_unpacked_weight(
input: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
) -> torch.Tensor:
packed_weight = torch.ops._quantized.wrapped_fbgemm_pack_gemm_matrix_fp16(weight)
return torch.ops._quantized.wrapped_fbgemm_linear_fp16_weight(
input, packed_weight, bias, weight.size()[0]
)
@register_decomposition(_quantized.wrapped_quantized_linear.default)
def wrapped_quantized_linear(
input: torch.Tensor,
input_scale: torch.Tensor,
input_zero_point: torch.Tensor,
weight: torch.Tensor,
weight_scale: torch.Tensor,
weight_zero_point: torch.Tensor,
bias: torch.Tensor,
out_scale: torch.Tensor,
out_zero_point: torch.Tensor,
out_channel: int,
) -> torch.Tensor:
packed_weight = torch.ops._quantized._wrapped_linear_prepack(
weight, weight_scale, weight_zero_point, bias
)
return torch.ops._quantized._wrapped_quantized_linear_prepacked(
input,
input_scale,
input_zero_point,
packed_weight,
out_scale,
out_zero_point,
out_channel,
)
@register_decomposition(torch.ops.quantized.embedding_bag_byte_unpack)
def q_embedding_bag_byte_unpack_decomp(packed: torch.Tensor) -> torch.Tensor:
def bitcast_u8_to_f32(u8: torch.Tensor) -> torch.Tensor:
x, y, z, w = (u8[..., n].to(torch.int32) for n in (0, 1, 2, 3))
if sys.byteorder == "little":
return (x + (y << 8) + (z << 16) + (w << 24)).view(torch.float32)[..., None]
else:
return ((x << 24) + (y << 16) + (z << 8) + w).view(torch.float32)[..., None]
scales = bitcast_u8_to_f32(packed[..., -8:-4])
offsets = bitcast_u8_to_f32(packed[..., -4:])
return packed[..., :-8].to(torch.float32) * scales + offsets
@register_decomposition([aten.grid_sampler_2d])
@pw_cast_for_opmath
def grid_sampler_2d(
a: torch.Tensor,
grid: torch.Tensor,
interpolation_mode: int = 0,
padding_mode: int = 0,
align_corners: bool = False,
) -> torch.Tensor:
# We do not expand the grid (_expand_grid=False) on cpu for performance reasons
# Experimenting locally it was found that compiled CUDA code is accelerated by ~5x
# and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2)
# However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first.
# Thus we apply this hack to not expand the grid for this case.
_expand_grid = not (
a.device == torch.device("cpu")
and interpolation_mode == 0
and a.is_contiguous(memory_format=torch.contiguous_format)
)
output = decomp_grid_sampler_2d(
a,
grid=grid,
interpolation_mode=interpolation_mode,
padding_mode=padding_mode,
align_corners=align_corners,
_expand_grid=_expand_grid,
)
return output
@register_decomposition(aten._foreach_addcmul.Scalar)
def _foreach_addcmul_scalar(
self: List[torch.Tensor],
left_tensors: List[torch.Tensor],
right_tensors: List[torch.Tensor],
scalar: float = 1,
) -> List[torch.Tensor]:
return aten._foreach_add.List(
self, aten._foreach_mul.List(left_tensors, right_tensors), alpha=scalar
)
@register_decomposition(aten._foreach_addcdiv.Scalar)
def _foreach_addcdiv_scalar(
self: List[torch.Tensor],
left_tensors: List[torch.Tensor],
right_tensors: List[torch.Tensor],
scalar: float = 1,
) -> List[torch.Tensor]:
return aten._foreach_add.List(
self, aten._foreach_div.List(left_tensors, right_tensors), alpha=scalar
)
@register_decomposition(aten._foreach_lerp.Scalar)
def _foreach_lerp_scalar(
start_tensors: List[torch.Tensor],
end_tensors: List[torch.Tensor],
weight: torch.types.Number,
) -> List[torch.Tensor]:
return aten._foreach_add.List(
start_tensors,
aten._foreach_mul.Scalar(
aten._foreach_sub.List(end_tensors, start_tensors), weight
),
)
@register_decomposition(aten._foreach_lerp.ScalarList)
def _foreach_lerp_scalarlist(
start_tensors: List[torch.Tensor],
end_tensors: List[torch.Tensor],
scalars: List[torch.types.Number],
) -> List[torch.Tensor]:
return aten._foreach_add.List(
start_tensors,
aten._foreach_mul.ScalarList(
aten._foreach_sub.List(end_tensors, start_tensors), scalars
