File: dependencies.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (800 lines) | stat: -rw-r--r-- 28,390 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
# mypy: allow-untyped-defs
import abc
import dataclasses
import itertools
import logging
import re
import typing
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    TypeVar,
    Union,
)
from unittest.mock import patch

import sympy

import torch
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
from torch.utils._ordered_set import OrderedSet

from ..utils._sympy.symbol import make_symbol, SymT
from .codegen.common import index_prevent_reordering
from .utils import (
    get_dtype_size,
    reduction_num_outputs,
    sympy_index_symbol,
    sympy_str,
    sympy_subs,
    VarRanges,
)
from .virtualized import OpsHandler, ReductionType, V


T = TypeVar("T")

log = logging.getLogger(__name__)
is_indirect = re.compile(r"indirect|tmp").search


class Dep(abc.ABC):
    name: str
    index: sympy.Expr

    @abc.abstractmethod
    def rename(self, renames: Dict[str, str]) -> "Dep":
        pass

    @abc.abstractmethod
    def get_numel(self) -> sympy.Expr:
        pass

    @abc.abstractmethod
    def numbytes_hint(self):
        pass

    @abc.abstractmethod
    def has_unbacked_symbols(self) -> bool:
        pass

    @abc.abstractmethod
    def is_contiguous(self) -> bool:
        pass

    def normalize_with_stride_order(self, prefix="t"):
        return self


@dataclasses.dataclass(frozen=True)
class MemoryDep(Dep):
    name: str
    index: sympy.Expr
    var_names: Tuple[sympy.Symbol, ...]
    size: Tuple[sympy.Expr, ...]
    mode: Optional[str] = None

    def __repr__(self) -> str:
        maybe_mode = ""
        if self.mode is not None:
            maybe_mode = f", {self.mode}"
        return f"MemoryDep({self.name!r}, {self.index}, {self.ranges}{maybe_mode})"

    @property
    def num_vars(self):
        return len(self.var_names)

    def decide_loop_order_to_match(self, other):
        """
        Can return None if not able to decide loop orders.
        """
        assert self.num_vars == other.num_vars

        # ignore broadcast for now since broadcast causes extra 0 strides
        # which makes it hard to decide the correct loop orders.
        if self.num_vars != len(self.index.free_symbols):
            return None
        if other.num_vars != len(other.index.free_symbols):
            return None

        # bail out if any size is 0 or 1
        # For size == 0, it's an empty tensor, any strides for that dimension
        # are equivalent. Skip for simplicity and it may not matter that much.
        #
        # For size == 1, it cause cause tie for strides of different dimensions.
        # Also when we first time create LoopBody in ComputedBuffer.simplify_and_reorder
        # we can dependencies.index_vars_squeeze which should already sqeeuze
        # the size == 1 dimensions.
        if any(s == 0 or s == 1 for s in itertools.chain(self.size, other.size)):
            return None

        # Extract strides for both expression
        self_strides = V.graph.sizevars.stride_hints(self.index, self.var_names)
        other_strides = V.graph.sizevars.stride_hints(other.index, other.var_names)

        # Even if the shape contains no 0/1, some complex index expression may
        # still have duplicate stride values. Here is an example:
        # https://gist.github.com/shunting314/511a7e1ec88aa2e1a8ec85d8445ab129
        # We don't reorder the loop for these cases for now, but in theory
        # we could improve the algorithm to detect the correct loop orders.
        if len(set(self_strides)) != len(self_strides) or len(
            set(other_strides)
        ) != len(other_strides):
            log.debug(
                "unable to decide loop order. self_dep=%s v.s. other_dep=%s, self_strides=%s v.s. other_strides=%s",
                self,
                other,
                self_strides,
                other_strides,
            )
            return None

