1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
# Owner(s): ["oncall: distributed"]
import collections
import inspect
import logging
import math
import operator
from dataclasses import dataclass
from functools import partial
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
List,
Optional,
Set,
Tuple,
Union,
)
import torch
import torch.fx as fx
from torch._dynamo.utils import counters
from torch.fx.passes.graph_transform_observer import GraphTransformObserver
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
from ..fx_utils import get_fake_args_kwargs
from ..virtualized import V
aten = torch.ops.aten
logger: logging.Logger = logging.getLogger("comm_fusion")
def move_block_after(block: List[fx.Node], target_node: fx.Node) -> None:
for node in block:
target_node.append(node)
target_node = node
def move_block_before(block: List[fx.Node], target_node: fx.Node) -> None:
for node in block:
target_node.prepend(node)
target_node = node
def call_function(
graph: fx.Graph,
target: Union[str, Callable[..., Any]],
args: Optional[Tuple[fx.node.Argument, ...]] = None,
kwargs: Optional[Dict[str, fx.node.Argument]] = None,
) -> fx.Node:
# We accept target as a str to avoid typing error as the type of
# a node.target is Union[str, Callable[..., Any]].
# This also allows us to avoid writing check for every call.
if isinstance(target, str):
raise RuntimeError(f"Call function should not get a str target {target=}")
node = graph.call_function(target, args, kwargs)
_, args, kwargs = get_fake_args_kwargs(node)
with V.fake_mode:
node.meta["val"] = target(*args, **kwargs)
# node.meta["val"] may be a container. So we use tree_map here
# to recursively extract the tensor metadata.
node.meta["tensor_meta"] = tree_map(
_extract_tensor_metadata, (node.meta["val"],)
)[0]
return node
@dataclass(unsafe_hash=True)
class CommBlock:
shape: Union[torch.Size, List[torch.Size]]
node_list: List[fx.Node]
inputs: List[fx.Node]
wait_nodes: List[fx.Node]
comm_node: fx.Node
outputs: Set[fx.Node]
def get_comm_block(comm_node: fx.Node) -> Optional[CommBlock]:
"""
Given a collective node (e.g., allreduce), find out all the nodes belong to
this communcation.
Args:
comm_node(fx.Node): The target communication/collective node.
Returns:
The CommBlock that encapsulates the related nodes (e.g., wait_node) of
the given comm_node.
"""
node_list = []
wait_nodes = []
inputs, _ = tree_flatten((comm_node.args, comm_node.kwargs))
input_nodes = [inp for inp in inputs if isinstance(inp, fx.Node)]
wait_prefixes = "wait_tensor"
# If the users of the wait node are following items, we consinder them
# to be a part of the output.
intermediate_outputs = ("split", "reshape", "getitem", "detach", "alias")
first_user = next(iter(comm_node.users))
if (
len(comm_node.users) == 1
and first_user.target == torch.ops._c10d_functional.wait_tensor.default
):
# Collective with only one output
node_list = [comm_node, first_user]
wait_nodes.append(first_user)
elif len(comm_node.users) > 1 and first_user.target == operator.getitem:
# Collective with only more than one output
node_list.append(comm_node)
for user in comm_node.users:
if user.target != operator.getitem:
return None
if len(user.users) != 1:
return None
wait_node = next(iter(user.users))
if wait_node.target != torch.ops._c10d_functional.wait_tensor.default:
return None
wait_nodes.append(wait_node)
node_list.append(user)
node_list.extend(wait_nodes)
else:
