1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
|
# mypy: allow-untyped-defs
import functools
import itertools
import operator
import typing
from typing import Callable, List, Optional, Union
import torch
import torch._inductor.runtime.runtime_utils
from torch import Tensor
from torch._dynamo.utils import counters, dynamo_timed
from torch._inductor import utils
from torch._inductor.autoheuristic.autoheuristic import (
AHContext,
AutoHeuristic,
LocalFeedback,
)
from torch._inductor.autoheuristic.autoheuristic_utils import (
context_add_strides,
context_add_using_tf32,
pad_mm_operations,
pad_mm_precondition,
)
from torch._subclasses.fake_tensor import FakeTensor
from torch.utils._mode_utils import no_dispatch
from ...utils._triton import has_triton
from ..pattern_matcher import (
fwd_only,
gen_register_replacement,
joint_fwd_bwd,
Match,
ReplaceFn,
SearchFn,
)
aten = torch.ops.aten
# This flag is only used for testing purpose.
# Changing it to True will ignore comparing do_bench times
# between original pattern and padded one.
_skip_do_bench_times = False
def fetch_fake_tensors(match, kwarg_names) -> List[Tensor]:
kwargs = match.kwargs
return [kwargs[name].meta["val"] for name in kwarg_names]
def unwrap_fake_args(*arg_names):
def decorator(func):
def wrapper(match):
fake_tensors = fetch_fake_tensors(match, arg_names)
return func(*fake_tensors)
return wrapper
return decorator
def get_alignment_size(x: Tensor) -> int:
return get_alignment_size_dtype(x.dtype)
def get_alignment_size_dtype(dtype: torch.dtype) -> int:
if dtype == torch.float16 or dtype == torch.half or dtype == torch.bfloat16:
return 8
elif dtype == torch.float32 or dtype == torch.float:
return 4
else:
return 0
def check_device(a: Tensor, b: Tensor) -> bool:
return a.is_cuda and b.is_cuda
def check_dtype(a: Tensor, b: Tensor) -> bool:
return a.is_floating_point() and b.is_floating_point()
def should_pad_common(
mat1: Tensor, mat2: Tensor, input: Optional[Tensor] = None
) -> bool:
# It's fine we have symbolic shapes or strides as long as they
# have hints. Later, we will make sure we only pad non-symbolic dimensions.
def valid_shape_and_stride(t: Optional[Tensor]) -> bool:
if t is None:
return True
symbolic_cnt = 0
for x in t.size():
if isinstance(x, int):
continue
elif utils.is_symbolic(x):
if not x.node.has_hint():
return False
symbolic_cnt += 1
else:
return False
# filter out cases where all dimentions are symbolic
if symbolic_cnt == len(t.size()):
return False
return all(
isinstance(x, int) or (utils.is_symbolic(x) and x.node.has_hint())
for x in t.stride()
)
return (
torch._inductor.config.shape_padding
and check_device(mat1, mat2)
and check_dtype(mat1, mat2)
and all(valid_shape_and_stride(t) for t in (mat1, mat2, input))
)
def get_padded_length(x: Union[int, torch.SymInt], alignment_size) -> int:
# we don't pad x if it is symbolic
if isinstance(x, torch.SymInt) or alignment_size == 0 or x % alignment_size == 0:
return 0
# ignore dim that can be squeezed away
if x == 1:
return 0
return int((x // alignment_size + 1) * alignment_size) - x
def pad_dim(x: Tensor, padded_length: int, dim: int) -> Tensor:
if padded_length == 0:
return x
pad = x.new_zeros(*x.shape[:dim], padded_length, *x.shape[dim + 1 :])
return torch.cat([x, pad], dim=dim)
def addmm_pattern(
input: Tensor, mat1: Tensor, mat2: Tensor, beta: float, alpha: float
) -> Tensor:
return aten.addmm(input, mat1, mat2, beta=beta, alpha=alpha)
def should_pad_addmm(match: Match) -> bool:
mat1, mat2, input = fetch_fake_tensors(match, ("mat1", "mat2", "input"))
return should_pad_common(mat1, mat2, input) and should_pad_bench(
match, mat1, mat2, torch.ops.aten.addmm, input=input
)
def pad_addmm(
input: Optional[Tensor],
mat1: Tensor,
mat2: Tensor,
m_padded_length: int,
k_padded_length: int,
n_padded_length: int,
beta=1.0,
alpha=1.0,
mat1_pre_padded: bool = False,
mat2_pre_padded: bool = False,