        # May hanppen if self and other are as follows
        # MemoryDep('addmm_6', 393216*d0 + 768*d1 + d2, {d0: 16, d1: 512, d2: 768}, None)
        # MemoryDep('addmm_6', 98304*d0 + d1 + 768*d2, {d0: 64, d1: 768, d2: 128}, None)
        if set(self_strides) != set(other_strides):
            return None

        stride_to_index = {s: i for i, s in enumerate(self_strides)}
        order = [stride_to_index[s] for s in other_strides]

        assert set(order) == set(range(0, self.num_vars))
        return order

    def get_offset(self):
        """
        Return the offset by setting every variable to be 0.
        """
        return sympy_subs(self.index, dict.fromkeys(self.var_names, 0))

    def normalize(self) -> "MemoryDep":
        """
        Normalize by merging loops. The different to normalize_with_stride_order is,
        this method does not reorder loops while normalize_with_stride_order reorder
        loops based on stride order.
        """
        return MemoryDep(
            self.name,
            *_RecordLoadStoreInner._normalize(self.index, self.ranges),  # type: ignore[arg-type]
            self.mode,
        )

    def normalize_with_stride_order(self, prefix="t"):
        r"""
        Used to decide if two MemoryDep does not equal due to different loop orders.
        More specifically, when dep1 and dep2 are not equal, we can normalize
        both and check if they are equal after that. If yes, then the mismatch is
        caused by different loop orders.
        """
        # import here to avoid circular import
        from torch._inductor import ir

        strides = V.graph.sizevars.stride_hints(self.index, self.var_names)

        # pick a loop order with stride ordered decreasingly
        order = sorted(range(len(strides)), key=strides.__getitem__, reverse=True)
        stride_reorder = ir.same_reorder(order)
        sizes = self.size
        var_names = self.var_names

        new_reordered_sizes = stride_reorder(sizes)
        new_reordered_var_names = stride_reorder(var_names)

        new_simplified_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
            new_reordered_var_names,
            new_reordered_sizes,
            index_prevent_reordering(
                [self.index], new_reordered_var_names, new_reordered_sizes
            ),
        )

        # now let's create new symbols with the passed in prefix
        var_ranges, add_var = var_builder(prefix)
        replacement = dict(
            zip(
                new_reordered_var_names,
                reindex([add_var(x) for x in new_simplified_sizes]),
            )
        )
        new_index = sympy_subs(sympy.expand(self.index), replacement)  # type: ignore[arg-type] # next PR

        out = MemoryDep(self.name, new_index, tuple(var_ranges.keys()), tuple(var_ranges.values()))  # type: ignore[arg-type]
        return out

    @property
    def ranges(self) -> Dict[sympy.Symbol, sympy.Expr]:
        """{c0: 128, c1: 512, ...}"""
        return dict(zip(self.var_names, self.size))

    def simplify_with_ranges(self):
        return MemoryDep(
            name=self.name,
            index=V.graph.sizevars.simplify_with_ranges(self.index, self.ranges),
            var_names=self.var_names,
            size=self.size,
            mode=self.mode,
        )

    def get_numel(self) -> sympy.Expr:
        if self.is_indirect():
            numel = V.graph.get_numel(self.name)
        else:
            vars: OrderedSet[sympy.Basic] = OrderedSet(self.index.free_symbols)
            numel = sympy.S.One
            for var, size in zip(self.var_names, self.size):
                if var in vars:
                    numel = numel * size
        return numel  # type: ignore[return-value]

    def rename(self, renames: Dict[str, str]) -> "MemoryDep":
        if self.name in renames:
            return MemoryDep(
                renames[self.name],
                self.index,
                var_names=self.var_names,
                size=self.size,
                mode=self.mode,
            )
        return self

    def numbytes_hint(self) -> int:
        try:
            return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
                V.graph.get_dtype(self.name)
            )
        except NotImplementedError:  # NoneLayout
            return 0

    def has_unbacked_symbols(self):
        return len(free_unbacked_symbols(self.get_numel())) > 0

    def is_contiguous(self) -> bool:
        if isinstance(self.index, sympy.Integer):
            return True
        return isinstance(self.index, sympy.Symbol) and self.index in self.var_names

    def stride1_for_last_dim(self, result_for_complex_expression=True) -> bool:
        """
        Whether the stride for the last dimension is 1.
        """
        # python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_masked_scatter_cuda_float16
        # will exercise thru this corner case.
        if len(self.var_names) == 0:
            return True

        terms = self.index.args if isinstance(self.index, sympy.Add) else [self.index]

        last_sym = self.var_names[-1]
        for term in terms:
            if term == last_sym:
                return True

