1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
# mypy: allow-untyped-defs
import copy
import itertools
import logging
from typing import Dict, Optional, Sequence
import torch
import torch.nn as nn
from torch._dynamo.utils import counters, detect_fake_mode, optimus_scuba_log
from torch._utils_internal import upload_graph
from torch.fx.experimental.optimization import (
matches_module_pattern,
replace_node_module,
)
from torch.fx.passes.graph_transform_observer import GraphTransformObserver
from torch.fx.passes.shape_prop import ShapeProp
from torch.nn import functional as F
from torch.nn.utils.fusion import fuse_conv_bn_eval, fuse_conv_bn_weights
from .. import config
from ..fx_utils import matches_module_function_pattern
from ..pattern_matcher import (
init_once_fakemode,
PatternMatcherPass,
stable_topological_sort,
)
from ..utils import is_cpu_device, pass_execution_and_save
from .group_batch_fusion import group_batch_fusion_passes, PRE_GRAD_FUSIONS
from .misc_patterns import numpy_compat_normalization
from .split_cat import PRE_GRAD_PATTERNS
log = logging.getLogger(__name__)
efficient_conv_bn_eval_pass = PatternMatcherPass(
pass_name="efficient_conv_bn_eval_pass"
)
fuse_split_linear_add_pass = PatternMatcherPass(
pass_name="fuse_split_linear_add_pass",
)
fuse_chunk_squeeze_cat_pass = PatternMatcherPass(
pass_name="fuse_chunk_squeeze_cat_pass",
)
remove_reshape_pass = PatternMatcherPass(
pass_name="remove_reshape_pass",
)
# based on predispatch aten IR
normalization_pass_aten = PatternMatcherPass()
merge_splits_pass_aten = PatternMatcherPass()
split_cat_pass_aten = PatternMatcherPass()
unbind_stack_pass_aten = PatternMatcherPass()
merge_getitem_cat_pass_aten = PatternMatcherPass()
merge_stack_tahn_unbind_pass_aten = PatternMatcherPass()
mutate_cat_pass_aten = PatternMatcherPass()
remove_split_with_size_one_pass_aten = PatternMatcherPass()
def save_inductor_dict(pass_to_compare=None):
if not pass_to_compare:
pass_to_compare = list(config.pre_grad_fusion_options.keys()) + list(
config.post_grad_fusion_options.keys()
)
return {p: dict(counters["inductor"]).get(p, 0) for p in pass_to_compare}
def is_same_dict(inductor_dict, optimus_dict):
for pass_name, count in optimus_dict.items():
if count != dict(inductor_dict).get(pass_name, 0):
return False
return True
def normalize_node_kwargs_pass(graph):
return None
def fuse_parallel_linear_pass(graph):
return None
def remove_split_ops(graph, shape_prop):
return None
def fuse_chunk_reshape_unsqueeze_concat_pass(graph):
return None
def fuse_chunk_reshape_concat_pass(graph):
return None
def remove_noop_pass(graph):
return None
def stack_to_unsqueeze_pass(graph):
return None
def merge_concats_pass(graph):
return None
def relu_nan_to_num(graph):
return None
@init_once_fakemode
def lazy_init():
from . import efficient_conv_bn_eval, split_cat # noqa: F401
if config.is_fbcode():
from . import fb # type: ignore[attr-defined] # noqa: F401
def pre_grad_passes(
gm: torch.fx.GraphModule, example_inputs: Sequence[object] = ()
) -> torch.fx.GraphModule:
"""
Apply passes on the input FX graph using Torch IR.
WARNING:
The IR before grad is not functional or normalized, so it is harder
to write passes on this IR. Passes must be safe with respect to
aliasing and mutation and need to handle all possible arg schemas.
Consider adding a new pass to post_grad.py or joint_graph.py which
are after functionalization and normalization.
"""
if config.pattern_matcher:
lazy_init()
if hasattr(
config, "fx_passes_numeric_check"
) and config.fx_passes_numeric_check.get("pre_grad", False):
gm_before_fx_passes = gm.__copy__()
# explicitly run with predispatch atenIR based passes
if config.is_predispatch:
def shape_prop(mod) -> None:
ShapeProp(
gm=mod,
# pyre-fixme[16]: Module `torch._dynamo.utils` has no attribute `detect_fake_mode`
fake_mode=detect_fake_mode(example_inputs),
).propagate(*tuple(example_inputs))
# normalization pass
pass_execution_and_save(
normalization_pass_aten.apply,
gm,
example_inputs,
"[Pre grad(predispatch IR)]Apply normalization pass",
)
# normalize kwargs, must be called as the first pass
pass_execution_and_save(
normalize_node_kwargs_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)]Apply normalize_node_kwargs_pass",
)
pass_execution_and_save(
remove_noop_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)]Apply remove_noop pass",
)
pass_execution_and_save(
relu_nan_to_num,
gm,
example_inputs,
"[Pre grad(predispatch IR)]Apply relu_nan_to_num pass",
)
pass_execution_and_save(
fuse_chunk_reshape_concat_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply fuse_chunk_reshape_concat_pass",
)
pass_execution_and_save(
group_batch_fusion_passes,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply group_batch_fusion",
)
pass_execution_and_save(
normalize_node_kwargs_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)]Apply normalize_node_kwargs_pass",
)
pass_execution_and_save(
fuse_chunk_squeeze_cat_pass.apply,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply fuse_chunk_squeeze_cat_pass",
)
pass_execution_and_save(
merge_concats_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply merge_concats_pass",
)
pass_execution_and_save(
fuse_split_linear_add_pass.apply,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply fuse_split_linear_add_pass",
)
pass_execution_and_save(
remove_reshape_pass.apply,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply remove_reshape_pass",
)
pass_execution_and_save(
fuse_parallel_linear_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply fuse_parallel_linear_pass",
)
pass_execution_and_save(
lambda graph: remove_split_ops(graph.owning_module, shape_prop),
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply remove_split_ops",
)
# run before fuse_chunk_reshape_unsqueeze_concat_pass
pass_execution_and_save(
stack_to_unsqueeze_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply stack_to_unsqueeze_pass",
)
pass_execution_and_save(
fuse_chunk_reshape_unsqueeze_concat_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)] Apply fuse_chunk_reshape_unsqueeze_concat_pass",
)