):
# for paddings, dim order is reversed for some reasons
# and for every dim, we need to specify left and right padding
if not mat1_pre_padded:
mat1 = pad_mat1(
mat1, m_padded_length=m_padded_length, k_padded_length=k_padded_length
)
if not mat2_pre_padded:
mat2 = pad_mat2(
mat2, k_padded_length=k_padded_length, n_padded_length=n_padded_length
)
# the add broadcasts, so we only pad if the dimension != 1
if input is not None:
if n_padded_length != 0:
if input.dim() == 2 and input.shape[1] != 1:
input = pad_dim(input, n_padded_length, 1)
elif input.dim() == 1 and input.shape[0] != 1:
input = pad_dim(input, n_padded_length, 0)
if m_padded_length != 0 and input.dim() == 2 and input.shape[0] != 1:
input = pad_dim(input, m_padded_length, 0)
res = aten.addmm(input, mat1, mat2, beta=beta, alpha=alpha)
if m_padded_length != 0:
res = res[:-m_padded_length, :]
if n_padded_length != 0:
res = res[:, :-n_padded_length]
return res
def addmm_replace(
input: Optional[Tensor], mat1: Tensor, mat2: Tensor, beta=1.0, alpha=1.0
) -> Tensor:
k_padded_length = get_padded_length(mat1.shape[1], get_alignment_size(mat1))
n_padded_length = get_padded_length(mat2.shape[1], get_alignment_size(mat2))
m_padded_length = get_padded_length(mat1.shape[0], get_alignment_size(mat1))
return pad_addmm(
input,
mat1,
mat2,
m_padded_length,
k_padded_length,
n_padded_length,
beta,
alpha,
)
def is_mm_compute_bound(M: int, K: int, N: int, dtype: torch.dtype) -> bool:
denominator = M * K + N * K + M * N
if denominator == 0:
return False
arithmetic_intensity = (M * N * K) / denominator
# we have experienced some large perf hits in this case, even in bandwidth bound regimes
if (
dtype is torch.bfloat16
and K > M
and K > N
and torch.cuda.get_device_capability() < (9, 0)
): # doesnt repro on h100s:
return True
# Fails with AMD
try:
machine_balance = (
1000 * utils.get_device_tflops(dtype)
) / utils.get_gpu_dram_gbps()
except Exception:
return True
# dram_gbps might be underestimating bandwidth because of cache.
# if we estimate machine balance too low we might miss some speedups,
# if we extimate too high there will be unnecessary compilation time increase.
# TODO - finetune coefficient here. As a reference point, Triton mm model assumes
# 80% of reads are in cache and cache is 4x faster than dram_gbps
machine_balance = machine_balance * 0.5
return arithmetic_intensity > machine_balance
@functools.lru_cache(None)
def get_pad_cache():
return torch._inductor.codecache.LocalCache()
def get_cached_should_pad(key: str) -> bool:
return get_pad_cache().lookup(key)
def set_cached_should_pad(key: str, value: bool):
return get_pad_cache().set_value(key, value=value)
def get_cached_base_mm_benchmark_time(key: str) -> float:
return get_pad_cache().lookup(key)
def set_cached_base_mm_benchmark_time(key: str, value: float):
return get_pad_cache().set_value(key, value=value)
def should_pad_bench_key(
match,
mat1: Tensor,
mat2: Tensor,
op,
input: Optional[Tensor] = None,
is_base_time_key=False,
) -> str:
def tensor_key(t):
return (t.shape, t.stride(), t.dtype)
tf32_key = (
None if mat1.dtype != torch.float32 else torch.backends.cuda.matmul.allow_tf32
)
def fmt_pad(name):
if is_base_time_key:
return None
return f"exclude_pad:{should_exclude_padding_time(match, name)}"
key = (
tensor_key(mat1),
tensor_key(mat2),
fmt_pad("mat1"),
fmt_pad("mat2"),
op,
input if input is None else tensor_key(input),
tf32_key,
)
key = str(key)
if is_base_time_key:
key = f"base mm time: {key}"
return key
def get_non_view_def(node):
if node.op == operator.getitem:
return get_non_view_def(node.args[0])
if (
node.op == "call_function"
and isinstance(node.target, torch._ops.OpOverload)
and utils.is_view(node.target)
):
return get_non_view_def(node.all_input_nodes[0])
return node
def should_exclude_padding_time(match, arg_name):
node_def = get_non_view_def(match.kwargs[arg_name])
