File: binary_folding.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (502 lines) | stat: -rw-r--r-- 19,791 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# mypy: allow-untyped-defs
import functools
import itertools

import torch

from ..._dynamo.utils import counters
from .. import config
from ..pattern_matcher import Arg, CallFunction, KeywordArg
from .freezing_patterns import register_binary_folding_pattern


aten = torch.ops.aten
prims = torch.ops.prims


def mark_mixed_dtype(computation_node):
    computation_node_dtype = computation_node.meta["val"].dtype
    if computation_node_dtype not in (torch.float16, torch.bfloat16):
        return

    if not len(computation_node.users) == 1:
        return

    computation_node_user = next(iter(computation_node.users.keys()))
    if not isinstance(computation_node_user.meta["val"], torch.Tensor):
        return

    if not computation_node_user.meta["val"].dtype == torch.float32:
        return

    while computation_node_user.target in _binary_ops:
        if not len(computation_node_user.users) == 1:
            return

        computation_node_user = next(iter(computation_node_user.users.keys()))

    if computation_node_user.target != prims.convert_element_type.default:
        return

    computation_node.meta["_allow_mixed_dtype_folding"] = computation_node_dtype


def mark_mixed_dtype_allowed_computation_ops(gm):
    """
    Mark convolutions/linear which we will binary fold even with mixed precision constants. We constant fold in the higher precision
    for better accuracy and then recover the original precision after.
    """
    for target in [aten.convolution.default, aten.addmm.default, aten.mm.default]:
        for node in gm.graph.find_nodes(op="call_function", target=target):
            mark_mixed_dtype(node)


def recover_original_precision_folded_computation_ops(gm):
    """
    After binary folding conv/linear weights and biases to a higher dtype, recover the original precision they were in.
    """
    graph = gm.graph
    for target, idx in (
        (aten.convolution.default, (1, 2)),
        (aten.addmm.default, (0, 2)),
        (aten.mm.default, (1,)),
    ):
        for node in graph.find_nodes(op="call_function", target=target):
            orig_dtype = node.meta.get("_allow_mixed_dtype_folding", None)
            if orig_dtype is None:
                continue

            with graph.inserting_before(node):
                for i in idx:
                    old_input = node.args[i]
                    if old_input is None:
                        continue

                    new_input = graph.create_node(
                        "call_function",
                        prims.convert_element_type.default,
                        (old_input, orig_dtype),
                    )
                    node.replace_input_with(old_input, new_input)


_binary_ops = [aten.add.Tensor, aten.sub.Tensor, aten.mul.Tensor, aten.div.Tensor]


@functools.lru_cache(None)
def binary_folding_init():
    _conv_args = [Arg() for _ in range(9)]
    _addmm_args = [Arg() for _ in range(3)]
    _mm_args = [Arg() for _ in range(2)]
    _computation_ops = [aten.convolution.default, aten.addmm.default, aten.mm.default]
    _computation_calls = [
        CallFunction(aten.convolution.default, *_conv_args, _users=1),
        CallFunction(aten.addmm.default, *_addmm_args, _users=1),
        CallFunction(
            aten.reshape.default,
            CallFunction(aten.addmm.default, *_addmm_args, _users=1),
            Arg(),
            _users=1,
        ),
        CallFunction(aten.mm.default, *_mm_args, _users=1),
        CallFunction(
            aten.reshape.default,
            CallFunction(aten.mm.default, *_mm_args, _users=1),
            Arg(),
            _users=1,
        ),
    ]

    """
    In order to fuse add/sub/mul/div with conv/linear, the dimensions of its
    constant tensor must satisfy the following:
    - with resizing, broadcast to w/ weight/bias tensor shape
    - broadcast to the conv/linear output shape
    It needs to have a shape that can resize to weight/bias
    tensor shape because we need to run the op with the conv/linear
    weights/bias without changing their sizes.
    It needs to broadcast to the conv/linear output shape so that we do
    accidentally change the shape of op output by pre-fusing it
    compared to eager.
    The only dimension value shared by weight, bias, and conv/linear output
    is they all contain a dim with value = channels-out. In the
    conv/linear output tensor, this is in the second dimension,
    so the pointwise op tensor may have a second dimension of
    value == channels-out, but all the other dimensions have to be 1
    """

