File: post_grad.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1278 lines) | stat: -rw-r--r-- 42,181 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
import itertools
import logging
import operator
from collections import Counter, defaultdict
from typing import Any, Dict, List, Optional, Set

import torch
import torch._inductor as inductor
import torch.utils._pytree as pytree
from torch import fx
from torch._decomp import register_decomposition
from torch._dynamo.utils import counters, optimus_scuba_log
from torch._inductor import comms
from torch._inductor.virtualized import ops
from torch._prims_common import is_boolean_dtype, is_expandable_to, is_integer_dtype
from torch._utils_internal import upload_graph
from torch.fx.experimental.symbolic_shapes import statically_known_true, sym_eq

from .. import config, ir, pattern_matcher
from ..codegen.common import BackendFeature, has_backend_feature
from ..comms import remove_fsdp2_unsharded_param_graph_input_usage
from ..fx_utils import FakeTensorUpdater, get_fake_args_kwargs, get_node_storage
from ..lowering import lowerings as L
from ..pattern_matcher import (
    _return_true,
    Arg,
    CallFunction,
    CallFunctionVarArgs,
    filter_nodes,
    get_arg_value,
    get_mutation_region_id,
    Ignored,
    init_once_fakemode,
    KeywordArg,
    ListOf,
    Match,
    MULTIPLE,
    PatternMatcherPass,
    register_graph_pattern,
    stable_topological_sort,
)
from ..utils import decode_device, get_gpu_type, is_pointwise_use
from ..virtualized import V
from .b2b_gemm import B2B_GEMM_PASS
from .ddp_fusion import fuse_ddp_communication
from .group_batch_fusion import group_batch_fusion_passes, POST_GRAD_FUSIONS
from .micro_pipeline_tp import micro_pipeline_tp_pass
from .pre_grad import is_same_dict, save_inductor_dict
from .reinplace import reinplace_inplaceable_ops
from .split_cat import POST_GRAD_PATTERNS


log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims

# First pass_patterns[0] are applied, then [1], then [2]
pass_patterns = [
    PatternMatcherPass(),
    PatternMatcherPass(),
    PatternMatcherPass(),
]


def post_grad_passes(gm: torch.fx.GraphModule, is_inference: bool):
    """
    Passes that run on after grad.  This is called once on the forwards
    graph and once on the backwards graph.

    The IR here has been normalized and functionalized.
    """
    GraphTransformObserver = functools.partial(
        torch.fx.passes.graph_transform_observer.GraphTransformObserver,
        subsystem="post_grad_passes",
    )

    if not torch._dynamo.config.skip_fsdp_hooks:
        remove_fsdp2_unsharded_param_graph_input_usage(gm.graph)

    if config.dce:
        # has some issues with mutation in inference mode
        gm.graph.eliminate_dead_code()

    if is_inference and config.reorder_for_locality:
        GraphTransformObserver(gm, "reorder_for_locality").apply_graph_pass(
            reorder_for_locality
        )

    fake_tensor_updater = FakeTensorUpdater(gm.graph)

    if post_grad_custom_pre_pass := config.post_grad_custom_pre_pass:
        GraphTransformObserver(gm, "post_grad_custom_pre_pass").apply_graph_pass(
            post_grad_custom_pre_pass
        )

    if config.pattern_matcher:
        lazy_init()
        optimus_scuba_log["before_recompile_post_grad"] = upload_graph(gm.graph)
        GraphTransformObserver(gm, "post_grad_custom_pre_pass").apply_graph_pass(
            functools.partial(group_batch_fusion_passes, pre_grad=False)
        )
        GraphTransformObserver(gm, "remove_noop_ops").apply_graph_pass(remove_noop_ops)
        for i, patterns in enumerate(pass_patterns):
            GraphTransformObserver(gm, f"pass_pattern_{i}").apply_graph_pass(
                patterns.apply
            )
        for pass_name in config.post_grad_fusion_options:
            # skip all patterns for group batch fusions
            if pass_name in POST_GRAD_FUSIONS:
                continue
            pattern_matcher_pass = POST_GRAD_PATTERNS[pass_name]
            inductor_before_change = save_inductor_dict(
                [pattern_matcher_pass.pass_name]
            )
            GraphTransformObserver(gm, pass_name).apply_graph_pass(
                pattern_matcher_pass.apply
            )
            if not is_same_dict(counters["inductor"], inductor_before_change):
                optimus_scuba_log[
                    f"{pattern_matcher_pass.pass_name}_post_grad"
                ] = upload_graph(gm.graph)
        if config.b2b_gemm_pass:
            B2B_GEMM_PASS.apply(gm.graph)  # type: ignore[arg-type]

    if config._micro_pipeline_tp:
        micro_pipeline_tp_pass(gm.graph)

    if config._fuse_ddp_communication:
        GraphTransformObserver(gm, "fuse_ddp_communication").apply_graph_pass(
            lambda graph: fuse_ddp_communication(
                graph,
                config._fuse_ddp_communication_passes,
                config._fuse_ddp_bucket_size,
            )
        )

    if post_grad_custom_post_pass := config.post_grad_custom_post_pass:
        GraphTransformObserver(gm, "post_grad_custom_post_pass").apply_graph_pass(
            post_grad_custom_post_pass
        )

