1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
# mypy: allow-untyped-defs
import operator
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Any, cast, Dict, List, Optional, Set
import torch
from .. import config, inductor_prims
from ..pattern_matcher import (
CallFunction,
Ignored,
KeywordArg,
ListOf,
Match,
MULTIPLE,
PatternExpr,
PatternMatcherPass,
)
aten = torch.ops.aten
patterns = PatternMatcherPass()
def _is_backward(graph: torch.fx.Graph) -> bool:
placeholders = []
for node in graph.nodes:
if node.op != "placeholder":
break
placeholders.append(node)
return not all(node.name.startswith("primal") for node in placeholders)
def _compute_mm_arithmetic_intensity(M: int, N: int, K: int) -> float:
return M * N * K / (M * K + N * K + M * N)
def _filter_nodes_by_target(nodes: List[torch.fx.Node], target) -> List[torch.fx.Node]:
return [x for x in nodes if x.target == target]
def _find_ancestors(node: torch.fx.Node) -> Set[torch.fx.Node]:
ancestors = set()
ancestors.add(node)
cur_nodes = [node]
while len(cur_nodes) > 0:
new_nodes = []
for node in cur_nodes:
for inp in node.all_input_nodes:
if inp not in ancestors:
ancestors.add(inp)
new_nodes.append(inp)
cur_nodes = new_nodes
return {node for node in ancestors if node.op != "placeholder"}
def _get_tensor(node: torch.fx.Node) -> torch.Tensor:
val = node.meta["val"]
assert isinstance(val, torch.Tensor)
return val
@dataclass
class _AllGatherMatch:
match: Match
shard_node: torch.fx.Node
ag_node: torch.fx.Node
res_node: torch.fx.Node
gather_dim: int
group_name: str
def replace_with(self, new_node: torch.fx.Node) -> None:
self.res_node.replace_all_uses_with(new_node)
def erase(self) -> None:
for node in reversed(self.match.nodes):
if len(node.users) == 0:
node.graph.erase_node(node)
def find_all_gather_patterns(graph: torch.fx.Graph):
c10d = torch.ops._c10d_functional
def make_zero_dim_all_gather_pattern(shard):
return CallFunction(
c10d.wait_tensor.default,
CallFunction(
c10d.all_gather_into_tensor.default,
shard,
Ignored(),
KeywordArg("group_name"),
),
)
# Matches funcol.all_gather_tensor with gather_dim == 0
zero_dim_all_gather_pattern = make_zero_dim_all_gather_pattern(KeywordArg("shard"))
def make_all_gather_split_pattern(shard):
return CallFunction(
operator.getitem,
CallFunction(
aten.split.Tensor,
make_zero_dim_all_gather_pattern(shard),
Ignored(),
_users=MULTIPLE,
),
Ignored(),
)
def make_cat_pattern(splits):
return CallFunction(
aten.cat.default,
ListOf(splits),
KeywordArg("gather_dim"),
)
# Matches funcol.all_gather_tensor with gather_dim > 0
non_zero_dim_all_gather_pattern = make_cat_pattern(
make_all_gather_split_pattern(KeywordArg("shard")),
)
# Match a zero-dim all-gather in which the data is transferred as uint8 and
# viewed back as the original dtype.
zero_dim_type_erased_all_gather_pattern = CallFunction(
aten.view.dtype,
make_zero_dim_all_gather_pattern(
KeywordArg("shard"),
),
Ignored(),
)
# Match a non-zero dim all-gather in which the data is transferred as uint8
# and viewed back as the original dtype.
non_zero_dim_type_erased_all_gather_pattern = CallFunction(
aten.view.dtype,
make_cat_pattern(
CallFunction(
aten.view.dtype,
make_all_gather_split_pattern(
KeywordArg("shard"),
),
Ignored(),
),
),
Ignored(),
)
