File: b2b_gemm.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (754 lines) | stat: -rw-r--r-- 24,881 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
# mypy: allow-untyped-defs
import functools
from collections import deque
from typing import Dict, List, Set, Tuple

import torch
from torch.utils._pytree import tree_map

from ..._dynamo.utils import counters
from ..ir import (
    ComputedBuffer,
    FixedLayout,
    FlexibleLayout,
    InputBuffer,
    StorageBox,
    Subgraph,
    TensorBox,
)
from ..lowering import lowerings
from ..pattern_matcher import (
    Arg,
    CallFunction,
    Match,
    PatternMatcherPass,
    register_graph_pattern,
)
from ..select_algorithm import (
    autotune_select_algorithm,
    ExternKernelChoice,
    TritonTemplate,
    TritonTemplateCaller,
)
from ..utils import ceildiv


B2B_GEMM_PASS = PatternMatcherPass(
    pass_name="b2b_gemm_pass",
)


def b2b_gemm_grid(M, P, meta):
    return (ceildiv(M, meta["BLOCK_SIZE_M"]) * ceildiv(P, meta["BLOCK_SIZE_P"]), 1, 1)


b2b_gemm_left_template = TritonTemplate(
    name="b2b_gemm_left",
    grid=b2b_gemm_grid,
    debug=False,
    source=r"""
{{def_kernel("A", "B", "C")}}


    # B2B_GEMM_LEFT_TRITON_ENTRANCE

    # dynamic shapes
    M = {{size("A", 0)}}
    N = {{size("A", 1)}}
    O = {{size("C", 0)}}
    P = {{size("C", 1)}}

    # dynamic strides
    stride_am = {{stride("A", 0)}}
    stride_an = {{stride("A", 1)}}
    stride_bn = {{stride("B", 0)}}
    stride_bo = {{stride("B", 1)}}
    stride_co = {{stride("C", 0)}}
    stride_cp = {{stride("C", 1)}}

    # output block counts
    num_m_block = tl.cdiv(M, BLOCK_SIZE_M)
    num_p_block = tl.cdiv(P, BLOCK_SIZE_P)

    # internal block counts
    num_n_block = tl.cdiv(N, BLOCK_SIZE_N)
    num_o_block = tl.cdiv(O, BLOCK_SIZE_O)

    # output block ids
    pid = tl.program_id(axis=0)
    m_block_id = pid // num_p_block
    p_block_id = pid % num_p_block

    # accumulator
    acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_P), dtype=tl.float32)

    # main loop
    offs_m = (m_block_id * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M))
    offs_p = (p_block_id * BLOCK_SIZE_P + tl.arange(0, BLOCK_SIZE_P))
    # (subgraph(A @ B) @ C)
    offs_o = tl.arange(0, BLOCK_SIZE_O)
    for _ in range(num_o_block):
        c_mask = (offs_o[:, None] < O) & (offs_p[None, :] < P)
        c_ptrs = C + (offs_o[:, None] * stride_co + offs_p[None, :] * stride_cp)
        c = tl.load(c_ptrs, mask=c_mask, other=0.0).to(tl.float32)  # BLOCK_SIZE_O * BLOCK_SIZE_P
        acc_ab = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_O), dtype=tl.float32)
        offs_n = tl.arange(0, BLOCK_SIZE_N)
        for __ in range(num_n_block):
            a_mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
            a_ptrs = A + (offs_m[:, None] * stride_am + offs_n[None, :] * stride_an)
            a = tl.load(a_ptrs, mask=a_mask, other=0.0).to(tl.float32)  # BLOCK_SIZE_M * BLOCK_SIZE_N
            b_mask = (offs_n[:, None] < N) & (offs_o[None, :] < O)
            b_ptrs = B + (offs_n[:, None] * stride_bn + offs_o[None, :] * stride_bo)
            b = tl.load(b_ptrs, mask=b_mask, other=0.0).to(tl.float32)  # BLOCK_SIZE_N * BLOCK_SIZE_O
            acc_ab += tl.dot(a, b, out_dtype=tl.float32)
            offs_n += BLOCK_SIZE_N
        # apply the subgraph
        {{ modification(
            subgraph_number=0,
            output_name="post_subgraph_acc_ab",
            inner_mm="acc_ab"
        ) | indent_except_first(2) }}
        acc += tl.dot(post_subgraph_acc_ab, c, out_dtype=tl.float32)
        offs_o += BLOCK_SIZE_O