    GraphTransformObserver(gm, "stable_sort").apply_graph_pass(stable_topological_sort)

    GraphTransformObserver(gm, "move_constructors_to_cuda").apply_graph_pass(
        move_constructors_to_gpu
    )

    fake_tensor_updater.incremental_update()

    # Keep these last, since they introduces mutation. Look at
    # ./fx_passes/README.md for a discussion of mutation invariants.
    GraphTransformObserver(gm, "reinplace_inplaceable_ops").apply_graph_pass(
        reinplace_inplaceable_ops
    )
    GraphTransformObserver(
        gm, "decompose_triton_kernel_wrapper_functional"
    ).apply_graph_pass(decompose_triton_kernel_wrapper_functional)
    GraphTransformObserver(gm, "decompose_auto_functionalized").apply_graph_pass(
        decompose_auto_functionalized
    )
    GraphTransformObserver(gm, "reinplace_fsdp_all_gather").apply_graph_pass(
        comms.reinplace_fsdp_all_gather
    )

    gm.recompile()
    optimus_scuba_log["after_recompile_post_grad"] = upload_graph(gm.graph)
    gm.graph.lint()


@init_once_fakemode
def lazy_init():
    if torch._C._has_mkldnn:
        from . import decompose_mem_bound_mm  # noqa: F401
        from .mkldnn_fusion import _mkldnn_fusion_init

        _mkldnn_fusion_init()


def reorder_for_locality(graph: torch.fx.Graph):
    def visit(other_node):
        if (
            other_node.op == "call_function"
            and other_node.target != operator.getitem
            and all((n in seen_nodes) for n in other_node.users)
            and get_mutation_region_id(graph, node)
            == get_mutation_region_id(graph, other_node)
        ):
            # move node's producers right before it
            node.prepend(other_node)

    seen_nodes = set()

    # only reorder nodes before the first copy_ in the graph.
    # copy_ will appear at the end of functionalized graphs when there is mutation on inputs,
    # and this reordering doesnt work well with mutation
    first_copy = next(
        iter(graph.find_nodes(op="call_function", target=torch.ops.aten.copy_.default)),
        None,
    )
    past_mutating_epilogue = True if first_copy is None else False

    for node in reversed(graph.nodes):
        seen_nodes.add(node)
        if not past_mutating_epilogue:
            past_mutating_epilogue = node is first_copy
            continue

        torch.fx.map_arg((node.args, node.kwargs), visit)


def register_lowering_pattern(pattern, extra_check=_return_true, pass_number=1):
    """
    Register an aten to inductor IR replacement pattern
    """
    return pattern_matcher.register_lowering_pattern(
        pattern, extra_check, pass_dict=pass_patterns[pass_number]
    )


################################################################################
# Actual patterns below this point.
# Priority of patterns is:
#   - later output nodes first
#   - order patterns are defined in
################################################################################


def is_valid_mm_plus_mm(match: Match):
    if not torch._inductor.utils.use_max_autotune():
        return False

    *b1, m1, k1 = match.kwargs["mat1"].meta.get("tensor_meta").shape
    *b2, k2, n1 = match.kwargs["mat2"].meta.get("tensor_meta").shape
    if k1 != k2:
        return False

    *b1, m2, k3 = match.kwargs["mat3"].meta.get("tensor_meta").shape
    *b2, k4, n2 = match.kwargs["mat4"].meta.get("tensor_meta").shape
    if k3 != k4:
        return False

    if m1 != m2 or n1 != n2:
        return False

    return True


def scatter_upon_const_tensor_extra_check(m):
    if not config.optimize_scatter_upon_const_tensor:
        return False
    full_shape = m.kwargs["shape"]
    selector = m.kwargs["selector"]
    dim = m.kwargs["dim"]
    if dim < 0:
        dim += len(full_shape)

    selector_ft = selector.meta["val"]
    assert selector_ft.dim() == len(full_shape)

    for idx, select_sz, full_sz in zip(
        itertools.count(), selector_ft.shape, full_shape
    ):
        if idx == dim:
            continue

        # TODO: the pattern can be updated to support the case that index tensor
        # is shorter. But that will need a more complex condition expression
        # especially for multi-dimensional tensors.
        # Skip it for now.
        if isinstance(full_sz, fx.Node):
            full_sz = full_sz.meta["val"]
        if select_sz < full_sz:
            return False

    # Actually we can support small size larger than 1. It would be a bit
    # tedius. E.g., we load all the index values (not many) and compare
    # them with the position in tensor to decide what value to return.
    return selector_ft.size(dim) == 1


@register_lowering_pattern(
    CallFunction(
        aten.scatter.value,
        CallFunction(
            aten.full,
            KeywordArg("shape"),
            KeywordArg("background_val"),
            dtype=KeywordArg("dtype"),
        ),
        KeywordArg("dim"),
        KeywordArg("selector"),
        KeywordArg("val"),  # scalar value
    ),
    extra_check=scatter_upon_const_tensor_extra_check,
)
def scatter_upon_const_tensor(
    match: Match, shape, background_val, dtype, dim, selector, val
):
    """
    Match the pattern of full+scatter into a pointwise.