            # Having a >1 stride for the last dimension is bad for perf
            # return False.
            if (
                isinstance(term, sympy.Mul)
                and len(term.args) == 2
                and term.args[1] == last_sym
                and isinstance(term.args[0], (int, sympy.Integer))
                and term.args[0] > 1
            ):
                return False

        return result_for_complex_expression

    def is_scalar(self) -> bool:
        if isinstance(self.index, sympy.Symbol):
            return self.index not in self.var_names and not self.is_indirect()
        return isinstance(self.index, (int, sympy.Integer))

    def is_indirect(self) -> bool:
        return any(is_indirect(v.name) for v in self.index.free_symbols)  # type: ignore[attr-defined]


@dataclasses.dataclass(frozen=True)
class StarDep(Dep):
    name: str
    mode: Optional[str] = None

    # depends on the entire buffer
    @property
    def index(self):
        raise NotImplementedError("StarDep does not have an index")

    def get_numel(self) -> sympy.Expr:
        return V.graph.get_numel(self.name)  # type: ignore[return-value]

    def rename(self, renames: Dict[str, str]) -> "StarDep":
        if self.name in renames:
            return StarDep(renames[self.name], self.mode)
        return self

    def numbytes_hint(self):
        try:
            return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
                V.graph.get_dtype(self.name)
            )
        except NotImplementedError:
            return 0  # NoneLayout, MultiOutputLayout, etc

    def has_unbacked_symbols(self):
        return len(free_unbacked_symbols(self.get_numel())) > 0

    def is_contiguous(self) -> bool:
        return False

    def is_scalar(self) -> bool:
        return False

    def is_indirect(self) -> bool:
        return False


# Used for tracking mutation ordering
# if A reads a buffer and B mutates it
# B must be ordered after A
#
# This is useful for a variety of reasons.
# For example, if A's read is never actually used, we can eliminate it.
# Another case is if A's buffer ends up being fused away, we never need to
# materialize that buffer
@dataclasses.dataclass(frozen=True)
class WeakDep(Dep):
    # Fake dependency on unused buffer
    name: str
    # Buffer that is doing the mutation
    mutating_buf: str

    @property
    def index(self):
        raise NotImplementedError("WeakDep does not have an index")

    def get_numel(self) -> sympy.Expr:
        return sympy.S.One

    def rename(self, renames: Dict[str, str]) -> "WeakDep":
        if self.name in renames:
            return WeakDep(renames[self.name], self.mutating_buf)
        return self

    def numbytes_hint(self):
        return 1  # Purely inserted for ordering, not an actual dep

    def has_unbacked_symbols(self):
        return False

    def is_contiguous(self) -> bool:
        return False


@dataclasses.dataclass(frozen=True)
class IndexExprDep:
    index: sympy.Expr  # type: ignore[assignment]
    var_names: Tuple[sympy.Symbol, ...]
    size: Tuple[sympy.Expr, ...]