# constant padding converts tensors to contiguous so even if the input tensor
# can be planned layout transform is not free. TODO - way to pad and preserve layout ?
if not fetch_fake_tensors(match, (arg_name,))[0].is_contiguous():
return False
# TODO - see issue https://githpub.com/pytorch/pytorch/issues/128889
# We would only able to completely plan these out if we were only doing
# first dimension padding. non-first we would still need a copy
# because these outputs are fixed dense.
cannot_plan_output = [
aten.mm.default,
aten.convolution.default,
aten.convolution_backward.default,
aten.bmm.default,
aten.addmm.default,
aten._scaled_dot_product_flash_attention.default,
aten._scaled_dot_product_efficient_attention.default,
]
if node_def.target in cannot_plan_output:
return False
if (
node_def.target == aten.cat.default
and len(node_def.all_input_nodes)
> torch._inductor.config.max_pointwise_cat_inputs
):
return False
# optimistically assume we should be able to memory plan away
# all non inputs
return node_def.op != "placeholder"
def should_pad(key: str, ori_time, pad_time) -> bool:
multiplier = 1.1
# Shape padding introduces additional memory ops. Based on microbenchmarks, 1.1x represents a reasonable
# tradeoff between performance improvement from shape padding and overhead from additional memory ops
# TODO: Build a learned model which would be better than this heuristic
if "shape_padding_multiplier" in torch._inductor.config.post_grad_fusion_options:
multiplier = torch._inductor.config.post_grad_fusion_options[
"shape_padding_multiplier"
].get("value", 1.1)
counters["inductor"]["shape_padding_multiplier"] += 1
should_pad = _skip_do_bench_times or ori_time > pad_time * multiplier
set_cached_should_pad(key, should_pad)
return should_pad
def should_pad_mm_bf16(dtype, M, N, K):
# always force pad for mm with bf16 when the following are satisfied to avoid perf regression
large_k_threshold_to_pad = torch._inductor.config.post_grad_fusion_options[
"pad_aten_mm_pass"
].get("k_threshold_to_pad", 8388608)
if (
dtype is torch.bfloat16
and K > M
and K > N
and N % 2 == 1
and K >= large_k_threshold_to_pad
and torch.cuda.get_device_capability() < (9, 0)
): # doesnt repro on h100s:
return True
return False
def should_pad_bench(*args, **kwargs):
with dynamo_timed("pad_mm_benchmark"):
return _should_pad_bench(*args, **kwargs)
def _should_pad_bench(
match, mat1: Tensor, mat2: Tensor, op, input: Optional[Tensor] = None
) -> bool:
do_bench = functools.partial(
torch._inductor.runtime.benchmarking.benchmarker.benchmark_gpu,
warmup=5,
)
m_padded_length = 0
n_padded_length = 0
batchsize = 1
with no_dispatch():
if op is torch.ops.aten.mm or op is torch.ops.aten.addmm:
m = mat1.shape[0]
k = mat1.shape[1]
n = mat2.shape[1]
k_padded_length = get_padded_length(k, get_alignment_size(mat1))
n_padded_length = get_padded_length(n, get_alignment_size(mat2))
m_padded_length = get_padded_length(m, get_alignment_size(mat1))
elif op is torch.ops.aten.bmm:
batchsize = mat1.shape[0]
m = mat1.shape[1]
k = mat1.shape[2]
n = mat2.shape[2]
k_padded_length = get_padded_length(k, get_alignment_size(mat1))
m_padded_length = get_padded_length(m, get_alignment_size(mat1))
n_padded_length = get_padded_length(n, get_alignment_size(mat2))
else:
return False
if m_padded_length == k_padded_length == n_padded_length == 0:
return False
def realize_symbols(ds):
return [d if isinstance(d, int) else d.node.hint for d in ds]
if any(
dim == 0
for dim in itertools.chain(
realize_symbols(mat1.shape), realize_symbols(mat2.shape)
)
):
return False
if torch._inductor.config.force_shape_pad:
return True
if (
"pad_aten_mm_pass" in torch._inductor.config.post_grad_fusion_options
and should_pad_mm_bf16(mat1.dtype, m, n, k)