    TODO: Right now the scatter value must be a scalar. But we could support it
    when it is a tensor as well.
    """
    from torch._inductor import metrics

    metrics.num_matches_for_scatter_upon_const_tensor += 1

    selector_loader = selector.make_loader()

    def inner_fn(idx):
        selector_idx = list(idx)
        selector_idx[dim] = 0

        selector = selector_loader(selector_idx)
        return ops.where(
            selector == ops.index_expr(idx[dim], torch.int64),
            ops.constant(val, dtype),
            ops.constant(background_val, dtype),
        )

    return ir.Pointwise.create(
        device=selector.get_device(),
        dtype=dtype,
        inner_fn=inner_fn,
        ranges=shape,
    )


@register_lowering_pattern(
    CallFunction(
        aten.add,
        CallFunction(aten.mm, KeywordArg("mat1"), KeywordArg("mat2")),
        CallFunction(aten.mm, KeywordArg("mat3"), KeywordArg("mat4")),
    ),
    extra_check=is_valid_mm_plus_mm,
)
def mm_plus_mm(match: Match, mat1, mat2, mat3, mat4):
    return inductor.kernel.mm_plus_mm.tuned_mm_plus_mm(mat1, mat2, mat3, mat4)


def cuda_and_enabled_mixed_mm(match):
    return (
        (config.use_mixed_mm or config.mixed_mm_choice != "default")
        and getattr(match.kwargs["mat1"].meta.get("val"), "is_cuda", False)
        and (
            match.kwargs["mat2_dtype"].itemsize
            > match.kwargs["mat2"].meta.get("val").dtype.itemsize
        )
        and has_backend_feature("cuda", BackendFeature.TRITON_TEMPLATES)
    )


def cuda_and_enabled_mixed_mm_and_not_int8(match):
    return (
        cuda_and_enabled_mixed_mm(match)
        and getattr(match.kwargs["mat1"].meta.get("val"), "is_cuda", False)
        and getattr(match.kwargs["mat2"].meta.get("val"), "dtype", torch.int8)
        != torch.int8
    )  # bitshift numerics in triton and pytorch don't match for torch.int8


"""
    this is intended to be used to unpack a [K,N] int4 tensor from a [K/2, N] uint4x2 tensor
    (where the int4 and uint4x2 are represented with int8 and uint8 respectively)
    where every other row of the int4 is packed with the row above it as:
    uint4x2[k,n] = (8+int4[2*k,n])+(8+int4[2*k+1,n])<<4

    unpack formulas:
    int4[2*k,n]=(uint4x2[k,n] & 0xF) - 8
    int4[2*k+1,n]=(uint4x2[k,n] >> 4) - 8

    thus matching on unpack formula:
    torch.mm(mat1, torch.cat((mat2 & 0xF, mat2>>4),1).reshape(mat2_mm_shape).to(mat2_dtype).sub(8))

    note: although the unpack formula in pytorch and the triton kernel is designed for a uint8 mat2, the behavior
    of the kernel matches the pytorch formula for all dtypes except torch.int8
    where the bitwise numerics in triton do not match those in pytorch.
"""


@register_lowering_pattern(
    CallFunction(
        aten.mm.default,
        KeywordArg("mat1"),
        CallFunction(
            aten.sub.Tensor,
            CallFunction(
                prims.convert_element_type.default,
                CallFunction(
                    aten.reshape.default,
                    CallFunction(
                        aten.cat.default,
                        ListOf(
                            CallFunction(
                                aten.bitwise_and.Scalar,
                                KeywordArg("mat2"),
                                0xF,
                            ),
                            # CallFunction(
                            #    aten.__rshift__.Scalar,
                            #    KeywordArg("mat2"),
                            #    4,
                            # ),
                            True,
                        ),
                        1,
                    ),
                    KeywordArg("mat2_mm_shape"),
                ),
                KeywordArg("mat2_dtype"),
            ),
            8,
        ),
    ),
    extra_check=cuda_and_enabled_mixed_mm_and_not_int8,
)
def uint4x2_mixed_mm(match: Match, mat1, mat2, mat2_mm_shape, mat2_dtype):
    return inductor.kernel.unpack_mixed_mm.tuned_uint4x2_mixed_mm(
        mat1, mat2, mat2_mm_shape, mat2_dtype
    )


"""
    torch.mm(mat1, mat2.to(mat2_dtype))
"""


@register_lowering_pattern(
    CallFunction(
        aten.mm,
        KeywordArg("mat1"),
        CallFunction(
            prims.convert_element_type.default,
            KeywordArg("mat2"),
            KeywordArg("mat2_dtype"),
        ),
    ),
    extra_check=cuda_and_enabled_mixed_mm,
)
def mixed_mm(match: Match, mat1, mat2, mat2_dtype):
    return inductor.kernel.mm.tuned_mixed_mm(mat1, mat2, mat2_dtype)