return None
# Identify all the outputs of this collective block.
outputs: Set[fx.Node] = set()
nodes = collections.deque(wait_nodes)
while nodes:
node = nodes.popleft()
for user in node.users:
if isinstance(user, fx.Node) and user.name.startswith(intermediate_outputs):
nodes.append(user)
node_list.append(user)
else:
outputs.add(node)
break
tensor_meta = input_nodes[0].meta["tensor_meta"]
shape: Union[torch.Size, List[torch.Size]]
if isinstance(tensor_meta, TensorMetadata):
shape = tensor_meta.shape
elif isinstance(tensor_meta, (list, tuple)):
shape = [tm.shape for tm in tensor_meta]
else:
logger.warning("Unexpected type of tensor_meta %s", type(tensor_meta))
return None
return CommBlock(
shape=shape,
node_list=node_list,
wait_nodes=wait_nodes,
comm_node=comm_node,
inputs=input_nodes,
outputs=outputs,
)
def get_all_comm_blocks(
graph: fx.Graph,
comm_ops: Tuple[torch._ops.OpOverload, ...],
comm_filter: Optional[Callable[..., bool]] = None,
) -> List[CommBlock]:
if comm_filter is None:
def always_true(comm_block: CommBlock) -> bool:
return True
comm_filter = always_true
blocks = []
for node in graph.nodes:
if node.target not in comm_ops:
continue
comm_block = get_comm_block(node)
if comm_block is not None and comm_filter(comm_block):
blocks.append(comm_block)
return blocks
def _fuse_allreduce_by_concat(
graph: fx.Graph,
last_input_node: fx.Node,
all_input_nodes: List[fx.Node],
last_comm_block: CommBlock,
) -> CommBlock:
"""Given a list of inputs in order, create a fused allreduce using concat."""
# Flatten all the inputs to the all_reduce nodes.
with graph.inserting_after(last_input_node):
cat_inputs = []
for input_node in all_input_nodes:
assert isinstance(input_node.args[0], fx.Node)
input_node = input_node.args[0]
cat_inputs.append(
call_function(graph, aten.flatten.using_ints, (input_node,))
)
# Concat all the flattened nodes.
with graph.inserting_after(cat_inputs[0]):
cat_node = call_function(graph, aten.cat, (cat_inputs,))
# Insert the fused div node and remove the input div nodes.
# This is an optimization and is not mandatory for fusion.
divisors = [div.args[1] for div in all_input_nodes]
assert all(divisor == divisors[0] for divisor in divisors)
with graph.inserting_after(cat_node):
div_node = call_function(graph, last_input_node.target, (cat_node, divisors[0]))
# Create a new Comm/all_reduce node.
last_comm_node = last_comm_block.comm_node
last_wait_node = last_comm_block.wait_nodes[0]
with graph.inserting_after(div_node):
flatten_args, spec = tree_flatten((last_comm_node.args, last_comm_node.kwargs))
flatten_args[0] = div_node
args, kwargs = tree_unflatten(flatten_args, spec)
fused_comm_node = call_function(graph, last_comm_node.target, args, kwargs)
# Create a new Wait node.
with graph.inserting_after(fused_comm_node):
flatten_args, spec = tree_flatten((last_wait_node.args, last_wait_node.kwargs))
flatten_args[0] = fused_comm_node
args, kwargs = tree_unflatten(flatten_args, spec)
fused_wait_node = call_function(graph, last_wait_node.target, args, kwargs)
# Move the fused all_reduce and its args to right after the input node
nodes_to_move = cat_inputs + [cat_node, div_node, fused_comm_node, fused_wait_node]
move_block_after(nodes_to_move, last_input_node)
return CommBlock(
shape=cast(TensorMetadata, cat_node.meta.get("tensor_meta")).shape,
node_list=[fused_comm_node, fused_wait_node],
wait_nodes=[fused_wait_node],
comm_node=fused_comm_node,
inputs=[div_node],
outputs={fused_wait_node},
)
def _fuse_with_coalesced_op(
graph: fx.Graph,
last_input_node: fx.Node,
all_input_nodes: List[fx.Node],
last_comm_block: CommBlock,
) -> CommBlock:
"""Given a list of inputs in order, create a fused allreduce by coalesced."""