# If two patterns with the same res_node_target have the same suffix, the
# longer pattern should appear first in the list.
# e.g. supposed we have (1) A -> B -> C -> D and (2) B -> C -> D, (1)
# should appear before (2) in the list.
res_node_target_to_patterns = {
aten.cat.default: [
(non_zero_dim_all_gather_pattern, 0),
],
aten.view.dtype: [
(non_zero_dim_type_erased_all_gather_pattern, 0),
(zero_dim_type_erased_all_gather_pattern, 0),
],
c10d.wait_tensor.default: [
(zero_dim_all_gather_pattern, 0),
],
}
# Match in reverse to ensure longer patterns is prioritized
all_gathers = []
visited_ag_nodes = set()
for node in reversed(graph.nodes):
for target, patterns in res_node_target_to_patterns.items():
if node.target != target:
continue
for pattern, ag_node_idx in patterns:
match = pattern.match(node)
if not match:
continue
assert isinstance(match, Match)
ag_node = match.nodes[ag_node_idx]
assert ag_node.target == c10d.all_gather_into_tensor.default
if ag_node in visited_ag_nodes:
continue
visited_ag_nodes.add(ag_node)
ag_match = _AllGatherMatch(
match=match,
shard_node=match.kwargs["shard"],
ag_node=ag_node,
res_node=node,
gather_dim=match.kwargs.get("gather_dim", 0),
group_name=match.kwargs["group_name"],
)
all_gathers.append(ag_match)
return list(reversed(all_gathers))
@dataclass
class _ReduceScatterMatch:
match: Match
input_node: torch.fx.Node
rs_node: torch.fx.Node
res_node: torch.fx.Node
reduce_op: str
scatter_dim: int
group_name: str
def replace_with(self, new_node: torch.fx.Node) -> None:
self.res_node.replace_all_uses_with(new_node)
def erase(self) -> None:
for node in reversed(self.match.nodes):
if len(node.users) == 0:
node.graph.erase_node(node)
def find_reduce_scatter_patterns(graph: torch.fx.Graph):
c10d = torch.ops._c10d_functional
def reduce_scatter_template(inp: PatternExpr):
return CallFunction(
c10d.wait_tensor.default,
CallFunction(
c10d.reduce_scatter_tensor.default,
inp,
KeywordArg("reduce_op"),
Ignored(),
KeywordArg("group_name"),
),
)
# Matches funcol.reduce_scatter_tensor with scatter_dim == 0
zero_dim_reduce_scatter_pattern = reduce_scatter_template(KeywordArg("input"))
# Matches funcol.reduce_scatter_tensor with scatter_dim > 0
non_zero_dim_reduce_scatter_pattern = reduce_scatter_template(
CallFunction(
aten.cat.default,
ListOf(
CallFunction(
operator.getitem,
CallFunction(
aten.split.Tensor,
KeywordArg("input"),
Ignored(),
KeywordArg("scatter_dim"),
_users=MULTIPLE,
),
Ignored(),
)
),
),
)
reduce_scatters = []
for node in reversed(graph.nodes):
if node.target == c10d.wait_tensor.default:
if match := non_zero_dim_reduce_scatter_pattern.match(node):
assert isinstance(match, Match)
reduce_scatters.append(
_ReduceScatterMatch(
match=match,
input_node=match.kwargs["input"],
rs_node=match.nodes[-2],
res_node=node,
reduce_op=match.kwargs["reduce_op"],
scatter_dim=match.kwargs["scatter_dim"],
group_name=match.kwargs["group_name"],
)
)
elif match := zero_dim_reduce_scatter_pattern.match(node):
assert isinstance(match, Match)
reduce_scatters.append(
_ReduceScatterMatch(
match=match,
input_node=match.kwargs["input"],
rs_node=match.nodes[0],
res_node=node,
reduce_op=match.kwargs["reduce_op"],
scatter_dim=0,
group_name=match.kwargs["group_name"],
)
)
return list(reversed(reduce_scatters))
@dataclass
class _Matmul:
nodes: List[torch.fx.Node]
arg_ancestor_nodes: Set[torch.fx.Node] = field(init=False)
A_node: torch.fx.Node
B_node: torch.fx.Node
def __post_init__(self):
assert len(self.nodes) in (1, 3)
if len(self.nodes) == 1:
assert self.nodes[0].target in (aten.mm.default, aten._scaled_mm.default)
else:
assert self.nodes[0].target == aten.reshape.default
assert self.nodes[1].target in (aten.mm.default, aten._scaled_mm.default)
assert self.nodes[2].target == aten.reshape.default
self.arg_ancestor_nodes = _find_ancestors(self.B_node)
def replace_with(self, new_node: torch.fx.Node) -> None:
"""
Replace the matmul with the new node.