@register_graph_pattern(
    CallFunction(
        aten.cumsum.default,
        CallFunction(
            torch.ops.aten.full.default,
            KeywordArg("shape"),
            KeywordArg("fill_value"),
            dtype=KeywordArg("dtype"),
            layout=Ignored(),
            device=KeywordArg("device"),
            pin_memory=False,
            _users=MULTIPLE,
        ),
        KeywordArg("dim"),
        _users=MULTIPLE,
    ),
    pass_dict=pass_patterns[1],
)
def pointless_cumsum_replacement(match: Match, shape, fill_value, device, dtype, dim):
    """Based on a pattern in OPTForCausalLM"""

    if is_integer_dtype(dtype) or is_boolean_dtype(dtype):
        # cumsum promotes all integral types to int64
        dtype = torch.int64

    def repl(*shape):
        dim_size = shape[dim]
        idx = torch.arange(1, dim_size + 1, device=device, dtype=dtype)

        inter_shape = [1] * len(shape)
        inter_shape[dim] = dim_size
        return (idx * fill_value).view(inter_shape).expand(shape)

    # only replace the output node, not all nodes
    match.nodes = [match.output_node()]
    match.replace_by_example(repl, list(shape))


_cat_1 = CallFunction(aten.cat, Arg(), 1, _users=2)


@register_lowering_pattern(
    CallFunction(
        aten.cat,
        [
            _cat_1,
            CallFunction(
                aten.slice,
                _cat_1,
                1,
                0,
                KeywordArg("size"),
            ),
        ],
        1,
    )
)
def cat_slice_cat(match, cat_input, size, dim=1):
    """
    This is an example of a more complex pattern where cat_1 is used
    multiple times inside the pattern.  We fold 2 calls to cat into one.

    Matches:
        cat_1: f32[1024, 4077] = torch.ops.aten.cat.default([add_26, primals_217], 1)
        slice_1: f32[1024, 4077] = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
        slice_2: f32[1024, 19] = torch.ops.aten.slice.Tensor(slice_1, 1, 0, 19)
        cat_2: f32[1024, 4096] = torch.ops.aten.cat.default([cat_1, slice_2], 1)


    Rewrite to:
        slice_2 = torch.ops.aten.slice.Tensor(add_26, 1, 0, 19)
        cat_2 = torch.ops.aten.cat.default([add_26, primals_217, slice2], 1)
    """
    first, *rest = cat_input
    # Optimization is optional, because we can just not fold the cat
    # size should be within first.get_size()[dim] such that the optimization is valid.
    # For negative `end`, we currently fallback to not optimizing.
    if size >= 0 and V.graph.sizevars.statically_known_leq(size, first.get_size()[dim]):
        # fold 2 cats into 1 cat
        return L[aten.cat](
            [
                first,
                *rest,
                L[aten.slice](first, dim, 0, size),
            ],
            dim,
        )
    else:
        # don't expect to hit this case, just fall back
        tmp = L[aten.cat](cat_input, dim)
        return L[aten.cat](
            [
                tmp,
                L[aten.slice](tmp, dim, 0, size),
            ],
            dim,
        )


def is_valid_splitwithsizes_cat(match):
    split_nodes = filter_nodes(match.nodes, aten.split_with_sizes)
    cat_nodes = filter_nodes(match.nodes, aten.cat)
    get_item_nodes = filter_nodes(match.nodes, operator.getitem)
    if len(split_nodes) != 1 or len(cat_nodes) != 1:
        return False
    split_node, cat_node = split_nodes[0], cat_nodes[0]
    # The dim of split and cat should match for passthrough
    if get_arg_value(split_node, 2, "dim") != get_arg_value(cat_node, 1, "dim"):
        return False
    get_item_args = {
        get_arg_value(get_item_node, 1) for get_item_node in get_item_nodes
    }
    assert None not in get_item_args
    split_sizes = get_arg_value(split_node, 1, "split_sizes")
    # All parts of split should be included in the cat
    if get_item_args != set(range(len(split_sizes))):
        return False
    # The order of get_item_args should same with cat_node used.
    # For example, if the split_node like split_with_sizes(input, [2, 2, 3], 1),
    # the cat node should be like cat([get_item(0), get_item(1), get_item(2)], 1).
    cat_items_args_order = [
        get_arg_value(item_node, 1) for item_node in get_arg_value(cat_node, 0)
    ]
    if cat_items_args_order != list(range(len(split_sizes))):
        return False

    return True


def same_meta(node1: torch.fx.Node, node2: torch.fx.Node):
    """True if two nodes have the same metadata"""
    val1 = node1.meta.get("val")
    val2 = node2.meta.get("val")
    return (
        val1 is not None
        and val2 is not None
        and statically_known_true(sym_eq(val1.size(), val2.size()))
        and val1.layout == val2.layout
        and val1.dtype == val2.dtype
        and val1.device == val2.device
        and (
            val1.layout != torch.strided
            or statically_known_true(sym_eq(val1.stride(), val2.stride()))
        )
    )


noop_registry: Dict[Any, Any] = {}


def register_noop_decomp(targets, nop_arg=0):
    def register_fun(cond):
        register_decomposition(targets, registry=noop_registry, unsafe=True)(
            (cond, nop_arg)  # type: ignore[arg-type]
        )
        return cond

    return register_fun


@register_noop_decomp(aten.slice)
def slice_noop(self, dim=0, start=None, end=None, step=1):
    if start is None or end is None:
        return False
    if (
        statically_known_true(sym_eq(start, 0))
        and statically_known_true(end >= 2**63 - 1)
        and statically_known_true(sym_eq(step, 1))
    ):
        return True
    return False


