1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
# mypy: allow-untyped-defs
import functools
import torch
from torch._inductor.compile_fx import fake_tensor_prop
from torch._inductor.utils import GPU_TYPES
from ..._dynamo.utils import counters
from .. import config
from ..pattern_matcher import (
_return_true,
CallFunction,
fwd_only,
Ignored,
init_once_fakemode,
KeywordArg,
Match,
PatternMatcherPass,
register_graph_pattern,
register_replacement,
stable_topological_sort,
)
aten = torch.ops.aten
# First pass_patterns[0] are applied, then [1], then [2]
pass_patterns = [
PatternMatcherPass(),
PatternMatcherPass(),
PatternMatcherPass(),
]
binary_folding_pass = PatternMatcherPass()
def freezing_passes(gm: torch.fx.GraphModule, aot_example_inputs):
"""
Passes that are applied to the graph to freeze pass.
"""
from ..freezing import constant_fold
lazy_init()
# We need a few rounds of binary folding to get rid of all the
# unnecessary nodes, but may need a good method to chose the rounds number.
# works like: conv+binary+binary.
binary_folding = counters["inductor"]["binary_folding"]
fake_tensor_prop(gm, aot_example_inputs, True)
torch._inductor.fx_passes.binary_folding.mark_mixed_dtype_allowed_computation_ops(
gm
)
for _ in range(4):
constant_fold(gm)
# Make sure meta['val'] is properly set for all nodes
fake_tensor_prop(gm, aot_example_inputs, True)
binary_folding_pass.apply(gm.graph) # type: ignore[arg-type]
# If we don't have binary folding, we don't need to run the pass again.
# TODO: remove the need to run fake_tensor_prop on the whole model.
if counters["inductor"]["binary_folding"] == binary_folding:
break
binary_folding = counters["inductor"]["binary_folding"]
torch._inductor.fx_passes.binary_folding.recover_original_precision_folded_computation_ops(
gm
)
constant_fold(gm)
fake_tensor_prop(gm, aot_example_inputs, True)
for pattern in pass_patterns:
pattern.apply(gm.graph) # type: ignore[arg-type]
# The CPU weight packing always assume the conv's weight is channels last,
# So make sure the layout_optimization is on when doing it.
if (
torch._C._has_mkldnn
and config.cpp.weight_prepack
and config.layout_optimization
):
from .mkldnn_fusion import _eliminate_duplicate_packed_nodes
_eliminate_duplicate_packed_nodes(gm)
stable_topological_sort(gm.graph)
gm.recompile()
gm.graph.lint()
@init_once_fakemode
def lazy_init():
if torch._C._has_mkldnn and config.cpp.weight_prepack:
from .mkldnn_fusion import _mkldnn_weight_pack_init
_mkldnn_weight_pack_init()
from .binary_folding import binary_folding_init
addmm_patterns_init()
binary_folding_init()
def register_freezing_graph_pattern(pattern, extra_check=_return_true, pass_number=0):
return register_graph_pattern(
pattern,
extra_check=extra_check,
pass_dict=pass_patterns[pass_number],
)
def register_binary_folding_pattern(pattern, extra_check=_return_true):
return register_graph_pattern(
pattern,
extra_check=extra_check,
pass_dict=binary_folding_pass,
)
@functools.lru_cache(None)
def addmm_patterns_init():
device = next(
(gpu for gpu in GPU_TYPES if getattr(torch, gpu).is_available()), "cpu"
)
val = functools.partial(torch.empty, (10, 10), device=device, requires_grad=False)
def check_concat_weights(match):
is_cpu = match.kwargs["inp"].meta["val"].is_cpu
if is_cpu and not config.cpp.enable_concat_linear:
return False
weight_inputs = ["w1", "w2"]
if "w3" in match.kwargs:
weight_inputs.append("w3")
equal_shape_inputs = [weight_inputs]
if "b1" in match.kwargs:
bias_inputs = ["b1", "b2"]
if "b3" in match.kwargs:
bias_inputs.append("b3")
equal_shape_inputs.append(bias_inputs)
for equal_shape_group in equal_shape_inputs:
inps = [match.kwargs[name] for name in equal_shape_group]
if not all(
inp.op == "get_attr"
and inp.meta["val"].shape == inps[0].meta["val"].shape
for inp in inps
):
return False
return True
def matmul_fuse_pattern(inp, w1, w2, w3):
return (inp @ w1, inp @ w2, inp @ w3)
def matmul_replacement(inp, w1, w2, w3):
cat_t = torch.cat((w1, w2, w3), dim=1)
mm = inp @ cat_t
return mm.chunk(3, dim=1)
register_replacement(
matmul_fuse_pattern,
matmul_replacement,
[val(), val(), val(), val()],
fwd_only,
pass_patterns[0],
extra_check=check_concat_weights,
exclusive_arg_names=("w1", "w2", "w3"),
)
def matmul_fuse_pattern_two(inp, w1, w2):
return (inp @ w1, inp @ w2)
def matmul_replacement_two(inp, w1, w2):
cat_t = torch.cat((w1, w2), dim=1)
mm = inp @ cat_t
return mm.chunk(2, dim=1)
register_replacement(
matmul_fuse_pattern_two,
matmul_replacement_two,
[val(), val(), val()],
fwd_only,
pass_patterns[0],
extra_check=check_concat_weights,
exclusive_arg_names=("w1", "w2"),
)
def addmm_fuse_pattern_second(inp, w1, w2, w3, b1, b2, b3):
return (
aten.addmm(b1, inp, w1),
aten.addmm(b2, inp, w2),
aten.addmm(b3, inp, w3),
)
def addmm_fuse_replacement_second(inp, w1, w2, w3, b1, b2, b3):
cat_w = torch.cat((w1, w2, w3), dim=1)
cat_b = torch.cat((b1, b2, b3))
return aten.addmm(cat_b, inp, cat_w).chunk(3, dim=1)
register_replacement(
addmm_fuse_pattern_second,
addmm_fuse_replacement_second,
[val() for _ in range(7)],
fwd_only,
pass_patterns[0],
extra_check=check_concat_weights,
exclusive_arg_names=("w1", "w2", "w3", "b1", "b2", "b3"),
)
def same_dtype(match):
return match.output_node().args[0].meta["val"].dtype == match.kwargs["dtype"]
@register_graph_pattern(
CallFunction(
torch.ops.prims.convert_element_type.default,
Ignored(),
KeywordArg("dtype"),
),
pass_dict=pass_patterns[0],
extra_check=same_dtype,
)
def unnecessary_dtype_convert(match: Match, **kwargs):
"""Remove unnecessary dtype conversion op, probably left as a result of Conv-Bn folding"""
graph = match.graph
node = match.output_node()
node.replace_all_uses_with(node.args[0]) # type: ignore[arg-type]
graph.erase_node(node)
|