"""
graph = new_node.graph
# For 2D-matmuls, we simply replace the mm node with `new_node`.
if len(self.nodes) == 1:
mm_node = self.nodes[0]
assert mm_node.target in (aten.mm.default, aten._scaled_mm.default)
mm_node.replace_all_uses_with(new_node)
graph.erase_node(mm_node)
return
# An ND-matmul is reshape -> mm -> reshape sequence. We first replace
# the second reshape node with `new_node`. Then, we ensure that the
# original mm node in the sequence ends up with zero users by replacing
# it with a reverse reshape of `new_node`.
graph = new_node.graph
assert len(self.nodes) == 3
mm_node = self.nodes[1]
output_reshape_node = self.nodes[2]
assert mm_node.target in (aten.mm.default, aten._scaled_mm.default)
assert output_reshape_node.target == aten.reshape.default
output_reshape_node.replace_all_uses_with(new_node)
if len(mm_node.users) > 1:
with graph.inserting_after(new_node):
new_mm_node = graph.call_function(
aten.reshape.default,
args=(new_node, list(_get_tensor(mm_node).shape)),
)
mm_node.replace_all_uses_with(new_mm_node)
def erase(self) -> None:
for node in reversed(self.nodes):
if len(node.users) == 0:
node.graph.erase_node(node)
@classmethod
def from_match(cls, match: List[torch.fx.Node]) -> "_Matmul":
assert len(match) in (1, 3)
assert match[0].target in (
aten.mm.default,
aten.reshape.default,
)
mm_node = match[0] if len(match) == 1 else match[1]
return _Matmul(
nodes=match,
A_node=cast(torch.fx.Node, match[0].args[0]),
B_node=cast(torch.fx.Node, mm_node.args[1]),
)
@dataclass
class _ScaledMatmul(_Matmul):
A_scale_node: torch.fx.Node
B_scale_node: torch.fx.Node
bias_node: Optional[torch.fx.Node]
result_scale_node: Optional[torch.fx.Node]
out_dtype: Optional[torch.dtype]
use_fast_accum: bool
def __post_init__(self):
super().__post_init__()
self.arg_ancestor_nodes |= _find_ancestors(self.A_scale_node)
self.arg_ancestor_nodes |= _find_ancestors(self.B_scale_node)
@classmethod
def from_match(cls, match: List[torch.fx.Node]) -> "_ScaledMatmul":
assert len(match) in (1, 3)
assert match[0].target in (
aten._scaled_mm.default,
aten.reshape.default,
)
mm_node = match[0] if len(match) == 1 else match[1]
def get_arg(node: torch.fx.Node, idx: int, default: Any) -> Any:
if idx >= len(node.args):
return default
return node.args[idx]
return _ScaledMatmul(
nodes=match,
A_node=cast(torch.fx.Node, match[0].args[0]),
B_node=cast(torch.fx.Node, mm_node.args[1]),
A_scale_node=cast(torch.fx.Node, mm_node.args[2]),
B_scale_node=cast(torch.fx.Node, mm_node.args[3]),
bias_node=get_arg(mm_node, 4, None),
result_scale_node=get_arg(mm_node, 5, None),
out_dtype=get_arg(mm_node, 6, None),
use_fast_accum=get_arg(mm_node, 7, False),
)
def _find_reshape_mm_reshape(node: torch.fx.Node) -> List[_Matmul]:
if node.target != aten.reshape.default:
return []
matches = []
for mm_node in node.users:
if mm_node.target not in (aten.mm.default, aten._scaled_mm.default):
continue
for reshape_node in mm_node.users:
if reshape_node.target != aten.reshape.default:
continue
# Since the reshape -> mm -> reshape pattern would be subsumed into
# the fused op, we only match the patterns where the shape of the
# second reshape is matches the mm result produced by the fused op.
matmul_input_node = cast(torch.fx.Node, node.args[0])
B_node = cast(torch.fx.Node, mm_node.args[1])
matmul_out_shape = torch.Size(
[
*_get_tensor(matmul_input_node).shape[:-1],
_get_tensor(B_node).shape[-1],
]
)
if _get_tensor(reshape_node).shape != matmul_out_shape:
continue
matches.append([node, mm_node, reshape_node])
# If for some rare reason mm_node is being reshaped by two
# different reshape nodes, we only include mm_node once in the
# parsing result.
break
matmuls = []
for match in matches:
mm_node = match[1]
if mm_node.target == aten.mm.default:
matmul = _Matmul.from_match(match)
matmuls.append(matmul)
elif mm_node.target == aten._scaled_mm.default:
matmul = _ScaledMatmul.from_match(match)
matmuls.append(matmul)
else:
raise AssertionError(
"Expect the node's target to be either aten.mm.default or "
f"aten._scaled_mm.default. Got {mm_node.target}."