):
return True
if not has_triton():
return False
if not is_mm_compute_bound(m, k, n, mat1.dtype):
return False
# We don't want to look up the cache for cases that are trivially false
# since it does file io
key = should_pad_bench_key(match, mat1, mat2, op, input)
cached_pad = get_cached_should_pad(key)
if cached_pad is not None:
return cached_pad
def realize_tensor(t):
if isinstance(t, FakeTensor):
size_hints = realize_symbols(t.size())
stride_hint = realize_symbols(t.stride())
real_size = (
sum((d - 1) * s for d, s in zip(size_hints, stride_hint)) + 1
)
real_t = torch.randn(real_size, dtype=t.dtype, device=t.device)
return torch.as_strided(real_t, size_hints, stride_hint)
else:
return torch.randn_like(t)
mat1 = realize_tensor(mat1)
mat2 = realize_tensor(mat2)
# since we key on whether or not the inputs can be memory planned, set cache for the
# original time which is unaffected by whether or not the input can be planned
ori_time_key = should_pad_bench_key(
match, mat1, mat2, op, input, is_base_time_key=True
)
ori_time = get_cached_base_mm_benchmark_time(ori_time_key)
if ori_time is None and op is torch.ops.aten.addmm and input is not None:
# realize bias for addmm
input = realize_tensor(input)
mat1_pad = mat1
mat2_pad = mat2
is_bmm = op is torch.ops.aten.bmm
mat1_pre_padded = should_exclude_padding_time(match, "mat1")
fns = []
if mat1_pre_padded and (m_padded_length or k_padded_length):
mat1_pad = pad_mat1(
mat1_pad,
m_padded_length=m_padded_length,
k_padded_length=k_padded_length,
is_bmm=is_bmm,
)
def write_pad():
if is_bmm:
mat1_pad[:, -m_padded_length:, -k_padded_length:].fill_(0)
else:
mat1_pad[-m_padded_length:, -k_padded_length:].fill_(0)
fns.append(write_pad)
mat2_pre_padded = should_exclude_padding_time(match, "mat2")
if mat2_pre_padded and (k_padded_length or n_padded_length):
mat2_pad = pad_mat2(
mat2_pad,
k_padded_length=k_padded_length,
n_padded_length=n_padded_length,
is_bmm=is_bmm,
)
def write_pad():
if is_bmm:
mat2_pad[:, -k_padded_length:, -n_padded_length:].fill_(0)
else:
mat2_pad[-k_padded_length:, -n_padded_length:].fill_(0)
fns.append(write_pad)
if op is torch.ops.aten.addmm:
input_pad = None
if input is not None and input.is_cuda:
input_pad = torch.randn_like(input)
fns.append(
lambda: pad_addmm(
input_pad,
mat1_pad,
mat2_pad,
m_padded_length,
k_padded_length,
n_padded_length,
mat1_pre_padded=mat1_pre_padded,
mat2_pre_padded=mat2_pre_padded,
)
)
elif op is torch.ops.aten.mm:
fns.append(
lambda: pad_mm(
mat1_pad,
mat2_pad,
m_padded_length,
k_padded_length,
n_padded_length,
mat1_pre_padded=mat1_pre_padded,
mat2_pre_padded=mat2_pre_padded,
)
)
else:
fns.append(
lambda: pad_bmm(
mat1_pad,
mat2_pad,
m_padded_length,
k_padded_length,
n_padded_length,
mat1_pre_padded=mat1_pre_padded,
mat2_pre_padded=mat2_pre_padded,
)
)
def orig_bench_fn():
if op is torch.ops.aten.bmm or op is torch.ops.aten.mm:
op(mat1, mat2)
else:
op(input, mat1, mat2)
def pad_bench_fn():
for fn in fns:
fn()
if (
torch._inductor.config.run_autoheuristic("pad_mm")
and op is torch.ops.aten.mm
):
ah_should_pad = run_autoheuristic(
mat1,
mat2,
orig_bench_fn,
pad_bench_fn,
m_padded_length,
k_padded_length,
n_padded_length,
do_bench,
mat1_pre_padded,
mat2_pre_padded,
ori_time,
ori_time_key,
key,
)
if ah_should_pad is not None:
return ah_should_pad
if ori_time is None:
ori_time = do_bench(orig_bench_fn)
set_cached_base_mm_benchmark_time(ori_time_key, ori_time)
pad_time = do_bench(pad_bench_fn)
return should_pad(key, ori_time, pad_time)
def get_context(
mat1: Tensor,
mat2: Tensor,
mat1_pre_padded: bool,
mat2_pre_padded: bool,
m_padded_length: int,
k_padded_length: int,
n_padded_length: int,
):
context = AHContext()
context.add_feature("m", mat1.shape[0])