    def _op_not_broadcasting_with_conv(weight_tensor, other_tensor):
        # According to opDoesNotBroadCastWithConv of frozen_conv_folding.cpp
        weight_shape = weight_tensor.shape
        other_shape = other_tensor.shape
        if len(weight_shape) < len(other_shape):
            return False
        if len(weight_shape) == len(other_shape) + 1:
            # weight shape is [o, i, *], other_shape is [o, 1...].
            for i in reversed(range(len(other_shape))):
                if i == 0 and weight_shape[0] == other_shape[i]:
                    continue
                if other_shape[i] != 1:
                    return False
        else:
            # weight shape is [o, i, *], other_shape is [1, i, *]
            for i in reversed(range(len(other_shape))):
                if i == 1 and weight_shape[0] == other_shape[i]:
                    continue
                if other_shape[i] != 1:
                    return False
        return True

    def _op_not_broadcasting_with_linear(weight_tensor, other_tensor, has_reshape):
        weight_shape = weight_tensor.shape
        other_shape = other_tensor.shape
        other_shapes = [
            torch.Size(
                [
                    weight_shape[1],
                ]
            ),
            torch.Size([1, weight_shape[1]]),
            torch.Size(
                [
                    1,
                ]
            ),
            torch.Size([1, 1]),
        ]
        if has_reshape:
            other_shapes.extend(
                [
                    torch.Size([1, 1, weight_shape[1]]),
                    torch.Size([1, 1, 1]),
                ]
            )
        return other_shape in other_shapes

    def _check_conv_and_broadcast_op(conv_node, other):
        # According to checkConvAndBroadcastingOpPreConditions of frozen_conv_folding.cpp.
        # conv.weight
        if conv_node.args[1].op != "get_attr":
            return False
        # conv.bias
        if conv_node.args[1] is not None and conv_node.args[1].op != "get_attr":
            return False
        if (
            not isinstance(other, int)
            and not isinstance(other, float)
            and other.op != "get_attr"
        ):
            return False

        if not len(conv_node.args[1].users) == 1:
            return False

        weight_meta_value = conv_node.args[1].meta.get("val")
        if weight_meta_value is None:
            return False
        # Avoid fusing op that causes type promotion
        # restricting to float avoids int/float difficulties with scalar overload
        if not weight_meta_value.is_floating_point():
            return False
        if isinstance(other, torch.fx.Node) and other.op == "get_attr":
            other_meta_value = other.meta.get("val")
            if not other_meta_value.is_floating_point():  # type: ignore[union-attr]
                return False
            if (
                torch.promote_types(other_meta_value.dtype, weight_meta_value.dtype)  # type: ignore[union-attr]
                != weight_meta_value.dtype
            ):
                if not conv_node.meta.get("_allow_mixed_dtype_folding", False):
                    return False

                if (
                    other_meta_value.dtype != torch.float  # type: ignore[union-attr]
                    and weight_meta_value.dtype not in (torch.float16, torch.bfloat16)
                ):
                    return False

            if not _op_not_broadcasting_with_conv(weight_meta_value, other_meta_value):
                return False
        elif not isinstance(other, float):
            return False

        return True

    def _check_linear_and_broadcast_op(linear_node, other, has_reshape):
        weight_node = (
            linear_node.args[2]
            if linear_node.target is aten.addmm.default
            else linear_node.args[1]
        )
        bias_node = (
            linear_node.args[0] if linear_node.target is aten.addmm.default else None
        )
        if weight_node.op != "get_attr":
            return False
        if bias_node is not None and bias_node.op != "get_attr":
            return False
        if (
            not isinstance(other, int)
            and not isinstance(other, float)
            and other.op != "get_attr"
        ):
            return False

        if not len(weight_node.users) == 1:
            return False

        weight_meta_value = weight_node.meta.get("val")
        if weight_meta_value is None:
            return False
        # Avoid fusing op that causes type promotion
        # restricting to float avoids int/float difficulties with scalar overload
        if not weight_meta_value.is_floating_point():
            return False
        if isinstance(other, torch.fx.Node) and other.op == "get_attr":
            other_meta_value = other.meta.get("val")
            if not other_meta_value.is_floating_point():  # type: ignore[union-attr]
                return False
            if (
                torch.promote_types(other_meta_value.dtype, weight_meta_value.dtype)  # type: ignore[union-attr]
                != weight_meta_value.dtype
            ):
                if not linear_node.meta.get("_allow_mixed_dtype_folding", False):
                    return False