),
)
@aten.miopen_batch_norm.default.py_impl(torch._C.DispatchKey.Autograd)
@register_decomposition(aten.miopen_batch_norm)
def miopen_batch_norm(
input: torch.Tensor,
weight: torch.Tensor,
bias: typing.Optional[torch.Tensor],
running_mean: typing.Optional[torch.Tensor],
running_var: typing.Optional[torch.Tensor],
training: bool,
exponential_average_factor: float,
epsilon: float,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
a, b, c = aten.native_batch_norm(
input,
weight,
bias,
running_mean,
running_var,
training,
exponential_average_factor,
epsilon,
)
if training:
return (a, b, c)
return (
a,
weight.new_zeros((0,)),
weight.new_zeros((0,)),
)
@functools.lru_cache(None)
def fast_random_decomps() -> Dict[Any, Callable[..., Any]]:
return {**decompositions, **extra_random_decomps}
# TODO(aakhundov): replace this (and the above) Any by more
# specific type and fix all the cascading mypy errors
def select_decomp_table() -> Dict[Any, Callable[..., Any]]:
"""decomps can change based on config"""
if config.fallback_random:
return decompositions
return fast_random_decomps()
@register_decomposition(aten.masked_scatter)
def masked_scatter(
self: torch.Tensor,
mask: torch.Tensor,
source: torch.Tensor,
) -> torch.Tensor:
from .codegen.common import BackendFeature, has_backend_feature
if has_backend_feature(self.device, BackendFeature.MASKED_SCATTER_WITH_INDEX):
# This two-step algorithm is the same as eager CUDA, for eager CPU we
# use a 1-shot serial iteration.
self, mask = aten.broadcast_tensors([self, mask])
source_idx = mask.reshape(-1).cumsum(0) - 1
self_flat, mask_flat, source_flat = (x.flatten() for x in (self, mask, source))
result = aten._unsafe_masked_index(source_flat, mask_flat, [source_idx], 0)
return torch.where(mask_flat, result, self_flat).view(self.shape)
return NotImplemented
@register_decomposition(quantized_decomposed.choose_qparams.tensor)
def choose_qparams_tensor(
input: torch.Tensor,
quant_min: int,
quant_max: int,
eps: float,
dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
min_val, max_val = torch.aminmax(input)
scale = (max_val - min_val) / float(quant_max - quant_min)
scale = torch.max(scale, torch.Tensor([eps]))
zero_point = quant_min - torch.round(min_val / scale).to(torch.int)
zero_point = torch.clamp(zero_point, quant_min, quant_max)
return scale.to(torch.float64), zero_point.to(torch.int64)
@register_decomposition(aten.put)
def put(
self: torch.Tensor,
index: torch.Tensor,
source: torch.Tensor,
accumulate: bool = False,
) -> torch.Tensor:
flattened = self.flatten()
flattened = torch.index_put(
flattened, [index], source.reshape(index.shape), accumulate
)
return flattened.reshape(self.shape)
@register_decomposition(aten.put_)
def put_(
self: torch.Tensor,
index: torch.Tensor,
source: torch.Tensor,
accumulate: bool = False,
) -> torch.Tensor:
out = aten.put(self, index, source, accumulate=accumulate)
return self.copy_(out)
@register_decomposition(aten._softmax_backward_data.default)
@pw_cast_for_opmath
def _softmax_backward_data(
grad_output: torch.Tensor,
output: torch.Tensor,
dim: int,
input_dtype: torch.dtype,
) -> torch.Tensor:
new_grad_output = grad_output * output
sum_new_grad = torch.sum(new_grad_output, dim=dim, keepdim=True)
# grad_input = new_grad_output - output * sum_new_grad
grad_input = inductor_prims.fma(-output, sum_new_grad, new_grad_output)
# CPU kernel doesn't respect input_dtype, but following check doesn't work for meta tensor
# if grad_output.device == torch.device("cpu"):
# return grad_input.contiguous()
if grad_output.dtype != input_dtype:
grad_input = grad_input.to(input_dtype)
return grad_input.contiguous()
@register_decomposition(aten.index_reduce)
def index_reduce(
self: torch.Tensor,
dim: int,
index: torch.Tensor,
src: torch.Tensor,
reduction_type: str,
*,