context.add_feature("k", mat1.shape[1])
context.add_feature("n", mat2.shape[1])
context_add_strides(context, "mat1", mat1.stride())
context_add_strides(context, "mat2", mat2.stride())
context.add_feature("m_padded_length", m_padded_length)
context.add_feature("k_padded_length", k_padded_length)
context.add_feature("n_padded_length", n_padded_length)
context.add_feature("mat1_align_size", get_alignment_size(mat1))
context.add_feature("mat2_align_size", get_alignment_size(mat2))
context.add_feature("mat1_dtype", mat1.dtype, is_categorical=True)
context.add_feature("mat2_dtype", mat2.dtype, is_categorical=True)
context.add_feature("prepadded_mat1", mat1_pre_padded, is_categorical=True)
context.add_feature("prepadded_mat2", mat2_pre_padded, is_categorical=True)
context_add_using_tf32(context, mat1.dtype)
return context
def run_autoheuristic(
mat1: Tensor,
mat2: Tensor,
orig_bench_fn: Callable[[], None],
pad_bench_fn: Callable[[], None],
m_padded_length: int,
k_padded_length: int,
n_padded_length: int,
do_bench,
mat1_pre_padded: bool,
mat2_pre_padded: bool,
ori_time,
ori_time_key: str,
key: str,
) -> Optional[bool]:
def feedback_fn(choice: str):
if choice == orig_choice:
return do_bench(orig_bench_fn)
elif choice == pad_choice:
return do_bench(pad_bench_fn)
return None
def fallback() -> str:
return "autotune"
orig_choice = "orig"
pad_choice = "pad"
choices = [orig_choice, pad_choice]
feedback = LocalFeedback(feedback_fn)
context = get_context(
mat1,
mat2,
mat1_pre_padded,
mat2_pre_padded,
m_padded_length,
k_padded_length,
n_padded_length,
)
name = "pad_mm"
autoheuristic = AutoHeuristic(
fallback=fallback,
choices=choices,
feedback=feedback,
context=context,
name=name,
augment_context=pad_mm_operations(),
precondition=pad_mm_precondition,
)
choice = autoheuristic.get_choice()
choice2should_pad = {orig_choice: False, pad_choice: True, "autotune": None}
ah_should_pad = choice2should_pad.get(choice, None)
if torch._inductor.config.collect_autoheuristic(name):
ah_ori_time = autoheuristic.get_collected_feedback(orig_choice)
ah_pad_time = autoheuristic.get_collected_feedback(pad_choice)
# if precondition is not satisifed, autoheuristic does not collect data
if ah_ori_time is not None and ah_pad_time is not None:
if ori_time is None:
set_cached_base_mm_benchmark_time(ori_time_key, ah_ori_time)
return should_pad(key, ah_ori_time, ah_pad_time)
if ah_should_pad is not None:
set_cached_should_pad(key, ah_should_pad)
return ah_should_pad
def mm_pattern(mat1: Tensor, mat2: Tensor) -> Tensor:
return aten.mm(mat1, mat2)
def should_pad_mm(match: Match) -> bool:
mat1, mat2 = fetch_fake_tensors(match, ("mat1", "mat2"))
return should_pad_common(mat1, mat2) and should_pad_bench(
match, mat1, mat2, torch.ops.aten.mm
)
def pad_mat1(mat1, *, m_padded_length, k_padded_length, is_bmm=False):
if k_padded_length != 0 or m_padded_length != 0:
# dim order is reversed for constant_pad_nd, for every dim we specify right and left padding
pad_arg = [0, k_padded_length, 0, m_padded_length]
if is_bmm:
pad_arg.extend((0, 0))
return aten.constant_pad_nd(mat1, pad_arg)
else:
return mat1
def pad_mat2(mat2, *, k_padded_length, n_padded_length, is_bmm=False):
if k_padded_length != 0 or n_padded_length != 0:
# dim order is reversed for constant_pad_nd, for every dim we specify right and left padding
pad_arg = [0, n_padded_length, 0, k_padded_length]
if is_bmm:
pad_arg.extend((0, 0))
return aten.constant_pad_nd(mat2, pad_arg)
else:
return mat2
def pad_mm(
mat1: Tensor,
mat2: Tensor,
m_padded_length: int,
k_padded_length: int,
n_padded_length: int,
mat1_pre_padded: bool = False,
mat2_pre_padded: bool = False,
) -> Tensor:
if not mat1_pre_padded:
mat1 = pad_mat1(
mat1, m_padded_length=m_padded_length, k_padded_length=k_padded_length