    # type conversion
    acc = acc.to(tl.float16)

    # store preparation
    idx_m = offs_m[:, None]
    idx_p = offs_p[None, :]
    out_mask = (idx_m < M) & (idx_p < P)

    {{store_output(("idx_m", "idx_p"), "acc", "out_mask")}}
""",
)


b2b_gemm_right_template = TritonTemplate(
    name="b2b_gemm_right",
    grid=b2b_gemm_grid,
    debug=False,
    source=r"""
{{def_kernel("A", "B", "C")}}


    # B2B_GEMM_RIGHT_TRITON_ENTRANCE

    # dynamic shapes
    M = {{size("A", 0)}}
    N = {{size("A", 1)}}
    O = {{size("C", 0)}}
    P = {{size("C", 1)}}

    # dynamic strides
    stride_am = {{stride("A", 0)}}
    stride_an = {{stride("A", 1)}}
    stride_bn = {{stride("B", 0)}}
    stride_bo = {{stride("B", 1)}}
    stride_co = {{stride("C", 0)}}
    stride_cp = {{stride("C", 1)}}

    # output block counts
    num_m_block = tl.cdiv(M, BLOCK_SIZE_M)
    num_p_block = tl.cdiv(P, BLOCK_SIZE_P)

    # internal block counts
    num_n_block = tl.cdiv(N, BLOCK_SIZE_N)
    num_o_block = tl.cdiv(O, BLOCK_SIZE_O)

    # output block ids
    pid = tl.program_id(axis=0)
    m_block_id = pid // num_p_block
    p_block_id = pid % num_p_block

    # accumulator
    acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_P), dtype=tl.float32)

    # main loop (two cases)
    offs_m = (m_block_id * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M))
    offs_p = (p_block_id * BLOCK_SIZE_P + tl.arange(0, BLOCK_SIZE_P))
    # (A @ subgraph(B @ C))
    offs_n = tl.arange(0, BLOCK_SIZE_N)
    for _ in range(num_n_block):
        a_mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
        a_ptrs = A + (offs_m[:, None] * stride_am + offs_n[None, :] * stride_an)
        a = tl.load(a_ptrs, mask=a_mask, other=0.0).to(tl.float32)  # BLOCK_SIZE_M * BLOCK_SIZE_N
        acc_bc = tl.zeros((BLOCK_SIZE_N, BLOCK_SIZE_P), dtype=tl.float32)
        offs_o = tl.arange(0, BLOCK_SIZE_O)
        for __ in range(num_o_block):
            b_mask = (offs_n[:, None] < N) & (offs_o[None, :] < O)
            b_ptrs = B + (offs_n[:, None] * stride_bn + offs_o[None, :] * stride_bo)
            b = tl.load(b_ptrs, mask=b_mask, other=0.0).to(tl.float32)  # BLOCK_SIZE_N * BLOCK_SIZE_O
            c_mask = (offs_o[:, None] < O) & (offs_p[None, :] < P)
            c_ptrs = C + (offs_o[:, None] * stride_co + offs_p[None, :] * stride_cp)
            c = tl.load(c_ptrs, mask=c_mask, other=0.0).to(tl.float32)  # BLOCK_SIZE_O * BLOCK_SIZE_P
            acc_bc += tl.dot(b, c, out_dtype=tl.float32)
            offs_o += BLOCK_SIZE_O
        # apply the subgraph
        {{ modification(
            subgraph_number=0,
            output_name="post_subgraph_acc_bc",
            inner_mm="acc_bc"
        ) | indent_except_first(2) }}
        acc += tl.dot(a, post_subgraph_acc_bc, out_dtype=tl.float32)
        offs_n += BLOCK_SIZE_N