@register_noop_decomp(aten.slice_scatter, 1)
def slice_scatter_noop(self, src, dim=0, start=None, end=None, step=1):
    if start is None:
        start = 0
    if end is None:
        end = 2**63 - 1
    if start == 0 and end >= 2**63 - 1 and step == 1:
        return True
    return False


@register_noop_decomp(aten.repeat)
def repeat_noop(self, repeats):
    return all(r == 1 for r in repeats)


@register_noop_decomp(aten.constant_pad_nd)
def constant_pad_nd(x, padding, fill_value=0):
    return all(p == 0 for p in padding)


@register_noop_decomp(torch.ops.prims.convert_element_type)
def convert_element_type_noop(x, dtype: torch.dtype):
    return x.dtype == dtype


@register_noop_decomp(torch.ops.prims.device_put)
def device_put_noop(x, device, non_blocking=True):
    return x.device == decode_device(device)


@register_noop_decomp([aten.ceil, aten.floor, aten.round, aten.trunc])
def int_noop(x):
    return is_integer_dtype(x.dtype)


@register_noop_decomp([aten.pow])
def pow_noop(a, b):
    return isinstance(b, int) and b == 1


@register_noop_decomp([aten.cat], lambda args: args[0][0])
def cat_noop(inputs, dim=0):
    return len(inputs) == 1


@register_noop_decomp(aten.view)
def view_noop(arg, size):
    return arg.shape == size


# Note, we also always have a check for identical metadata, which is why these
# are safe
@register_noop_decomp([aten.copy], nop_arg=1)
@register_noop_decomp([aten.alias, aten.clone])
def true_noop(*args, **kwargs):
    return True


def remove_noop_ops(graph: torch.fx.Graph):
    """
    Removes both operations that are essentially aten.clone and operations that are essentially aten.alias from the graph.
    """
    inputs = set()
    input_storages = set()
    output_storages = set()

    for node in graph.find_nodes(op="placeholder"):
        inputs.add(node)
        input_storages.add(get_node_storage(node))

    output_node = next(iter(reversed(graph.nodes)))
    assert output_node.op == "output"
    outputs = output_node.args[0]
    if not isinstance(outputs, (list, tuple)):
        # nested subgraphs can have singleton outputs
        outputs = (outputs,)
    for out in outputs:
        if isinstance(out, torch.fx.Node):
            output_storages.add(get_node_storage(out))

    for node in graph.nodes:
        if node.target in noop_registry:
            cond, src_index = noop_registry[node.target]
            if isinstance(src_index, int):
                src = node.args[src_index]
            else:
                src = src_index(node.args)
            if not isinstance(src, torch.fx.Node):
                continue
            # Don't introduce new aliasing between inputs and outputs.
            # See fx_passes/README.md for a discussion of why this is
            # necessary.
            node_storage = get_node_storage(node)
            src_storage = get_node_storage(src)
            node_is_view = node_storage == src_storage
            if (
                not node_is_view
                and node_storage in output_storages
                and (src_storage in input_storages or src_storage in output_storages)
            ):
                continue

            # Even if input and outputs are expected to alias,
            # don't make "node is src" True
            if (
                node_is_view
                and node in output_node.args
                and (src in inputs or src in output_node.args)
            ):
                continue

            is_valid, args, kwargs = get_fake_args_kwargs(node)
            if not is_valid:
                continue
            if same_meta(node, src) and cond(*args, **kwargs):
                node.replace_all_uses_with(src)
                graph.erase_node(node)


def decompose_triton_kernel_wrapper_functional(graph):
    """Decomposes triton_kernel_wrapper_functional nodes into clones and the underlying
    mutation node.

    We assume that the reinplacing pass runs before this; the reinplacing pass
    tells us (via rewriting the arguments or .meta to those nodes) which
    Tensors we should clone and which Tensors are safe to reinplace.
    """
    graph_pass = PatternMatcherPass()

    @register_graph_pattern(
        CallFunctionVarArgs(torch.ops.higher_order.triton_kernel_wrapper_functional),
        pass_dict=graph_pass,
    )
    def _(match: Match, *args, **kwargs):
        from torch._higher_order_ops.triton_kernel_wrap import (
            triton_kernel_wrapper_functional_dense,
        )

        flat_args, spec = pytree.tree_flatten((args, kwargs))

        # NB: we combine (args, kwargs) into flat args for replacing.
        # This is replace_by_example uses make_fx which does not support
        # tracing a function with kwargs.
        def decomp(*flat_args):
            args, kwargs = pytree.tree_unflatten(flat_args, spec)
            return (triton_kernel_wrapper_functional_dense(*args, **kwargs),)

        match.replace_by_example(decomp, flat_args, run_functional_passes=False)

    graph_pass.apply(graph)

    for node in graph.find_nodes(
        op="call_function",
        target=torch.ops.higher_order.triton_kernel_wrapper_functional,
    ):
        raise AssertionError("triton_kernel_wrapper_functional was not removed")


def decompose_auto_functionalized(graph):
    """Decomposes auto_functionalized nodes into clones and the underlying
    mutation node.