)
if not mat2_pre_padded:
mat2 = pad_mat2(
mat2, k_padded_length=k_padded_length, n_padded_length=n_padded_length
)
res = aten.mm(mat1, mat2)
if m_padded_length != 0:
res = res[:-m_padded_length, :]
if n_padded_length != 0:
res = res[:, :-n_padded_length]
return res
def mm_replace(mat1: Tensor, mat2: Tensor) -> Tensor:
k_padded_length = get_padded_length(mat1.shape[1], get_alignment_size(mat1))
m_padded_length = get_padded_length(mat1.shape[0], get_alignment_size(mat1))
n_padded_length = get_padded_length(mat2.shape[1], get_alignment_size(mat2))
return pad_mm(
mat1,
mat2,
m_padded_length,
k_padded_length,
n_padded_length,
)
def bmm_pattern(mat1: Tensor, mat2: Tensor) -> Tensor:
return aten.bmm(mat1, mat2)
def should_pad_bmm(match: Match) -> bool:
mat1, mat2 = fetch_fake_tensors(match, ("mat1", "mat2"))
return should_pad_common(mat1, mat2) and should_pad_bench(
match, mat1, mat2, torch.ops.aten.bmm
)
def pad_bmm(
mat1: Tensor,
mat2: Tensor,
m_padded_length: int,
k_padded_length: int,
n_padded_length: int,
mat1_pre_padded: bool = False,
mat2_pre_padded: bool = False,
) -> Tensor:
if not mat1_pre_padded:
mat1 = pad_mat1(
mat1,
m_padded_length=m_padded_length,
k_padded_length=k_padded_length,
is_bmm=True,
)
if not mat2_pre_padded:
mat2 = pad_mat2(
mat2,
k_padded_length=k_padded_length,
n_padded_length=n_padded_length,
is_bmm=True,
)
res = aten.bmm(mat1, mat2)
if m_padded_length != 0:
res = res[:, :-m_padded_length, :]
if n_padded_length != 0:
res = res[:, :, :-n_padded_length]
return res
def bmm_replace(mat1: Tensor, mat2: Tensor) -> Tensor:
k_padded_length = get_padded_length(mat1.shape[2], get_alignment_size(mat1))
n_padded_length = get_padded_length(mat2.shape[2], get_alignment_size(mat2))
m_padded_length = get_padded_length(mat1.shape[1], get_alignment_size(mat1))
return pad_bmm(
mat1,
mat2,
m_padded_length,
k_padded_length,
n_padded_length,
)
@functools.lru_cache(None)
def _pad_mm_init():
from .joint_graph import patterns
if torch.cuda.is_available():
# workaround https://github.com/pytorch/pytorch/issues/97894
device = "cuda"
else:
device = "cpu"
# sizes/values dont actually matter for initial trace
# once we get a possible match we re-trace with the actual values and verify the match still holds
dim2a = functools.partial(torch.empty, (4, 4), device=device, requires_grad=True)
dim2b = functools.partial(torch.empty, (4, 4), device=device, requires_grad=True)
dim3a = functools.partial(torch.empty, (4, 4, 4), device=device, requires_grad=True)
dim3b = functools.partial(torch.empty, (4, 4, 4), device=device, requires_grad=True)
dim1a = functools.partial(torch.empty, (4), device=device, requires_grad=True)
# workaround https://github.com/pytorch/pytorch/issues/97894
# 0.113377 is a "magic" value that lets us recover the lost input arg relationship
rep = {"beta": 0.213377, "alpha": 0.113377}
for pattern, replacement, args, workaround, extra_check in [
(
typing.cast(SearchFn, mm_pattern),
typing.cast(ReplaceFn, mm_replace),
[dim2a(), dim2b()],
{},
should_pad_mm,
),
(
typing.cast(SearchFn, bmm_pattern),
typing.cast(ReplaceFn, bmm_replace),
[dim3a(), dim3b()],
{},
should_pad_bmm,
),
(
typing.cast(SearchFn, addmm_pattern),
typing.cast(ReplaceFn, addmm_replace),
[dim1a(), dim2a(), dim2b()],
rep,
should_pad_addmm,
),
]:
assert isinstance(workaround, dict) # mypy is unable to infer the type properly
name = pattern.__name__
gen_register_replacement(
f"{name}_training",
pattern,
replacement,
args,
joint_fwd_bwd,
patterns,
extra_check=extra_check,
scalar_workaround=workaround,
)
gen_register_replacement(
f"{name}_inference",
pattern,
replacement,
args,
fwd_only,
patterns,
extra_check=extra_check,
scalar_workaround=workaround,
)
|