@dataclasses.dataclass
class ReadWrites:
    reads: OrderedSet[Dep]
    writes: OrderedSet[Dep]
    index_exprs: OrderedSet[IndexExprDep]
    range_vars: Optional[List[sympy.Expr]] = None
    var_ranges: Optional[VarRanges] = None

    def rename(self, renames: typing.Dict[str, str]) -> "ReadWrites":
        return ReadWrites(
            OrderedSet(dep.rename(renames) for dep in self.reads),
            OrderedSet(dep.rename(renames) for dep in self.writes),
            self.index_exprs,
            self.range_vars,
            self.var_ranges,
        )

    def with_read(self, dep: Union[Dep, Set[Dep]]) -> "ReadWrites":
        assert isinstance(dep, (WeakDep, StarDep, set))
        if not isinstance(dep, set):
            dep = {dep}
        return ReadWrites(
            OrderedSet.union(self.reads, dep),
            self.writes,
            self.index_exprs,
            self.range_vars,
            self.var_ranges,
        )

    def merge(self, other: "ReadWrites"):
        reads = OrderedSet.union(self.reads, other.reads)
        writes = OrderedSet.union(self.writes, other.writes)
        index_exprs = OrderedSet.union(self.index_exprs, other.index_exprs)
        return ReadWrites(reads - writes, writes, index_exprs)

    @staticmethod
    def merge_list(read_writes: List["ReadWrites"]):
        all_writes = OrderedSet.union(*[rw.writes for rw in read_writes])
        all_reads = OrderedSet.union(*[rw.reads for rw in read_writes]) - all_writes
        all_index_exprs = OrderedSet.union(*[rw.index_exprs for rw in read_writes])
        return ReadWrites(all_reads, all_writes, all_index_exprs)

    def remove_reads(self, rem_reads):
        return ReadWrites(
            self.reads - rem_reads,
            self.writes,
            self.index_exprs,
            self.range_vars,
            self.var_ranges,
        )

    def reads_and_writes(self):
        return itertools.chain(self.reads, self.writes)

    def buffer_names(self, ignore_integer_index=True):
        """
        Integer index is used for load_seed.
        """
        names: OrderedSet[str] = OrderedSet()
        for dep in self.reads_and_writes():
            if not isinstance(dep, MemoryDep):
                continue
            if not ignore_integer_index or not isinstance(
                dep.index, (int, sympy.Integer)
            ):
                names.add(dep.name)
        return names


class _RecordLoadStoreInner(V.MockHandler):  # type: ignore[name-defined]
    def __init__(self, var_ranges: VarRanges, normalize: bool) -> None:
        super().__init__()
        self._reads: OrderedSet[Dep] = OrderedSet()
        self._writes: OrderedSet[MemoryDep] = OrderedSet()
        self._index_exprs: OrderedSet[IndexExprDep] = OrderedSet()
        self._var_ranges: VarRanges = var_ranges
        self._should_normalize: bool = normalize

    @staticmethod
    def drop_unused_symbols(index, var_names, sizes):
        """
        Reduction has last (reduced) dim in its sizes, but
        downstream users won't.  Normalize this away.
        """
        if not isinstance(index, sympy.Expr):
            # index can be an int
            return
        free_symbols = index.free_symbols
        while var_names and var_names[-1] not in free_symbols:
            var_names.pop()
            sizes.pop()

    @classmethod
    def _normalize(
        cls, index: sympy.Expr, var_ranges: VarRanges
    ) -> Tuple[sympy.Expr, Tuple[sympy.Symbol, ...], Tuple[sympy.Expr, ...]]:
        # Try to further simplify the indexes even if simplify_loops didn't
        # convert it to the simplest form because of the interference from
        # different indexing formulas.
        index_vars = [*var_ranges.keys()]
        sizes = tuple(var_ranges.values())  # type: ignore[assignment]
        new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
            index_vars,
            sizes,
            index_prevent_reordering([index], index_vars, sizes),
        )