last_comm_node = last_comm_block.comm_node
last_wait_node = last_comm_block.wait_nodes[0]
# Insert the fused div node and remove the input div nodes.
# This is an optimization and is not mandatory for fusion.
dividends = [div.args[0] for div in all_input_nodes]
divisors = [div.args[1] for div in all_input_nodes]
assert all(divisor == divisors[0] for divisor in divisors)
with graph.inserting_before(last_input_node):
last_input_node = call_function(
graph, aten._foreach_div.Scalar, (dividends, divisors[0])
)
input_node = last_input_node
# Create a new Comm/all_reduce_coalesced node.
with graph.inserting_after(last_comm_node):
flatten_args, spec = tree_flatten((last_comm_node.args, last_comm_node.kwargs))
flatten_args[0] = input_node
args, kwargs = tree_unflatten(flatten_args, spec)
fused_comm_node = call_function(
graph, torch.ops._c10d_functional.all_reduce_coalesced.default, args, kwargs
)
# Create a new wait node.
getitem_nodes = []
wait_nodes = []
flatten_args, spec = tree_flatten((last_wait_node.args, last_wait_node.kwargs))
for idx in range(len(all_input_nodes)):
with graph.inserting_after(fused_comm_node):
gi_node = call_function(graph, operator.getitem, (fused_comm_node, idx))
getitem_nodes.append(gi_node)
flatten_args[0] = gi_node
args, kwargs = tree_unflatten(flatten_args, spec)
with graph.inserting_after(gi_node):
wait_nodes.append(call_function(graph, last_wait_node.target, args, kwargs))
# Move the new all_reduce_coalesced and its args to right after the input node
nodes_to_move = [fused_comm_node] + getitem_nodes + wait_nodes
move_block_after(nodes_to_move, last_input_node)
return CommBlock(
shape=[
tm.shape
for tm in cast(
List[TensorMetadata], fused_comm_node.meta.get("tensor_meta")
)
],
node_list=[fused_comm_node] + getitem_nodes + wait_nodes,
wait_nodes=wait_nodes,
comm_node=fused_comm_node,
inputs=[input_node],
outputs=set(wait_nodes),
)
def _scatter_fused_allreduce_waits(
graph: fx.Graph,
fused_comm_block: CommBlock,
orig_comm_blocks: List[CommBlock],
node_indices: Dict[fx.Node, int],
split_and_reshape: bool = True,
) -> None:
"""
Scatters the result of the fused communication node to the original users.
If the fused method is concat splitting the output and reshape will be inserted,
before inserting getitem. Otherwise getitem will be used as the users of the
wait node.
"""
# Before we mass up the order, we need to get the index of the last wait node
# in orig_comm_blocks. This index will be later used to determinee what users
# nodes need to be move to maintain a correct topological sort order.
last_wait_node_idx = 0
for node in graph.nodes:
last_wait_node_idx = max(
node_indices.get(node, last_wait_node_idx), last_wait_node_idx
)
if node == orig_comm_blocks[-1].wait_nodes[0]:
break
if split_and_reshape:
fused_wait_node = fused_comm_block.wait_nodes[0]
with graph.inserting_after(fused_wait_node):
split_node = call_function(
graph,
aten.split,
(
fused_wait_node,
[math.prod(cast(List[int], cb.shape)) for cb in orig_comm_blocks],
),
)
with graph.inserting_after(split_node):
fused_outputs = []
for idx, comm_block in enumerate(orig_comm_blocks):
split_idx_node = call_function(
graph, operator.getitem, (split_node, idx)
)
with graph.inserting_after(split_idx_node):
fused_outputs.append(
call_function(
graph, aten.reshape, (split_idx_node, comm_block.shape)
)
)
else:
fused_outputs = fused_comm_block.wait_nodes
# Scatter the fused outputs.
incorrect_order_nodes = []
for comm_block, fused_output in zip(orig_comm_blocks, fused_outputs):