    # type conversion
    acc = acc.to(tl.float16)

    # store preparation
    idx_m = offs_m[:, None]
    idx_p = offs_p[None, :]
    out_mask = (idx_m < M) & (idx_p < P)

    {{store_output(("idx_m", "idx_p"), "acc", "out_mask")}}
""",
)


# Note: load_ratio_left and load_ratio_right are only calculating numbers
# in the trivial subgraph case; i.e. (A @ (B @ C)) or ((A @ B) @ C)


def load_ratio_left(
    M: int, N: int, O: int, P: int, m: int, n: int, o: int, p: int
) -> float:
    """
    compute the ratio of estimated numbers of loads in baseline and b2bgemm
    M, N, O, P are matrix sizes
    m, n, o, p are block sizes
    |       | baseline (lower bound)        | b2bgemm
    | load  | M * N + N * O + M * O + O * P | M / m * P / p * O / o * (o * p + N / n * (m * n + n * o))
    | store | M * O + M * P                 | M * P
    b2bgemm is always better on stores, but for loads we need to find out beneficial cases using this function
    """
    base = M * N + N * O + M * O + O * P
    gemm = (
        ceildiv(M, m)
        * ceildiv(P, p)
        * ceildiv(O, o)
        * (o * p + ceildiv(N, n) * (m * n + n * o))
    )
    return base / gemm


def load_ratio_right(
    M: int, N: int, O: int, P: int, m: int, n: int, o: int, p: int
) -> float:
    """
    compute the ratio of estimated numbers of loads in baseline and b2bgemm
    M, N, O, P are matrix sizes
    m, n, o, p are block sizes
    |       | baseline (lower bound)        | b2bgemm
    | load  | N * O + O * P + M * N + N * P | M / m * P / p * N / n * (m * n + O / o * (n * o + o * p))
    | store | N * P + M * P                 | M * P
    b2bgemm is always better on stores, but for loads we need to find out beneficial cases using this function
    """
    base = N * O + O * P + M * N + N * P
    gemm = (
        ceildiv(M, m)
        * ceildiv(P, p)
        * ceildiv(N, n)
        * (m * n + ceildiv(O, o) * (n * o + o * p))
    )
    return base / gemm