    We assume that the reinplacing pass runs before this; the reinplacing pass
    tells us (via rewriting the arguments or .meta to those nodes) which
    Tensors we should clone and which Tensors are safe to reinplace.
    """
    graph_pass = PatternMatcherPass()

    @register_graph_pattern(
        CallFunctionVarArgs(torch.ops.higher_order.auto_functionalized),
        pass_dict=graph_pass,
    )
    def _(match: Match, *args, **kwargs):
        from torch._higher_order_ops.auto_functionalize import auto_functionalized_dense

        only_clone_these_tensors = tuple(
            match.nodes[0].meta.get("only_clone_these_tensors", [])
        )

        flat_args, spec = pytree.tree_flatten((args, kwargs))

        # NB: we combine (args, kwargs) into flat args for replacing.
        # This is replace_by_example uses make_fx which does not support
        # tracing a function with kwargs.
        def decomp(*flat_args):
            args, kwargs = pytree.tree_unflatten(flat_args, spec)
            assert len(args) == 1
            mode = args[0]
            return auto_functionalized_dense(mode, only_clone_these_tensors, **kwargs)

        match.replace_by_example(decomp, flat_args, run_functional_passes=False)

    @register_graph_pattern(
        CallFunctionVarArgs(torch.ops.higher_order.auto_functionalized_v2),
        pass_dict=graph_pass,
    )
    def _(match: Match, *args, **kwargs):
        from torch._higher_order_ops.auto_functionalize import (
            auto_functionalized_v2_dense,
        )

        only_clone_these_bases = tuple(
            match.nodes[0].meta.get("only_clone_these_tensors", [])
        )

        flat_args, spec = pytree.tree_flatten((args, kwargs))

        # NB: we combine (args, kwargs) into flat args for replacing.
        # This is replace_by_example uses make_fx which does not support
        # tracing a function with kwargs.
        def decomp(*flat_args):
            args, kwargs = pytree.tree_unflatten(flat_args, spec)
            assert len(args) == 1
            mutable_op = args[0]
            return auto_functionalized_v2_dense(
                mutable_op, only_clone_these_bases, **kwargs
            )

        match.replace_by_example(decomp, flat_args, run_functional_passes=False)

    graph_pass.apply(graph)

    for node in graph.find_nodes(
        op="call_function", target=torch.ops.higher_order.auto_functionalized
    ):
        raise AssertionError("auto_functionalized was not removed")

    for node in graph.find_nodes(
        op="call_function", target=torch.ops.higher_order.auto_functionalized_v2
    ):
        raise AssertionError("auto_functionalized_v2 was not removed")


@register_lowering_pattern(
    CallFunction(
        aten.cat,
        ListOf(
            CallFunction(
                operator.getitem,
                CallFunction(
                    aten.split_with_sizes,
                    KeywordArg("input_"),
                    Ignored(),
                    Ignored(),
                    _users=MULTIPLE,
                ),
                Ignored(),
            ),
        ),
        Ignored(),
    ),
    pass_number=2,
    extra_check=is_valid_splitwithsizes_cat,
)
def splitwithsizes_cat_replace(match, input_):
    return input_


def is_valid_cat_splitwithsizes(match):
    cat_nodes = filter_nodes(match.nodes, aten.cat)
    split_nodes = filter_nodes(match.nodes, aten.split_with_sizes)
    if len(split_nodes) != 1 or len(cat_nodes) != 1:
        return False
    split_node, cat_node = split_nodes[0], cat_nodes[0]

    # the cat node has other users: can't eliminate
    if len(cat_node.users) > 1:
        return False

    # the dim of the cat and split should match
    dim = get_arg_value(split_node, 2, "dim")
    if dim != get_arg_value(cat_node, 1, "dim"):
        return False

    cat_inputs = list(get_arg_value(cat_node, 0))
    split_sizes = get_arg_value(split_node, 1, "split_sizes")
    # the number of input tensors in cat and the
    # length of the split sizes should match
    if len(cat_inputs) != len(split_sizes):
        return False

    for cat_input, split_size in zip(cat_inputs, split_sizes):
        # each cat input tensor's size along dim
        # should match the corresponding split size
        if "val" not in cat_input.meta:
            return False
        cat_input_size = cat_input.meta["val"].size(dim)
        if cat_input_size != split_size:
            return False

    return True


@register_lowering_pattern(
    CallFunction(
        aten.split_with_sizes,
        CallFunction(
            aten.cat,
            KeywordArg("input_"),
            Ignored(),
            _users=MULTIPLE,
        ),
        Ignored(),
        Ignored(),
    ),
    pass_number=2,
    extra_check=is_valid_cat_splitwithsizes,
)
def cat_splitwithsizes_replace(match, input_):
    return input_


def view_to_reshape(gm):
    """
    Replace view ops in the GraphModule to reshape ops.
    """
    for nd in gm.graph.find_nodes(
        op="call_function", target=torch.ops.aten.view.default
    ):
        nd.target = torch.ops.aten.reshape.default


def should_prefer_unfused_addmm(match):
    inp = match.kwargs["inp"]
    if not inp.meta["val"].is_cuda:
        return False

    output = match.output_node()
    return all(is_pointwise_use(use) for use in output.users)