# Some descendant users of the orig_comm_blocks may be scheduled before
# the fused all_reduce. For example, the user nodes of the very first
# all_reduce may be scheduled before the second all_reduce. Since the
# fused all_reduce is inserted right after the last all_reudce, the
# order can be wrong.
# `incorrect_order_nodes` records these nodes.
orig_wait = comm_block.wait_nodes[0]
nodes = collections.deque(list(orig_wait.users))
while nodes:
user_node = nodes.popleft()
if not isinstance(user_node, fx.Node):
continue
if node_indices[user_node] < last_wait_node_idx:
incorrect_order_nodes.append(user_node)
nodes.extend(list(user_node.users))
orig_wait.replace_all_uses_with(fused_output)
last_fused_result = fused_outputs[0]
fused_outputs_set = set(fused_outputs)
for node in graph.nodes:
if node in fused_outputs_set:
last_fused_result = node
# Move the incorrect_order_nodes to right after the last fused_result.
incorrect_order_nodes = sorted(
incorrect_order_nodes, key=lambda node: node_indices[node]
)
move_block_after(incorrect_order_nodes, last_fused_result)
def _fuse_allreduce(
graph: fx.Graph,
comm_blocks: List[CommBlock],
node_indices: Dict[fx.Node, int],
use_concat: bool,
) -> CommBlock:
"""Given a list of allreduce CommBlock, fuse the CommBlocks into one CommBlock."""
if len(comm_blocks) == 1:
return comm_blocks[0]
# Find the last input node of all the CommBlocks. This node will be served
# as the inserting point of the new collective op.
last_input_node = comm_blocks[0].inputs[0]
last_input_index = -1
all_input_nodes = []
for comm_block in comm_blocks:
input_node = comm_block.inputs[0]
all_input_nodes.append(input_node)
index = node_indices[input_node]
if index >= last_input_index:
assert index != last_input_index
last_input_node = input_node
last_input_index = index
if use_concat:
fused_comm_block = _fuse_allreduce_by_concat(
graph, last_input_node, all_input_nodes, comm_blocks[-1]
)
else:
fused_comm_block = _fuse_with_coalesced_op(
graph, last_input_node, all_input_nodes, comm_blocks[-1]
)
_scatter_fused_allreduce_waits(
graph, fused_comm_block, comm_blocks, node_indices, split_and_reshape=use_concat
)
for comm_block in comm_blocks:
for wait in comm_block.wait_nodes:
graph.erase_node(wait)
graph.erase_node(comm_block.comm_node)
graph.eliminate_dead_code()
return fused_comm_block
def _bucket_size_fusion(
graph: fx.Graph, comm_blocks: List[CommBlock], bucket_size_mb: int
) -> Generator[List[CommBlock], None, None]:
MB = 1024**2
bucket_size = 1 * MB
bucket_cap_size = bucket_size_mb * MB
curr_size = 0
curr_blocks = []
count = 0
fuse_count = 0
for i, block in enumerate(comm_blocks):
curr_blocks.append(block)
itemsize = block.comm_node.meta["tensor_meta"].dtype.itemsize
curr_size += cast(torch.Size, block.shape).numel() * itemsize
count += 1
if curr_size < bucket_size and i != len(comm_blocks) - 1:
continue
fuse_count += 1
if torch.distributed.get_rank() == 0:
logger.info(
"DDP bucketing: block%d, count=%d, curr_size=%d, bucket_size=%d",
fuse_count,
count,
curr_size,
bucket_size,
)
# Set the debug counters
counters["inductor"]["ddp_buckets"] = fuse_count
yield curr_blocks
bucket_size = bucket_cap_size
curr_blocks = []
curr_size = 0
count = 0
def _fuse_ddp_communication(
graph: fx.Graph, algorithm_fn: Callable[..., Any], fusion_fn: Callable[..., Any]
) -> None:
for output in reversed(graph.nodes):
if output.op == "output":
break
def ddp_reducer_filter(block: CommBlock) -> bool:
if (
not isinstance(block.comm_node.args[0], fx.Node)
or block.comm_node.args[0].target != aten.div.Tensor
):
return False
if len(block.wait_nodes[0].users) != 1:
# gradient/wait node should only be used by one user
return False
# Two cases:
# 1. gradient/wait node should be directly used by the output
# if gradient is None before bwd.
# 2. gradient/wait node should be directly used by copy_.
if (
output not in block.wait_nodes[0].users
and next(iter(block.wait_nodes[0].users)).target != aten.copy_.default
):
return False
return True
ops = (
torch.ops._c10d_functional.all_reduce_.default,
torch.ops._c10d_functional.all_reduce.default,
)
comm_blocks = get_all_comm_blocks(graph, ops, comm_filter=ddp_reducer_filter)
node_indices = {node: i for i, node in enumerate(graph.nodes)}
for block in algorithm_fn(graph, comm_blocks):
fusion_fn(graph, block, node_indices)
def fuse_ddp_with_coalesced_op(graph: fx.Graph, bucket_size_mb: int) -> None:
_fuse_ddp_communication(
graph,
partial(_bucket_size_fusion, bucket_size_mb=bucket_size_mb),
partial(_fuse_allreduce, use_concat=False),
)
def fuse_ddp_with_concat_op(graph: fx.Graph, bucket_size_mb: int) -> None:
_fuse_ddp_communication(
graph,
partial(_bucket_size_fusion, bucket_size_mb=bucket_size_mb),
partial(_fuse_allreduce, use_concat=True),
)
def schedule_comm_wait(graph: fx.Graph) -> None:
"""
Delay the execution of wait tensors of allreduce until its first user.
This algorithm considers the intermediate users, like split, getitem,
of the wait node and schedule those intermediate users as well.
This will result in a better overlapping result.
"""
ops = (
torch.ops._c10d_functional.all_reduce_.default,
torch.ops._c10d_functional.all_reduce.default,
torch.ops._c10d_functional.all_reduce_coalesced.default,
torch.ops._c10d_functional.all_reduce_coalesced_.default,
)
comm_blocks = get_all_comm_blocks(graph, ops)
if not comm_blocks:
return
# Find all the end users.
allreduce_users: Set[fx.Node] = set()
for allreduce in comm_blocks:
for output in allreduce.outputs:
allreduce_users.update(output.users)
node_indices = {node: i for i, node in enumerate(graph.nodes)}
for allreduce in comm_blocks:
# Find the earliest/first user -- target_node.
assert (
len(allreduce.outputs) >= 1
), f"Found a allreduce that has zero outputs/users -- {allreduce}."
# Initialize the target node to avoid typing issues.
target_node = next(iter(next(iter(allreduce.outputs)).users))
target_node_index = 2**31
for user in (user for output in allreduce.outputs for user in output.users):
index = node_indices[user]
if index < target_node_index:
target_node = user
target_node_index = index
# Move wait nodes and all the subsequent nodes in the comm_block to
# before the first user -- target_node.
wait_idx = -1
for wait_idx, node in enumerate(allreduce.node_list):
if node == allreduce.wait_nodes[0]:
break
assert wait_idx >= 0
move_block_before(allreduce.node_list[wait_idx:], target_node)
def fuse_ddp_communication(
graph: fx.Graph, passes: List[Union[Callable[..., None], str]], bucket_size_mb: int
) -> None:
for i, pa in enumerate(passes):
with GraphTransformObserver(
graph.owning_module, f"fuse_ddp_communication_pass_{i}"
):
if isinstance(pa, str):
func = globals()[pa]
else:
func = pa
if "bucket_size_mb" in {
v.name for v in inspect.signature(func).parameters.values()
}:
func(graph, bucket_size_mb=bucket_size_mb)
else:
func(graph)
|