# the block sizes are limited by hardware (the shared memory)
# intuitively, the optimization works when the intermediate matrix is large
# and we assign large block sizes to large dimensions
b2b_gemm_configs = [
    {
        "BLOCK_SIZE_M": 128,
        "BLOCK_SIZE_N": 16,
        "BLOCK_SIZE_O": 16,
        "BLOCK_SIZE_P": 16,
        "num_stages": 4,
        "num_warps": 8,
    },
    {
        "BLOCK_SIZE_M": 128,
        "BLOCK_SIZE_N": 32,
        "BLOCK_SIZE_O": 32,
        "BLOCK_SIZE_P": 32,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 128,
        "BLOCK_SIZE_N": 64,
        "BLOCK_SIZE_O": 64,
        "BLOCK_SIZE_P": 64,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 128,
        "BLOCK_SIZE_N": 16,
        "BLOCK_SIZE_O": 128,
        "BLOCK_SIZE_P": 16,
        "num_stages": 4,
        "num_warps": 8,
    },
    {
        "BLOCK_SIZE_M": 128,
        "BLOCK_SIZE_N": 32,
        "BLOCK_SIZE_O": 128,
        "BLOCK_SIZE_P": 32,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 128,
        "BLOCK_SIZE_N": 64,
        "BLOCK_SIZE_O": 128,
        "BLOCK_SIZE_P": 64,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 16,
        "BLOCK_SIZE_N": 16,
        "BLOCK_SIZE_O": 16,
        "BLOCK_SIZE_P": 128,
        "num_stages": 4,
        "num_warps": 8,
    },
    {
        "BLOCK_SIZE_M": 32,
        "BLOCK_SIZE_N": 32,
        "BLOCK_SIZE_O": 32,
        "BLOCK_SIZE_P": 128,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 64,
        "BLOCK_SIZE_N": 64,
        "BLOCK_SIZE_O": 64,
        "BLOCK_SIZE_P": 128,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 16,
        "BLOCK_SIZE_N": 128,
        "BLOCK_SIZE_O": 16,
        "BLOCK_SIZE_P": 128,
        "num_stages": 4,
        "num_warps": 8,
    },
    {
        "BLOCK_SIZE_M": 32,
        "BLOCK_SIZE_N": 128,
        "BLOCK_SIZE_O": 32,
        "BLOCK_SIZE_P": 128,
        "num_stages": 2,
        "num_warps": 4,
    },
    {
        "BLOCK_SIZE_M": 64,
        "BLOCK_SIZE_N": 128,
        "BLOCK_SIZE_O": 64,
        "BLOCK_SIZE_P": 128,
        "num_stages": 2,
        "num_warps": 4,
    },
]


def is_b2b_gemm_good_on(
    is_left_assoc: bool,
    A_node: torch.fx.Node,
    B_node: torch.fx.Node,
    C_node: torch.fx.Node,
) -> bool:
    """
    checks whether the sizes are good for b2b_gemm
    """
    # basic checks
    if not all(["val" in A_node.meta, "val" in B_node.meta, "val" in C_node.meta]):
        return False
    fake_tensors = (
        A_node.meta["val"],
        B_node.meta["val"],
        C_node.meta["val"],
    )  # torch._subclasses.fake_tensor.FakeTensor

    A, B, C = fake_tensors

    def check_all_attr_true(objects, attr):
        return all(hasattr(obj, attr) and getattr(obj, attr) for obj in objects)

    if not check_all_attr_true(fake_tensors, "is_cuda") and not check_all_attr_true(
        fake_tensors, "is_xpu"
    ):
        return False
    if not all([len(A.shape) == 2, len(B.shape) == 2, len(C.shape) == 2]):
        return False
    if not ((A.shape[1] == B.shape[0]) and (B.shape[1] == C.shape[0])):
        return False
    # size checks: we only dispatch to B2B-GEMM when the average load ratio is > 1
    M, N = A.shape
    O, P = C.shape
    ratios = []
    if is_left_assoc:
        for config in b2b_gemm_configs:
            ratio = load_ratio_left(
                M,
                N,
                O,
                P,
                config["BLOCK_SIZE_M"],
                config["BLOCK_SIZE_N"],
                config["BLOCK_SIZE_O"],
                config["BLOCK_SIZE_P"],
            )
            ratios.append(ratio)
    else:
        for config in b2b_gemm_configs:
            ratio = load_ratio_right(
                M,
                N,
                O,
                P,
                config["BLOCK_SIZE_M"],
                config["BLOCK_SIZE_N"],
                config["BLOCK_SIZE_O"],
                config["BLOCK_SIZE_P"],
            )
            ratios.append(ratio)
    ratios.sort(reverse=True)
    average_ratio = 1.0
    for r in ratios[:3]:  # top 3 choices
        average_ratio *= r
    average_ratio = average_ratio ** (1 / 3)
    return (
        average_ratio > 1
    )  # even if average_ratio is close to 1, the number of stores is always better