        # assign new variables each dimension to deal with numbering mismatches
        # d0, d1, d2 could become d0, d2 -- which won't match d0, d1
        new_vars, add_var = var_builder(canonicalization_prefix())
        replacement = dict(zip(index_vars, reindex([add_var(x) for x in new_sizes])))
        index = sympy_subs(sympy.expand(index), replacement)

        new_vars = [*new_vars.keys()]
        new_sizes = [*new_sizes]
        cls.drop_unused_symbols(index, new_vars, new_sizes)
        return index, tuple(new_vars), tuple(new_sizes)  # type: ignore[arg-type]

    def canonicalize(
        self, index: sympy.Expr
    ) -> Tuple[sympy.Expr, Tuple[sympy.Symbol, ...], Tuple[sympy.Expr, ...]]:
        if not self._should_normalize:
            sizes = [V.graph.sizevars.simplify(x) for x in self._var_ranges.values()]
            var_names = [k for k, v in zip(self._var_ranges.keys(), sizes) if v != 1]
            sizes = [v for v in sizes if v != 1]

            self.drop_unused_symbols(index, var_names, sizes)

            return index, tuple(var_names), tuple(sizes)  # type: ignore[return-value, arg-type]
        var_ranges = {
            k: V.graph.sizevars.simplify(v)
            for k, v in self._var_ranges.items()
            # TODO(jansel): explore this further normalization
            # if k in free_symbols
        }
        return self._normalize(index, var_ranges)

    def load(self, name: str, index: sympy.Expr) -> str:
        self._reads.add(MemoryDep(name, *self.canonicalize(index)))
        return f"load({name}, {sympy_str(index)})"

    def load_seed(self, name: str, index: int):
        assert isinstance(index, int)
        return self.load(name, sympy.Integer(index))

    def store(self, name: str, index: sympy.Expr, value: str, mode=None) -> str:
        self._writes.add(MemoryDep(name, *self.canonicalize(index), mode=mode))
        return f"store({name}, {sympy_str(index)}, {value}, {mode})"

    def store_reduction(self, name: str, index, value) -> str:
        return self.store(name, index, f"store_reduction({value})")

    def index_expr(self, index: sympy.Expr, dtype) -> str:
        self._index_exprs.add(IndexExprDep(*self.canonicalize(index)))
        return f"index_expr({sympy_str(index)}, {dtype})"

    def bucketize(
        self,
        values: T,
        boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
        boundary_indices: T,
        indexing_dtype: torch.dtype,
        right: bool,
        sorter: Optional[Tuple[str, sympy.Expr]] = None,
        sorter_indices: Optional[T] = None,
    ) -> None:
        """Records the names of the buffers that bucketize will read from."""
        self._reads.add(StarDep(boundaries[0]))
        if sorter is not None:
            self._reads.add(StarDep(sorter[0]))


class RecordLoadStore(V.KernelFormatterHandler):  # type: ignore[name-defined]
    def __init__(self, var_ranges: VarRanges, normalize: bool) -> None:
        parent_handler = _RecordLoadStoreInner(
            var_ranges=var_ranges, normalize=normalize
        )
        super().__init__(parent_handler=parent_handler)


# TODO: check call sites
def var_builder(prefix: str) -> Tuple[VarRanges, Callable[[sympy.Expr], sympy.Symbol]]:
    cnt = itertools.count()
    var_ranges: VarRanges = {}

    def add_var(length: sympy.Expr) -> sympy.Symbol:
        v = sympy_index_symbol(f"{prefix}{next(cnt)}")
        var_ranges[v] = length
        return v

    return var_ranges, add_var


def index_vars_no_squeeze(*argsizes: Sequence[sympy.Expr], prefix: str):
    var_ranges, add_var = var_builder(prefix)
    args: List[List[sympy.Symbol]] = [list(map(add_var, size)) for size in argsizes]
    return args, var_ranges


def index_vars_squeeze(*argsizes: Sequence[sympy.Expr], prefix: str = "d"):
    from .ir import SqueezeView

    var_ranges, add_var = var_builder(prefix)
    args: List[List[sympy.Expr]] = []
    new_sizes: List[List[sympy.Expr]] = []
    for size in argsizes:
        new_size, reindex = SqueezeView.squeezer(size)
        new_sizes.append(new_size)
        args.append(reindex(list(map(add_var, new_size))))
    return args, var_ranges