                if (
                    other_meta_value.dtype != torch.float  # type: ignore[union-attr]
                    and weight_meta_value.dtype not in (torch.float16, torch.bfloat16)
                ):
                    return False

            if not _op_not_broadcasting_with_linear(
                weight_meta_value, other_meta_value, has_reshape
            ):
                return False
        elif not isinstance(other, float):
            return False

        return True

    def _is_foldable_pattern(match):
        binary_node = match.output_node()
        has_reshape = False
        if binary_node.args[0].target in _computation_ops:
            computation_node = binary_node.args[0]
            other = binary_node.args[1]
        elif binary_node.args[0].target == aten.reshape.default:
            computation_node = binary_node.args[0].args[0]
            other = binary_node.args[1]
            has_reshape = True
        elif binary_node.args[1].target in _computation_ops:
            computation_node = binary_node.args[1]
            other = binary_node.args[0]
        else:
            computation_node = binary_node.args[1].args[0]
            other = binary_node.args[0]
            has_reshape = False
        if computation_node.target == aten.convolution.default:
            return _check_conv_and_broadcast_op(computation_node, other)
        elif computation_node.target in [aten.addmm.default, aten.mm.default]:
            return (
                config.enable_linear_binary_folding
                and _check_linear_and_broadcast_op(computation_node, other, has_reshape)
            )

        return False

    def resize_scalar_or_tensor_to_shape(graph, other, shape, weight):
        if isinstance(other, float):
            with torch.utils._python_dispatch._disable_current_modes():
                other_tensor = torch.tensor(
                    other, dtype=weight.dtype, device=weight.device
                )
            graph.owning_module.register_buffer("other_tensor", other_tensor)
            res = graph.create_node("get_attr", "other_tensor")
            res = graph.create_node(
                "call_function",
                aten.reshape.default,
                (res, (1,)),
            )
            res = graph.create_node(
                "call_function",
                aten.expand.default,
                (res, shape),
            )
        elif other.meta.get("val").numel() == 1:
            # expand errors if the shape input has less # dims than the tensor input
            res = graph.create_node(
                "call_function",
                aten.reshape.default,
                (other, (1,)),
            )
            res = graph.create_node(
                "call_function",
                aten.expand.default,
                (res, shape),
            )
        else:
            res = graph.create_node(
                "call_function",
                aten.reshape.default,
                (other, shape),
            )
        return res

    def _create_new_conv_node(graph, conv_node, binary_node, other):
        assert conv_node.target == aten.convolution.default
        conv_args = list(conv_node.args)
        weight_meta_value = conv_node.args[1].meta.get("val")
        bias = conv_args[2]
        if binary_node.target in [aten.add.Tensor, aten.sub.Tensor]:
            other_reshape = resize_scalar_or_tensor_to_shape(
                graph,
                other,
                (weight_meta_value.size(0),),
                weight_meta_value,
            )
            new_bias = graph.create_node(
                "call_function",
                binary_node.target,
                (0 if bias is None else bias, other_reshape),
            )
            conv_args[2] = new_bias
        else:
            assert binary_node.target in [aten.mul.Tensor, aten.div.Tensor]
            weight_broadcast_shape = [1 for _ in range(len(weight_meta_value.shape))]
            weight_broadcast_shape[0] = weight_meta_value.size(0)
            other_reshape1 = resize_scalar_or_tensor_to_shape(
                graph,
                other,
                tuple(weight_broadcast_shape),
                weight_meta_value,
            )
            new_weight = graph.create_node(
                "call_function", binary_node.target, (conv_args[1], other_reshape1)
            )
            new_weight.meta.update(conv_args[1].meta)
            conv_args[1] = new_weight
            if bias is not None:
                other_reshape = resize_scalar_or_tensor_to_shape(
                    graph,
                    other,
                    (weight_meta_value.size(0),),
                    weight_meta_value,
                )
                new_bias = graph.create_node(
                    "call_function", binary_node.target, (bias, other_reshape)
                )
                new_bias.meta.update(bias.meta)
                conv_args[2] = new_bias
        return graph.create_node("call_function", conv_node.target, tuple(conv_args))