def unoptimized_b2b_gemm(
    is_left_assoc: bool,
    subgraph: Subgraph,
    A: torch.Tensor,
    B: torch.Tensor,
    C: torch.Tensor,
    *,
    out: torch.Tensor,
) -> torch.Tensor:
    """
    The unoptimized version is used as a fallback when the b2b_gemm kernel is not beneficial.
    """
    if is_left_assoc:
        torch.mm(subgraph.graph_module(torch.mm(A, B)), C, out=out)
    else:
        torch.mm(A, subgraph.graph_module(torch.mm(B, C)), out=out)
    return out


unoptimized_choice = ExternKernelChoice(unoptimized_b2b_gemm)


def build_subgraph_buffer(
    args: List[TensorBox],
    subgraph: Subgraph,
):
    """
    This function is adapted from ../kernel/flex_attention.py.
    The goal is to take in the required args and produce the subgraph buffer
    The subgraph buffer is a ComputedBuffer that will be inlined into the triton template

    Args:
        args: The args that are passed into the subgraph
        subgraph: The Subgraph ir for which to produce the output node
    """
    cnt = 0
    env = {}
    for node in subgraph.graph_module.graph.nodes:
        if node.op == "placeholder":
            env[node] = args[cnt]
            cnt += 1
        elif node.op == "call_function":
            # For call_function we use the default lowerings and pass in the
            # already created TensorBoxes as args
            args, kwargs = tree_map(
                lambda x: env[x] if x in env else x, (node.args, node.kwargs)
            )
            env[node] = lowerings[node.target](*args, **kwargs)
        elif node.op == "output":

            def convert_output_node_to_buffer(output):
                if output is None:
                    return None
                output_node = output
                output_buffer = env[output_node]
                assert isinstance(output_buffer, TensorBox), (
                    "The output node for B2B-GEMM's subgraph must be a TensorBox, but got: ",
                    type(output_buffer),
                )
                assert isinstance(output_buffer.data, StorageBox), (
                    "The output node for B2B-GEMM's subgraph must be a StorageBox, but got: ",
                    type(output_buffer),
                )
                subgraph_buffer = ComputedBuffer(
                    name=None,
                    layout=FlexibleLayout(
                        device=output_buffer.data.get_device(),
                        dtype=output_buffer.data.get_dtype(),
                        size=output_buffer.data.get_size(),
                    ),
                    data=output_buffer.data.data,  # type: ignore[arg-type]
                )
                return subgraph_buffer

            # node.args[0] should be a single element representing the output of the subgraph
            return tree_map(convert_output_node_to_buffer, node.args[0])

    raise ValueError("B2B-GEMM was passed a subgraph with no output node!")


def create_placeholder(
    name: str, dtype: torch.dtype, device: torch.device
) -> TensorBox:
    """
    Creates a placeholder input buffers for producing subgraph_output
    """
    input_buffer = InputBuffer(name=name, layout=FixedLayout(device, dtype, [], []))
    return TensorBox.create(input_buffer)


def tuned_b2b_gemm(
    is_left_assoc: bool,
    subgraph: Subgraph,
    A: torch._inductor.ir.TensorBox,
    B: torch._inductor.ir.TensorBox,
    C: torch._inductor.ir.TensorBox,
    *,
    layout=None,
) -> torch._inductor.ir.TensorBox:
    # call .realize() to get rid of Pointwise
    A.realize()
    B.realize()
    C.realize()
    layout = FixedLayout(A.get_device_or_error(), A.get_dtype(), [A.shape[0], C.shape[1]])  # type: ignore[index]
    subgraph_buffer = build_subgraph_buffer(
        [create_placeholder("inner_mm", A.get_dtype(), A.get_device_or_error())],
        subgraph,
    )
    choices: list[TritonTemplateCaller] = []
    for config in b2b_gemm_configs:
        if is_left_assoc:
            b2b_gemm_left_template.maybe_append_choice(
                choices,
                input_nodes=(A, B, C),
                layout=layout,
                subgraphs=[subgraph_buffer],
                **config,
            )
        else:
            b2b_gemm_right_template.maybe_append_choice(
                choices,
                input_nodes=(A, B, C),
                layout=layout,
                subgraphs=[subgraph_buffer],
                **config,
            )
    # add the unoptimized choice to mitigate performance degradation
    choices.append(
        unoptimized_choice.bind(
            (A, B, C), layout, is_left_assoc=is_left_assoc, subgraph=subgraph
        )
    )
    # autotune
    return autotune_select_algorithm("b2b_gemm", choices, [A, B, C], layout)