def extract_read_writes(
    fn: Callable[..., Any],
    *argsizes: Sequence[sympy.Expr],
    normalize: bool = False,
    prefix: str = "d",
    hidden_args=(),
):
    args, var_ranges = index_vars_squeeze(*argsizes, prefix=prefix)

    from .loop_body import LoopBody

    if isinstance(fn, LoopBody):
        inner = extract_loop_body_with_args(
            fn, [*args, *hidden_args], var_ranges, normalize
        )
    else:
        # Slow path tracing the function
        rw = RecordLoadStore(var_ranges, normalize=normalize)
        with V.set_ops_handler(rw):
            fn(*args, *hidden_args)
        inner = rw.parent_handler

    if normalize:
        range_vars = []  # Number of vars could differ due to normalization
    else:
        range_vars = [*itertools.chain.from_iterable(args)]

    return ReadWrites(
        OrderedSet(inner._reads),
        OrderedSet(inner._writes),
        inner._index_exprs,
        range_vars,
        var_ranges,
    )


def extract_loop_body_with_args(fn, args, var_ranges, normalize=False):
    from .loop_body import MemoryUsageType

    # Fast path to avoid tracing when we already have a LoopBody
    inner = _RecordLoadStoreInner(var_ranges=var_ranges, normalize=normalize)
    name_to_index = fn.indexing_from_args(args)
    if fn.indirect_vars:
        # mimic the `tmpX` naming tracing gives us
        repl = {v: make_symbol(SymT.TMP, i) for i, v in enumerate(fn.indirect_vars)}
        name_to_index = {k: sympy_subs(v, repl) for k, v in name_to_index.items()}  # type: ignore[arg-type]
    for entry in fn.memory_usage[MemoryUsageType.LOAD]:
        inner.load(entry.buffer_name, name_to_index[entry.index_name])  # type: ignore[arg-type]
    for entry in fn.memory_usage[MemoryUsageType.LOAD_SEED]:
        inner.load_seed(entry.buffer_name, int(name_to_index[entry.index_name]))  # type: ignore[arg-type]
    for entry in fn.memory_usage[MemoryUsageType.STORE]:
        inner.store(
            entry.buffer_name, name_to_index[entry.index_name], None, entry.mode  # type: ignore[arg-type]
        )
    for entry in fn.memory_usage[MemoryUsageType.STORE_REDUCTION]:
        inner.store_reduction(
            entry.buffer_name, name_to_index[entry.index_name], None  # type: ignore[arg-type]
        )
    for entry in fn.memory_usage[MemoryUsageType.INDEX_EXPR]:
        inner.index_expr(name_to_index[entry.index_name], None)
    for entry in fn.memory_usage[MemoryUsageType.BUCKETIZE]:
        # All that matters is that we record the buffer name, so place it in the
        # "boundaries" name position to ensure that it's recorded.
        inner.bucketize(
            None, (entry.buffer_name, None, None, None), None, None, None  # type: ignore[arg-type]
        )
    # fn.memory_usage[MemoryUsageType.CHECK_BOUNDS] intentionally skipped
    return inner


def extract_input_node_reduction_ranges(
    input_node: "torch._inductor.ir.IRNode",
) -> Tuple[Optional[List[sympy.Expr]], Optional[List[sympy.Expr]]]:
    """
    Returns the size and reduction size of all inputs, if the sizes and reduction_sizes (if exist) are all the same.
    It's possible that a node has multiple inputs, some are Reduction nodes and others are Pointwise nodes.
    In this case, reduction_sizes of the Reduction nodes need to be the same.
    Otherwise returns (None, None).
    """

    from .ir import ComputedBuffer, ExternKernel, Loops

    size: Optional[List[sympy.Expr]]
    reduction_size: Optional[List[sympy.Expr]]

    if isinstance(input_node.get_defining_op(), ComputedBuffer):
        # Input node has already been realized. Return its size and reduction_size.
        size = [*input_node.get_size()]
        reduction_size = [*input_node.get_reduction_size()]
        if len(reduction_size) > 0:
            return (size, reduction_size)
        else:
            return (None, None)

    if not isinstance(input_node.data.data, Loops):  # type: ignore[attr-defined]
        # Other IRNodes do not have reduction_ranges.
        return (None, None)