)
return matmuls
def _find_consumer_matmuls(node: torch.fx.Node) -> List[_Matmul]:
"""
Find the matmuls that use `node` as the lhs argument.
"""
matmuls = []
for user in node.users:
# ND matmuls
if user.target == aten.reshape.default:
matmuls.extend(_find_reshape_mm_reshape(user))
# 2D matmuls
elif user.target == aten.mm.default:
matmul = _Matmul.from_match(match=[user])
matmuls.append(matmul)
elif user.target == aten._scaled_mm.default:
matmul = _ScaledMatmul.from_match([user])
matmuls.append(matmul)
return matmuls
def _insert_fused_all_gather_matmul(
graph: torch.fx.Graph,
matmuls: List[_Matmul],
shard_node: torch.fx.Node,
gather_dim: int,
group_name: str,
) -> torch.fx.Node:
mm_types = set(map(type, matmuls))
assert len(mm_types) == 1
mm_type = next(iter(mm_types))
if mm_type == _Matmul:
B_nodes = [matmul.B_node for matmul in matmuls]
return graph.call_function(
torch.ops.symm_mem.fused_all_gather_matmul.default,
args=(shard_node, B_nodes, gather_dim, group_name),
)
elif mm_type == _ScaledMatmul:
scaled_matmuls = cast(List[_ScaledMatmul], matmuls)
return graph.call_function(
torch.ops.symm_mem.fused_all_gather_scaled_matmul.default,
args=(
shard_node,
[matmul.B_node for matmul in scaled_matmuls],
scaled_matmuls[0].A_scale_node,
[matmul.B_scale_node for matmul in scaled_matmuls],
gather_dim,
group_name,
[matmul.bias_node for matmul in scaled_matmuls],
[matmul.result_scale_node for matmul in scaled_matmuls],
[matmul.out_dtype for matmul in scaled_matmuls],
[matmul.use_fast_accum for matmul in scaled_matmuls],
),
)
else:
raise AssertionError(f"Unexpected matmul match type: {mm_type}")
def fuse_all_gather_matmul(all_gather: _AllGatherMatch) -> None:
"""
Fused the pattern
A = all_gather_tensor(A_shard, gather_dim, group_name)
C_0 = torch.matmul(A, B_0)
C_1 = torch.matmul(A, B_1)
C_2 = torch.matmul(A, B_2)
...
into
A, Cs = torch.ops.symm_mem.fused_all_gather_matmul(
A_shard, [B_0, B_1, B_2, ...], gather_dim, group_name,
)
"""
if (
not torch.distributed.is_available()
or not torch.distributed.is_nccl_available()
):
return
c10d = torch.ops._c10d_functional
from torch.distributed._symmetric_memory import (
is_symm_mem_enabled_for_group,
restride_A_shard_for_fused_all_gather_matmul,
)
shard_node, ag_node, ag_res_node, gather_dim, group_name = (
all_gather.shard_node,
all_gather.ag_node,
all_gather.res_node,
all_gather.gather_dim,
all_gather.group_name,
)
if not is_symm_mem_enabled_for_group(group_name):
return
if gather_dim >= len(_get_tensor(shard_node).shape) - 1:
# Decomposing the matmul on the K dimension is not supported
return
# Find consumer matmuls
matmuls = _find_consumer_matmuls(ag_res_node)
# The matmuls are only fusible if non-A args don't depend on the all-gather
# result node
matmuls = [
matmul
for matmul in matmuls
if all_gather.res_node not in matmul.arg_ancestor_nodes
]
if len(matmuls) == 0 or len(set(map(type, matmuls))) != 1:
return
# Fuse the all_gather_tensor with the eligible matmuls
graph = ag_node.graph
with graph.inserting_before(ag_node):
if "val" in shard_node.meta:
restrided = restride_A_shard_for_fused_all_gather_matmul(
_get_tensor(shard_node),
gather_dim,
)
shard_node = graph.call_function(
inductor_prims.force_stride_order,
args=(shard_node, restrided.stride()),
)
fused_node = _insert_fused_all_gather_matmul(
graph, matmuls, shard_node, gather_dim, group_name
)
new_ag_node = graph.call_function(
operator.getitem,
args=(fused_node, 0),
)
new_out_nodes = graph.call_function(
operator.getitem,
args=(fused_node, 1),
)
for idx, matmul in enumerate(matmuls):
new_out_node = graph.call_function(
operator.getitem,
args=(new_out_nodes, idx),
)
matmul.replace_with(new_out_node)
matmul.erase()
all_gather.replace_with(new_ag_node)
all_gather.erase()