# match the inner mm of a potential b2b_gemm
@register_graph_pattern(
    CallFunction(torch.ops.aten.mm, Arg(), Arg()),
    pass_dict=B2B_GEMM_PASS,
)
def b2b_gemm_handler(match: Match, mat1: torch.fx.Node, mat2: torch.fx.Node) -> None:
    # match.args: list[torch.fx.Node]

    def is_pointwise_node(node: torch.fx.Node) -> bool:
        return (
            node.op == "call_function"
            and isinstance(node.target, torch._ops.OpOverload)
            and (torch.Tag.pointwise in node.target.tags)
        )

    def is_mm(node: torch.fx.Node) -> bool:
        return node.target == torch.ops.aten.mm.default

    # the inner MM
    inner_mm = match.nodes[-1]

    # find the (candidate) outer MM, which will be re-checked below to ensure every path reaches it
    # In a real (A @ f(B @ C)), every path starting from (B @ C) must reach (A @ _).
    outer_mm = None
    node = inner_mm
    while len(node.users) > 0:
        node = next(iter(node.users))
        if is_mm(node):
            outer_mm = node
            break
        elif is_pointwise_node(node):
            continue
        else:
            break
    if not outer_mm:
        return

    # find the unique input node for outer_mm representing f(B @ C) in (A @ f(B @ C))
    # we call it the "f_node"
    # when the pattern is simply (A @ (B @ C)), f_node is just inner_mm
    f_node = inner_mm
    while next(iter(f_node.users)) is not outer_mm:
        f_node = next(iter(f_node.users))

    def all_reach_via_pointwise_with_no_other_inputs(
        src: torch.fx.Node,
        dst: torch.fx.Node,
    ) -> Tuple[bool, Set[torch.fx.Node]]:
        """
        check whether every user path from src reaches dst via pointwise nodes,
        with no other input nodes for the intermediates and dst;
        return
        (1) the Boolean value
        (2) the subgraph node set including src and dst (which only makes sense when the Boolean value is True)
        """
        visited: Set[torch.fx.Node] = set()
        input_counter: Dict[torch.fx.Node, int] = {}

        all_reachable = True
        queue = deque([src])
        while queue:
            node = queue.popleft()
            if node not in visited:
                if node is dst:
                    visited.add(node)
                elif (node is src) or is_pointwise_node(node):
                    for user in node.users.keys():
                        # for nodes other than dst, bookkeep their users' input counts
                        if user not in input_counter:
                            input_counter[user] = len(user.all_input_nodes)
                        input_counter[user] -= 1
                        # continue BFS
                        queue.append(user)
                    visited.add(node)
                else:
                    all_reachable = False
                    break

        return (
            all_reachable and all(count == 0 for count in input_counter.values()),
            visited,
        )

    # check inner_mm reaches f_node on every user path via pointwise nodes with no outside input_nodes
    ok, subgraph_node_set = all_reach_via_pointwise_with_no_other_inputs(
        inner_mm, f_node
    )
    if not ok:
        return

    # check inner_mm's inputs and f_node's outputs
    if not (len(inner_mm.all_input_nodes) == 2 and len(f_node.users) == 1):
        return

    # at this point, the nodes between inner_mm and f_node (both included)
    # are all used internally inside (A @ subgraph(B @ C))
    # i.e. they neither have other users nor have other inputs