include_self: bool = True,
) -> torch.Tensor:
if reduction_type == "mean" and not needs_fallback_due_to_atomic_add_limitations(
self.dtype
):
true_division = self.dtype.is_floating_point or self.dtype.is_complex
ones = torch.ones_like(src)
if include_self:
out = self
counts = torch.ones_like(self).index_add(dim, index, ones)
else:
out = self.index_fill(dim, index, 0)
counts = torch.zeros_like(self).index_add(dim, index, ones)
counts = counts.masked_fill(counts < 1, 1)
out = out.index_add(dim, index, src)
return out / counts if true_division else out // counts
if use_scatter_fallback(
aten.scatter_reduce_.two,
reduction_type,
self.dtype,
src.dtype,
src.device.type,
True,
):
return NotImplemented
repeats = self.shape[dim + 1 :].numel() * self.shape[:dim].numel()
index_shape = (index.numel(), *self.shape[dim + 1 :], *self.shape[:dim])
perm = (*range(self.ndim - dim, self.ndim), 0, *range(1, self.ndim - dim))
scatter_index = (
index.to(torch.int64)
.repeat_interleave(repeats)
.reshape(index_shape)
.permute(perm)
)
return self.scatter_reduce(
dim,
scatter_index,
src,
reduction_type,
include_self=include_self,
)
@register_decomposition(aten.max_pool2d_with_indices)
def max_pool2d_with_indices(
x: torch.Tensor,
kernel_size: List[int],
stride: Optional[Union[int, List[int]]] = None,
padding: Union[int, List[int]] = 0,
dilation: Union[int, List[int]] = 1,
ceil_mode: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if dilation == 1:
dilation = [1, 1]
if padding == 0:
padding = [0, 0]
if not stride:
stride = kernel_size
kernel_size = pad_listlike(kernel_size, 2)
dilation = pad_listlike(dilation, 2)
padding = pad_listlike(padding, 2)
stride = pad_listlike(stride, 2)
window_size = kernel_size[0] * kernel_size[1]
# We fallback when using non-default dilation or when the window size is too large
if (
torch._inductor.lowering.should_fallback_max_pool2d_with_indices(
kernel_size, dilation
)
or window_size > torch.iinfo(torch.int8).max
):
return NotImplemented
vals, offsets = prims._low_memory_max_pool2d_with_offsets(
x,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
)
indices = prims._low_memory_max_pool2d_offsets_to_indices(
offsets,
kernel_size[1],
x.size(-1),
stride,
padding,
)
return vals, indices
@register_decomposition(aten.adaptive_max_pool2d)
def adaptive_max_pool2d(
x: torch.Tensor, output_size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor]:
*batch, h_in, w_in = x.shape
h_out, w_out = output_size
if h_out == 0 or w_out == 0:
o_size = [*batch, h_out, w_out]
return x.new_empty(o_size), x.new_empty(o_size, dtype=torch.int64)
if h_in % h_out == 0 and w_in % w_out == 0:
kernel_size = [h_in // h_out, w_in // w_out]
return aten.max_pool2d_with_indices(x, kernel_size)
return NotImplemented
@register_decomposition(aten.searchsorted.Scalar)
def searchsorted_scalar(
sorted_sequence: torch.Tensor,
self: torch.types.Number,
*,
out_int32: bool = False,
right: bool = False,
side: Optional[str] = None,
sorter: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return aten.searchsorted(
sorted_sequence,
torch.tensor([self], device=sorted_sequence.device),
out_int32=out_int32,
right=right,
side=side,
sorter=sorter,
)[0]
@register_decomposition(aten.rrelu_with_noise_functional)
def rrelu_with_noise_functional(
self: torch.Tensor,
noise: torch.Tensor,
lower: float = 0.125,
upper: float = 0.3333333333333333,
training: bool = False,
generator: Optional[torch.Generator] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if training:
not_positive = self <= 0
r = aten.uniform(self, lower, upper, generator=generator)
output = torch.where(not_positive, self * r, self)
noise_out = torch.where(not_positive, r, 1)
return output, noise_out
else:
negative_slope = (lower + upper) / 2
return aten.leaky_relu(self, negative_slope), torch.Tensor()
|