    def _create_new_linear_node(graph, linear_node, binary_node, other):
        assert linear_node.target in [aten.addmm.default, aten.mm.default]
        input_node = (
            linear_node.args[1]
            if linear_node.target is aten.addmm.default
            else linear_node.args[0]
        )
        weight_node = (
            linear_node.args[2]
            if linear_node.target is aten.addmm.default
            else linear_node.args[1]
        )
        bias_node = (
            linear_node.args[0] if linear_node.target is aten.addmm.default else None
        )
        weight_meta_value = weight_node.meta.get("val")
        if binary_node.target in [aten.add.Tensor, aten.sub.Tensor]:
            other_reshape = resize_scalar_or_tensor_to_shape(
                graph,
                other,
                (weight_meta_value.size(1),),
                weight_meta_value,
            )
            new_bias_node = graph.create_node(
                "call_function",
                binary_node.target,
                (0 if bias_node is None else bias_node, other_reshape),
            )
            return graph.create_node(
                "call_function",
                aten.addmm.default,
                (new_bias_node, input_node, weight_node),
            )
        else:
            assert binary_node.target in [aten.mul.Tensor, aten.div.Tensor]
            weight_broadcast_shape = [1, weight_meta_value.size(1)]
            other_reshape1 = resize_scalar_or_tensor_to_shape(
                graph,
                other,
                tuple(weight_broadcast_shape),
                weight_meta_value,
            )
            new_weight_node = graph.create_node(
                "call_function", binary_node.target, (weight_node, other_reshape1)
            )
            new_weight_node.meta.update(weight_node.meta)
            if bias_node is not None:
                other_reshape = resize_scalar_or_tensor_to_shape(
                    graph,
                    other,
                    (weight_meta_value.size(1),),
                    weight_meta_value,
                )
                new_bias_node = graph.create_node(
                    "call_function", binary_node.target, (bias_node, other_reshape)
                )
                new_bias_node.meta.update(bias_node.meta)
                return graph.create_node(
                    "call_function",
                    linear_node.target,
                    (new_bias_node, input_node, new_weight_node),
                )
            else:
                return graph.create_node(
                    "call_function", linear_node.target, (input_node, new_weight_node)
                )

    for _computation_call, binary_op in itertools.product(
        _computation_calls, _binary_ops
    ):

        @register_binary_folding_pattern(
            CallFunction(binary_op, _computation_call, KeywordArg("other")),
            extra_check=_is_foldable_pattern,
        )
        def folded_op(match, *args, **kwargs):
            counters["inductor"]["binary_folding"] += 1
            other = kwargs.get("other")
            binary_node = match.output_node()
            reshape_node = None
            if binary_node.args[0].target in _computation_ops:
                computation_node = binary_node.args[0]
            elif binary_node.args[0].target == aten.reshape.default:
                computation_node = binary_node.args[0].args[0]
                reshape_node = binary_node.args[0]
            elif binary_node.args[1].target in _computation_ops:
                computation_node = binary_node.args[1]
            else:
                computation_node = binary_node.args[1].args[0]
                reshape_node = binary_node.args[1]
            graph = match.graph
            with graph.inserting_before(reshape_node if reshape_node else binary_node):
                assert computation_node.target in _computation_ops
                if computation_node.target == aten.convolution.default:
                    new_computation_node = _create_new_conv_node(
                        graph, computation_node, binary_node, other
                    )
                else:
                    new_computation_node = _create_new_linear_node(
                        graph, computation_node, binary_node, other
                    )
                new_computation_node.meta.update(computation_node.meta)
                if reshape_node:
                    assert reshape_node.target == aten.reshape.default
                    computation_node.replace_all_uses_with(new_computation_node)
                    binary_node.replace_all_uses_with(reshape_node)
                else:
                    binary_node.replace_all_uses_with(new_computation_node)
                graph.erase_node(binary_node)
                graph.erase_node(computation_node)