    # original graph and module
    graph, module = inner_mm.graph, inner_mm.graph.owning_module

    # construct the new (sub)graph
    subgraph_node_list: List[
        torch.fx.Node
    ] = []  # ordered list of nodes used for node removal later
    new_graph: torch.fx.Graph = torch.fx.Graph()
    node_remapping: Dict[torch.fx.Node, torch.fx.Node] = {}
    new_input_anchor: torch.fx.Node  # inner_mm, to be changed to an input node
    new_output_anchor: torch.fx.Node  # f_node, to be used to construct an output node
    new_input_node: torch.fx.Node
    new_output_node: torch.fx.Node
    for node in graph.nodes:  # preserve the order of nodes
        if node in subgraph_node_set:
            subgraph_node_list.append(node)
            new_node = new_graph.node_copy(
                node, lambda x: node_remapping[x] if x in node_remapping else x
            )
            node_remapping[node] = new_node
            if node is inner_mm:
                new_input_anchor = new_node
            if node is f_node:
                new_output_anchor = new_node
    if new_input_anchor is not new_output_anchor:  # subgraph is non-trivial
        # update the input node
        with new_graph.inserting_before(new_input_anchor):
            new_input_node = new_graph.placeholder(name="subgraph_input")
            new_input_node.meta.update(new_input_anchor.meta)
            new_input_anchor.replace_all_uses_with(new_input_node)
        new_graph.erase_node(new_input_anchor)
        # add the output node
        new_output_node = new_graph.output(new_output_anchor)
        new_output_node.meta.update(new_output_anchor.meta)
    else:  # subgraph is trivial, e.g. (A @ (B @ C))
        # update the input node
        with new_graph.inserting_before(new_input_anchor):
            new_input_node = new_graph.placeholder(name="subgraph_input")
            new_input_node.meta.update(new_input_anchor.meta)
            new_input_anchor.replace_all_uses_with(new_input_node)
        new_graph.erase_node(new_input_anchor)
        # update the output node (don't use new_output_anchor since it has been erased)
        new_output_node = new_graph.output(new_input_node)
        new_output_node.meta.update(new_input_node.meta)
    new_graph.lint()

    # construct the subgraph
    subgraph = Subgraph(
        name="subgraph", graph_module=torch.fx.GraphModule(module, new_graph)
    )

    # two cases
    # (1) (subgraph(A @ B) @ C), called "left_assoc"
    # (2) (A @ subgraph(B @ C)), called "right_assoc"
    is_left_assoc = outer_mm.args[0] is f_node

    # find the nodes A, B, C and check the sizes
    A: torch.fx.Node
    B: torch.fx.Node
    C: torch.fx.Node
    if is_left_assoc:
        A = inner_mm.args[0]  # type: ignore[assignment]
        B = inner_mm.args[1]  # type: ignore[assignment]
        C = outer_mm.args[1]  # type: ignore[assignment]
    else:
        A = outer_mm.args[0]  # type: ignore[assignment]
        B = inner_mm.args[0]  # type: ignore[assignment]
        C = inner_mm.args[1]  # type: ignore[assignment]
    if not is_b2b_gemm_good_on(is_left_assoc, A, B, C):
        return

    # finally update the original graph
    counters["inductor"]["b2b_gemm"] += 1
    graph = match.graph
    with graph.inserting_before(outer_mm):
        function = functools.partial(tuned_b2b_gemm, is_left_assoc, subgraph)
        function.__name__ = tuned_b2b_gemm.__name__  # type: ignore[attr-defined]
        function._inductor_lowering_function = True  # type: ignore[attr-defined]
        replacement: torch.fx.Node = graph.call_function(
            function,
            (A, B, C),
            match.kwargs,
        )
        replacement.meta.update(outer_mm.meta)
        outer_mm.replace_all_uses_with(replacement)
    # erase unnecessary nodes
    graph.erase_node(outer_mm)
    for node in reversed(subgraph_node_list):
        graph.erase_node(node)
    graph.lint()