1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
# mypy: allow-untyped-defs
import gc
import logging
import os
import random
import traceback
import numpy
import torch
import torch.optim as optim
from .. import config
logger: logging.Logger = logging.getLogger(__name__)
MAIN_RANDOM_SEED = 1337
# Set the CUBLAS_WORKSPACE_CONFIG environment variable
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
# If the two forward functions involve any non-deterministic operations,
# such as certain types of parallelism or asynchronous execution,
# this can also lead to different outputs.
def set_deterministic() -> None:
"""Make torch manual seed deterministic."""
torch.manual_seed(MAIN_RANDOM_SEED)
random.seed(MAIN_RANDOM_SEED)
numpy.random.seed(MAIN_RANDOM_SEED)
torch.use_deterministic_algorithms(True)
def clean_memory() -> None:
"""Clean memory to avoid OOM."""
gc.collect()
torch.cuda.empty_cache()
# We compare the numerical results before and after pre/post grad fx passes
# transformation to make sure the numerical results are the same.
def compare_dict_tensors(dict_base, dict_control, precision):
if len(set(dict_base.keys())) != len(set(dict_control.keys())):
logger.warning("Mismatch keys found before and after pre/post grad fx passes.")
logger.debug("keys before pre/post grad fx passes %s", dict_base.keys())
logger.debug("keys after pre/post grad fx passes %s", dict_control.keys())
return False
is_allclose = True
for key in dict_base.keys():
if key not in dict_control:
logger.warning(
"Mismatch parameter name %s does not exist after pre/post grad fx passes",
key,
)
# Some parameters have `None`, and not every param has a valid .grad field, we skip them
if dict_base[key] is None or dict_control[key] is None:
continue
if not torch.allclose(
dict_base[key],
dict_control[key],
rtol=precision,
atol=precision,
equal_nan=True,
):
logger.warning(
"Mismatch parameter values found before and after pre/post grad fx passes."
)
logger.debug("value before pre/post grad fx passes %s", dict_base[key])
logger.debug("value after pre/post grad fx passes %s", dict_control[key])
is_allclose = False
return is_allclose
def compare_tuple_tensors(tuple_base, tuple_control, precision):
if len(tuple_base) != len(tuple_control):
logger.warning(
"Mismatch fw output length. before transformation: %s, after transformation: %s",
len(tuple_base),
len(tuple_control),
)
return False
is_allclose = True
for i in range(len(tuple_base)):
# Some parameters have `None`, we skip them
if tuple_base[i] is None or tuple_control[i] is None:
continue
if not torch.allclose(
tuple_base[i],
tuple_control[i],
rtol=precision,
atol=precision,
equal_nan=True,
):
logger.debug(
"forward output before pre/post grad fx passes %s", tuple_base[i]
)
logger.debug(
"forward output after pre/post grad fx passes %s", tuple_control[i]
)
is_allclose = False
return is_allclose
def compare_parameters(model_base, model_control, precision):
return compare_dict_tensors(
dict(model_base.named_parameters()),
dict(model_control.named_parameters()),
precision,
)
def compare_forward_output(pred_base, pred_control, precision):
return compare_tuple_tensors(
pred_base,
pred_control,
precision,
)
def compare_gradients(model_base, model_control, precision):
grad_base = {key: param.grad for key, param in model_base.named_parameters()}
grad_pt2 = {key: param.grad for key, param in model_control.named_parameters()}
return compare_dict_tensors(
grad_base,
grad_pt2,
precision,
)
def run_model(
model_base, model_control, model_input, num_iterations=10, precision=1e-4
):
clean_memory()
for i in range(num_iterations):
logger.info("start %s iteration", i)
set_deterministic()
pred_base = model_base(*model_input)
set_deterministic()
pred_control = model_control(*model_input)
res = compare_parameters(model_base, model_control, precision)
logger.info("compare parameters. Numerical result : %s", res)
res = compare_forward_output(pred_base, pred_control, precision)
logger.info("compare loss/predict. Numerical result : %s", res)
# tensor may not have a grad_fn
try:
_ = pred_base[0].sum().backward(retain_graph=True)
_ = pred_control[0].sum().backward(retain_graph=True)
res = compare_gradients(model_base, model_control, precision)
logger.info("compare param grad. Numerical result : %s", res)
except Exception:
logger.exception("Exception when comparing gradients")
traceback.print_exc()
if config.fx_passes_numeric_check["requires_optimizer"]:
try:
optimizer_base = optim.SGD(
[param for name, param in model_base.named_parameters()], lr=0.01
)
optimizer_base.step()
optimizer_control = optim.SGD(
[param for name, param in model_control.named_parameters()], lr=0.01
)
optimizer_control.step()
res = compare_parameters(model_base, model_control, precision)
logger.info(
"compare parameters with optimizer added. Numerical result : %s",
res,
)
except Exception as e:
logger.exception(
"Exception when optimizer is added to check parameter names"
)
traceback.print_exc()
else:
logger.warning(
"no parameter with optimizer to compare with length %s before transformation"
" and the length %s after transformation",
len(dict(model_base.named_parameters())),
len(dict(model_control.named_parameters())),
)
def numeric_check_if_enabled(
gm_before_fx_passes,
gm_after_fx_passes,
example_inputs,
num_iterations,
precision,
):
# need to topo-sort graphmodule before we run the model,
# otherwise it may fail as refer before def
# fail silently in order not to block the model run
try:
with torch.autograd.set_detect_anomaly(True):
run_model(
gm_before_fx_passes,
gm_after_fx_passes,
example_inputs,
num_iterations=num_iterations,
precision=precision,
)
except Exception as e:
logger.warning(
"Runtime numeric check failed in pre grad fx passes with error: %s", e
)
traceback.print_exc()
|