    # There is one issue: what if there are views / permutations between the input node and its dependent realized nodes?
    # The current method still uses reduction ranges from the dependent realized node, which is not ideal.
    # Is there a way to check whether there are permutations inbetween?
    reads = input_node.get_reads()
    reduction_size: Optional[List[sympy.Expr]] = None
    size: Optional[List[sympy.Expr]] = None
    while reduction_size is None and len(reads) > 0:
        seen: OrderedSet[str] = OrderedSet()
        new_reads: List[Dep] = []
        for read in reads:
            if not isinstance(read, MemoryDep):
                continue
            if read.name in seen:
                continue
            seen.add(read.name)
            buffer = V.graph.try_get_buffer(read.name)
            if buffer is None:
                continue
            op = buffer.get_defining_op()
            if op is None or isinstance(op, ExternKernel):
                continue

            if isinstance(op, ComputedBuffer) and len(op.get_reduction_size()) > 0:
                if reduction_size is None:
                    reduction_size = [*op.get_reduction_size()]
                    size = [*op.get_size()]
                elif reduction_size != [*op.get_reduction_size()] or size != [
                    *op.get_size()
                ]:
                    return (None, None)
            else:
                new_reads.extend(op.get_reads())
        if reads == new_reads:
            return (size, reduction_size)
        else:
            reads = OrderedSet(new_reads)
    return (size, reduction_size)


def canonicalization_prefix():
    return "c"


# ops handler which computes all the free unbacked symbols for an IR
class FreeUnbackedSymbolsOpsHandler:
    symbols: OrderedSet[sympy.Symbol]

    def __init__(self) -> None:
        self.symbols = OrderedSet()

    def __getattr__(self, name: str) -> Callable[..., Any]:
        def inner(*args, **kwargs):
            for a in itertools.chain(args, kwargs.values()):
                if isinstance(a, (sympy.Expr, sympy.logic.boolalg.Boolean)):
                    self.symbols |= free_unbacked_symbols(a)

        return inner

    def indirect_indexing(
        self, index_var, size, check=True, wrap_neg=True
    ) -> sympy.Symbol:
        assert not isinstance(index_var, (sympy.Expr, sympy.logic.boolalg.Boolean))
        self.symbols |= free_unbacked_symbols(size)
        return sympy_index_symbol(f"({str(index_var)})")

    def frexp(self, x):
        return (None,) * 2

    def scan(self, dtypes, combine_fn, values):
        return (None,) * len(values)

    def sort(self, dtypes, values, stable, descending):
        return (None,) * len(values)

    def reduction(
        self,
        dtype: torch.dtype,
        src_dtype: torch.dtype,
        reduction_type: ReductionType,
        value: Union[None, Tuple[None, ...]],
    ) -> Union[None, Tuple[None, ...]]:
        num_values = reduction_num_outputs(reduction_type)
        return (None,) * num_values if num_values > 1 else None

    def masked(self, mask, body, other) -> None:
        assert callable(body), "masked body must always be callable."
        # The body can make additional calls, for e.g. ops.indirect_indexing
        body()


def _typecheck_FreeUnbackedSymbolsOpsHandler(
    h: FreeUnbackedSymbolsOpsHandler,
) -> OpsHandler[None]:
    return h


def extract_free_unbacked_symbols(fn: Callable[..., Any], index, rindex=None):
    from .ir import FlexibleLayout

    args = [index, rindex] if rindex is not None else [index]
    handler = FreeUnbackedSymbolsOpsHandler()
    # NB: I cargo culted the allow_indexing patch here, I don't understand why
    # people do this all over
    with V.set_ops_handler(handler), patch.object(
        FlexibleLayout, "allow_indexing", True
    ):
        fn(*args)
    return handler.symbols