# Raise ancestors of non-A args that are topologically ordered between
# ag_res_node and the matmul above fused_node.
order = {node: idx for idx, node in enumerate(graph.nodes)}
nodes_to_raise = sorted(
{x for matmul in matmuls for x in matmul.arg_ancestor_nodes},
key=lambda x: order[x],
)
for node in nodes_to_raise:
if order[node] > order[fused_node]:
fused_node.prepend(node)
def _find_producer_matmul(node: torch.fx.Node) -> Optional[_Matmul]:
if node.target == aten.mm.default:
return _Matmul.from_match(match=[node])
elif node.target == aten._scaled_mm.default:
return _ScaledMatmul.from_match(match=[node])
elif node.target == aten.reshape.default:
reshape_node_1 = node
mm_node = reshape_node_1.args[0]
assert isinstance(mm_node, torch.fx.Node)
if mm_node.target not in (aten.mm.default, aten._scaled_mm.default):
return None
reshape_node_0 = mm_node.args[0]
assert isinstance(reshape_node_0, torch.fx.Node)
if reshape_node_0.target != aten.reshape.default:
return None
if mm_node.target == aten.mm.default:
return _Matmul.from_match(match=[reshape_node_0, mm_node, reshape_node_1])
elif mm_node.target == aten._scaled_mm.default:
return _ScaledMatmul.from_match(
match=[reshape_node_0, mm_node, reshape_node_1]
)
return None
def _insert_fused_matmul_reduce_scatter(
graph: torch.fx.Graph,
matmul: _Matmul,
reduce_op: str,
scatter_dim: int,
group_name: str,
) -> torch.fx.Node:
if type(matmul) == _Matmul:
return graph.call_function(
torch.ops.symm_mem.fused_matmul_reduce_scatter.default,
args=(matmul.A_node, matmul.B_node, reduce_op, scatter_dim, group_name),
)
elif type(matmul) == _ScaledMatmul:
return graph.call_function(
torch.ops.symm_mem.fused_scaled_matmul_reduce_scatter.default,
args=(
matmul.A_node,
matmul.B_node,
matmul.A_scale_node,
matmul.B_scale_node,
reduce_op,
scatter_dim,
group_name,
matmul.bias_node,
matmul.result_scale_node,
matmul.out_dtype,
matmul.use_fast_accum,
),
)
else:
raise AssertionError(f"Unexpected matmul match type: {type(matmul)}")
def fuse_matmul_reduce_scatter(reduce_scatter: _ReduceScatterMatch) -> None:
"""
Fused the pattern
reduce_scatter_tensor(A @ B, scatter_dim, group_name)
into
torch.ops.symm_mem.fused_matmul_reduce_scatter(
A, B, scatter_dim, group_name,
)
"""
if (
not torch.distributed.is_available()
or not torch.distributed.is_nccl_available()
):
return
c10d = torch.ops._c10d_functional
from torch.distributed._symmetric_memory import (
is_symm_mem_enabled_for_group,
restride_A_for_fused_matmul_reduce_scatter,
)
input_node, rs_node, rs_res_node, reduce_op, scatter_dim, group_name = (
reduce_scatter.input_node,
reduce_scatter.rs_node,
reduce_scatter.res_node,
reduce_scatter.reduce_op,
reduce_scatter.scatter_dim,
reduce_scatter.group_name,
)
if not is_symm_mem_enabled_for_group(group_name):