@register_graph_pattern(
    CallFunction(aten.addmm, KeywordArg("inp"), Arg(), Arg()),
    pass_dict=pass_patterns[2],
    extra_check=should_prefer_unfused_addmm,
)
def unfuse_bias_add_to_pointwise(match: Match, mat1, mat2, *, inp):
    def repl(inp, x1, x2):
        return x1 @ x2 + inp

    match.replace_by_example(repl, [inp, mat1, mat2])


def is_valid_addmm_fusion(match):
    mat1, mat2 = match.args
    inp = match.kwargs["inp"]

    if not (
        isinstance(inp, torch.fx.Node) and isinstance(inp.meta["val"], torch.Tensor)
    ):
        return False  # Input is a number

    in_shape = inp.meta["val"].shape
    mm_shape = mat1.meta["val"].shape[0], mat2.meta["val"].shape[1]
    matched = is_expandable_to(in_shape, mm_shape)
    if not matched:
        return False  # Shape mismatch

    return not should_prefer_unfused_addmm(match)


@register_graph_pattern(
    CallFunction(
        aten.add,
        CallFunction(aten.mm, Arg(), Arg()),
        KeywordArg("inp"),
    ),
    pass_dict=pass_patterns[2],
    extra_check=is_valid_addmm_fusion,
)
@register_graph_pattern(
    CallFunction(
        aten.add,
        KeywordArg("inp"),
        CallFunction(aten.mm, Arg(), Arg()),
    ),
    pass_dict=pass_patterns[2],
    extra_check=is_valid_addmm_fusion,
)
def addmm(match, mat1, mat2, *, inp):
    def repl(inp, mat1, mat2):
        return aten.addmm(inp, mat1, mat2)

    match.replace_by_example(repl, [inp, mat1, mat2])


def check_shape_cuda_and_fused_int_mm_mul_enabled(match):
    return (
        config.force_fuse_int_mm_with_mul
        and len(getattr(match.args[2].meta.get("val"), "shape", [])) == 2
        and getattr(match.args[2].meta.get("val"), "is_cuda", False)
    )


@register_lowering_pattern(
    CallFunction(
        prims.convert_element_type.default,
        CallFunction(
            aten.mul,
            CallFunction(
                aten._int_mm,
                Arg(),
                Arg(),
            ),
            Arg(),
        ),
        Arg(),
    ),
    check_shape_cuda_and_fused_int_mm_mul_enabled,
)
@register_lowering_pattern(
    CallFunction(
        aten.mul,
        CallFunction(
            aten._int_mm,
            Arg(),
            Arg(),
        ),
        Arg(),
    ),
    check_shape_cuda_and_fused_int_mm_mul_enabled,
)
def fused_int_mm_mul(match: Match, mat1, mat2, mat3, out_dtype=None):
    return inductor.kernel.mm.tuned_fused_int_mm_mul(mat1, mat2, mat3, out_dtype)


def is_index_put_and_requires_h2d_sync_for_gpu_value(node):
    from torch.fx.operator_schemas import normalize_function

    if node.target not in [
        torch.ops.aten.index_put.default,
        torch.ops.aten.index_put_.default,
    ]:
        return False
    # Inductor falls back to aten.index_put_.
    # index_put_ will will call nonzero() and perform a H2D sync if
    # any of its indices are bool/byte tensors
    # However, it will short-circuit this H2D sync and run mask_fill_
    # if the value we are putting is a cpu scalar.
    # Therefore, when inductor sees an index_put_ with byte tensor indices,
    # it should *not* convert the cpu scalar value into a gpu tensor.
    args_, kwargs_ = normalize_function(node.target, node.args, node.kwargs)  # type: ignore[misc]
    any_byte_bool_indices = False
    indices = args_[1]
    for i in indices:
        if i is not None and i.meta["val"].dtype in [torch.bool, torch.int8]:
            any_byte_bool_indices = True

    val = args_[2].meta["val"]
    val_is_cpu_scalar = val.device.type == "cpu" and val.numel() == 1
    # If both these conditions hold, then converting the val
    # to a gpu tensor will incur a H2D sync when inductor calls aten.index_put_
    return any_byte_bool_indices and val_is_cpu_scalar


class ConstructorMoverPass:
    def __init__(self, target: str, allow_outputs: bool = False) -> None:
        """
        Move constructors from cpu to the target_device.

        Sweeps through the module, looking for constructor nodes that can be moved
        to the target_device.

        A constructor node can be moved to the target_device iff all of its users
        can also be moved (tested by cannot_be_moved). Otherwise, all dependent
        constructor nodes won't be moved.

        - target: target device type
        - allow_outputs: allow outputs to be moved
        """

        self.target = target
        self.allow_outputs = allow_outputs

        assert isinstance(target, str), (
            "target should be a string representing the device type. "
            f"Got: {type(target).__name__}"
        )

    def allow_cpu_device(self, node: fx.Node) -> bool:
        """
        Returns whether a node that returns a tensor on the target device may have
        cpu tensors as input.
        """
        return node.target in (
            torch.ops.aten.index.Tensor,
            torch.ops.aten.index_put.default,
            torch.ops.aten.index_put_.default,
            torch.ops.aten.copy.default,
            torch.ops.aten.copy_.default,
            torch.ops.aten.slice_scatter.default,
        )

    def cannot_be_moved(self, node: fx.Node) -> bool:
        """
        Returns whether a node can be moved to the target device.