return
# Currently fused_matmul_reduce_scatter doesn't return the matmul result,
# so we can't apply the fusion if the matmul result is used by multiple
# users. This is not a fundamental limitation of the fused op and can be
# addressed if needed.
if len(input_node.users) != 1:
return
matmul = _find_producer_matmul(input_node)
if matmul is None:
return
if rs_res_node in matmul.arg_ancestor_nodes:
return
graph = rs_res_node.graph
with graph.inserting_before(rs_res_node):
if "val" in matmul.A_node.meta:
restrided = restride_A_for_fused_matmul_reduce_scatter(
_get_tensor(matmul.A_node),
scatter_dim,
)
matmul.A_node = graph.call_function(
inductor_prims.force_stride_order,
args=(matmul.A_node, restrided.stride()),
)
fused_node = _insert_fused_matmul_reduce_scatter(
graph,
matmul,
reduce_op,
scatter_dim,
group_name,
)
reduce_scatter.replace_with(fused_node)
reduce_scatter.erase()
matmul.erase()
order = {node: idx for idx, node in enumerate(graph.nodes)}
nodes_to_raise = sorted(
matmul.arg_ancestor_nodes,
key=lambda x: order[x],
)
for node in nodes_to_raise:
if order[node] > order[fused_node]:
fused_node.prepend(node)
def _get_node_to_ancestors(
graph: torch.fx.Graph,
) -> Dict[torch.fx.Node, Set[torch.fx.Node]]:
"""
Compute the ancestors for all nodes in a graph.
"""
node_to_ancestors = defaultdict(set)
for node in graph.nodes:
node_to_ancestors[node] = set(node.all_input_nodes)
for dep in node.all_input_nodes:
node_to_ancestors[node] |= node_to_ancestors[dep]
return node_to_ancestors
def _get_collective_to_overlappable_nodes(
graph: torch.fx.Graph,
) -> Dict[torch.fx.Node, List[torch.fx.Node]]:
"""
For each collective in the graph, find nodes that are neither ancestors nor
descendants of the collective.
"""
def is_collective(node) -> bool:
# Only consider all-gather and reduce-scatter in the context of
# micro-pipeline TP.
return node.target in [
torch.ops._c10d_functional.all_gather_into_tensor.default,
torch.ops._c10d_functional.reduce_scatter_tensor.default,
]
node_to_ancestors = _get_node_to_ancestors(graph)
collective_to_overlappable_nodes = defaultdict(list)
for node in graph.nodes:
if not is_collective(node):
continue
for x in graph.nodes:
if (
node not in node_to_ancestors[x]
and x not in node_to_ancestors[node]
and x.op == "call_function"
):
collective_to_overlappable_nodes[node].append(x)
return collective_to_overlappable_nodes
def _get_unexposed_collectives(graph: torch.fx.Graph) -> List[torch.fx.Node]:
"""
Find all unexposed collectives in the graph.
Because we don't have the runtime estimate, this function is a rough
estimation using the following strong/hand-wavy assumptions:
- Only a predefined set of "compute intensive" operation can hide a collective.
- Any "compute intensive" operation can hide exactly one collective.
"""
def _is_compute_intensive(node: torch.fx.Node) -> bool:
return node.target in [torch.ops.aten.mm.default]
collective_to_overlapping_candidates = defaultdict(list)
available_nodes = set()
collective_to_overlappable_nodes = _get_collective_to_overlappable_nodes(graph)
for collective, overlappable_nodes in collective_to_overlappable_nodes.items():
candidates = [x for x in overlappable_nodes if _is_compute_intensive(x)]
collective_to_overlapping_candidates[collective] = candidates
available_nodes |= set(candidates)
unexposed_collectives = []
for (
collective,
overlapping_candidates,
) in collective_to_overlapping_candidates.items():
# Each collective consumes exactly one overlapping candidate
for x in overlapping_candidates:
if x in available_nodes:
unexposed_collectives.append(collective)
available_nodes.remove(x)
break
return unexposed_collectives
def micro_pipeline_tp_pass(graph: torch.fx.Graph):
all_gathers = find_all_gather_patterns(graph)
reduce_scatters = find_reduce_scatter_patterns(graph)
# When a collective can be hidden through either simple overlapping or
# micro-pipeline TP, we prefer simple overlapping to avoid the overhead
# associated with decomposition. If reorder_for_compute_comm_overlap is
# enabled, we identify collectives that can be hidden through simple
# overlapping and exclude them from micro-pipeline TP candidates.
if config.reorder_for_compute_comm_overlap:
unexposed_collectives = _get_unexposed_collectives(graph)
all_gathers = [x for x in all_gathers if x.ag_node not in unexposed_collectives]
reduce_scatters = [
x for x in reduce_scatters if x.rs_node not in unexposed_collectives
]
for all_gather in all_gathers:
fuse_all_gather_matmul(all_gather)
for reduce_scatter in reduce_scatters:
fuse_matmul_reduce_scatter(reduce_scatter)
|