        If this function returns False, it means that this node and all of its users
        won't be moved into the target device.
        """
        if node.target == "output":
            return not self.allow_outputs

        if not (
            isinstance(node.target, torch._ops.OpOverload)
            and node.target.namespace in ("prims", "aten")
        ):
            return True
        if is_index_put_and_requires_h2d_sync_for_gpu_value(node):
            return True

        return False

    def get_node_device(self, node: fx.Node) -> Optional[torch.device]:
        """
        Get the device of a node.
        """
        ten = node.meta.get("val")
        return None if not isinstance(ten, torch.Tensor) else ten.device

    def get_cpu_indeg_count(self, graph: fx.Graph) -> Dict[fx.Node, int]:
        """
        Get the number of cpu inputs to a node
        """
        cpu_indeg: Dict[fx.Node, int] = Counter()

        for node in graph.nodes:
            cpu_count = 0

            def add_cpu_inp(node):
                nonlocal cpu_count
                device = self.get_node_device(node)
                cpu_count += device is not None and device.type == "cpu"

            pytree.tree_map_only(fx.Node, add_cpu_inp, (node.args, node.kwargs))

            if cpu_count:
                cpu_indeg[node] = cpu_count

        return cpu_indeg

    def __call__(self, graph: fx.Graph) -> None:
        target_devices = set()
        constructors = []

        for node in graph.nodes:
            device = self.get_node_device(node)
            if device and device.type == self.target:
                target_devices.add(device)

            if not (
                isinstance(node.target, torch._ops.OpOverload)
                and node.target.namespace in ("prims", "aten")
            ):
                continue

            if not torch._subclasses.fake_tensor._is_tensor_constructor(node.target):
                continue

            if not node.kwargs.get("device") == torch.device("cpu"):
                continue

            constructors.append(node)

        # not handling multiple target devices initially
        if not constructors or len(target_devices) != 1:
            return

        movable_constructors = self.find_movable_constructors(graph, constructors)

        for node in movable_constructors:
            kwargs = node.kwargs.copy()
            kwargs["device"] = next(iter(target_devices))
            node.kwargs = kwargs

    def find_movable_constructors(
        self, graph: fx.Graph, constructors: List[fx.Node]
    ) -> Set[fx.Node]:
        """
        Starting from the cpu constructors, iterate through the graph and test that all of their
        downstream uses can safely be moved to cpu.
        """
        cpu_indeg: Dict[fx.Node, int] = self.get_cpu_indeg_count(graph)

        # which constructors cannot be moved to gpu
        cannot_move_to_gpu: Set[fx.Node] = set()

        # For any node in the graph, which constructors does it have a dependency on
        constructor_dependencies: Dict[fx.Node, Set[fx.Node]] = defaultdict(set)

        # if a cpu node has a dependency on two different cpu constructors,
        # then if either constructor cannot be moved to gpu, the other cannot as well.
        # In this case any node with a dependency on one will have a dependency on the other
        equal_constructor_sets: Dict[fx.Node, Set[fx.Node]] = {
            c: {c} for c in constructors
        }

        def make_dependencies_equivalent(
            set1: Set[fx.Node], set2: Set[fx.Node]
        ) -> Set[fx.Node]:
            # could use union find but not worth complexity here
            set1.update(set2)
            for obj in set1:
                equal_constructor_sets[obj] = set1
            return set1

        queue: List[fx.Node] = list(constructors)

        for c in queue:
            constructor_dependencies[c].add(c)

        while queue:
            node = queue.pop()
            dependencies = constructor_dependencies[node]

            for user in node.users:
                if self.cannot_be_moved(user):
                    cannot_move_to_gpu.update(dependencies)
                    break

                # this node was used on a op which takes in multiple devices and output a gpu
                # tensor. we can convert its cpu input to gpu without making further changes
                node_device = self.get_node_device(user)
                if (
                    self.allow_cpu_device(user)
                    and node_device
                    and node_device.type == self.target
                ):
                    del cpu_indeg[user]
                else:
                    # otherwise, we should continue look at its downstream uses
                    cpu_indeg[user] -= 1
                    if cpu_indeg[user] == 0:
                        del cpu_indeg[user]
                        queue.append(user)

                unioned_set = make_dependencies_equivalent(
                    dependencies, constructor_dependencies[user]
                )
                constructor_dependencies[user] = unioned_set

        for node in cpu_indeg:
            if constructor_dependencies[node]:
                cannot_move_to_gpu.update(constructor_dependencies[node])

        all_cannot_move_to_gpu = cannot_move_to_gpu.copy()
        for constructor in cannot_move_to_gpu:
            all_cannot_move_to_gpu.update(equal_constructor_sets[constructor])

        return set(constructors) - all_cannot_move_to_gpu


def move_constructors_to_gpu(graph: fx.Graph) -> None:
    """
    Moves intermediary tensors which are constructed on the cpu to gpu when safe
    """
    ConstructorMoverPass(get_gpu_type())(graph)