# Remove noops at the end, which may be generated other passes.
pass_execution_and_save(
remove_noop_pass,
gm,
example_inputs,
"[Pre grad(predispatch IR)]Apply remove_noop pass",
)
shape_prop(gm)
else:
# We only log the graph with changes to avoid the excessive compilation time
# https://fb.workplace.com/groups/257735836456307/permalink/633533465543207/
if example_inputs is not None:
gm = fuse_fx(gm, example_inputs)
numpy_compat_normalization(gm.graph)
optimus_scuba_log["before_recompile_pre_grad"] = upload_graph(gm.graph)
# We should always do the normalization_pass first
if "normalization_pass" in config.pre_grad_fusion_options:
pattern_matcher_pass = PRE_GRAD_PATTERNS["normalization_pass"]
pattern_matcher_pass.apply(gm.graph) # type: ignore[arg-type]
group_batch_fusion_passes(gm.graph, pre_grad=True)
for pass_name in config.pre_grad_fusion_options:
# skip all patterns for group batch fusions
if pass_name in PRE_GRAD_FUSIONS or pass_name == "normalization_pass":
continue
pattern_matcher_pass = PRE_GRAD_PATTERNS[pass_name]
inductor_before_change = save_inductor_dict(
[pattern_matcher_pass.pass_name]
)
# we support run same pattern multiple times, the default is to run only once
counter = config.pre_grad_fusion_options[pass_name].get("counter", 1)
for _ in range(counter):
pattern_matcher_pass.apply(gm.graph) # type: ignore[arg-type]
if not is_same_dict(counters["inductor"], inductor_before_change):
optimus_scuba_log[
f"{pattern_matcher_pass.pass_name}_pre_grad"
] = upload_graph(gm.graph)
# TODO: move efficient_conv_bn_eval_pass to the fusions dict too.
efficient_conv_bn_eval_pass.apply(gm.graph) # type: ignore[arg-type]
if config.pre_grad_custom_pass is not None:
with GraphTransformObserver(gm, "pre_grad_custom_pass"):
config.pre_grad_custom_pass(gm.graph)
stable_topological_sort(gm.graph)
from .quantization import quant_lift_up
quant_lift_up(gm)
gm.graph.lint()
gm.recompile()
optimus_scuba_log["after_recompile_pre_grad"] = upload_graph(gm.graph)
if (
config.pattern_matcher
and hasattr(config, "fx_passes_numeric_check")
and config.fx_passes_numeric_check.get("pre_grad", False)
and example_inputs is not None
):
from .numeric_utils import numeric_check_if_enabled
gm_after_fx_passes = gm.__copy__()
numeric_check_if_enabled(
gm_before_fx_passes, # type: ignore[possibly-undefined]
gm_after_fx_passes,
example_inputs,
config.fx_passes_numeric_check.get("num_iterations", 1),
config.fx_passes_numeric_check.get("precision", 1e-4),
)
return gm
def fuse_fx(gm: torch.fx.GraphModule, example_inputs) -> torch.fx.GraphModule:
is_cpu = is_cpu_device(example_inputs)
# pyre-fixme[16]: Module `torch._dynamo.utils` has no attribute `detect_fake_mode`
fake_mode = detect_fake_mode(example_inputs)
gm = sink_cat_after_pointwise(gm)
if config.permute_fusion and not is_cpu:
# For linear permute fusion, we need to check input info to identify
# and perform proper permutation/transpose
ShapeProp(gm, fake_mode=fake_mode).propagate(*example_inputs)
with GraphTransformObserver(gm, "linear_permute_fusion"):
gm = linear_permute_fusion(gm)
with GraphTransformObserver(gm, "permute_linear_fusion"):
gm = permute_linear_fusion(gm)
with GraphTransformObserver(gm, "permute_matmul_fusion"):
gm = permute_matmul_fusion(gm)
# make sure the autograd is disabled.
if torch.is_grad_enabled() or not is_cpu:
return gm
if config.freezing:
with GraphTransformObserver(gm, "remove_identity"):
gm = remove_identity(gm)
with GraphTransformObserver(gm, "fuse_conv_bn"):
gm = fuse_conv_bn(gm)
return gm
def fetch_attr(target: str, mod):
target_atoms = target.split(".")
attr_itr = mod
for i, atom in enumerate(target_atoms):
if not hasattr(attr_itr, atom):
raise RuntimeError(
f"Node referenced nonexistant target {'.'.join(target_atoms[:i])}"
)
attr_itr = getattr(attr_itr, atom)
return attr_itr
def remove_identity(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
"""
Removes all identity layers from the module.
"""
class IdentityRemover(torch.fx.Transformer):
def call_module(self, target, args, kwargs):
if isinstance(self.submodules[target], nn.Identity):
assert len(args) == 1
return args[0]
else:
return super().call_module(target, args, kwargs)
return IdentityRemover(gm).transform()
def fuse_conv_bn(gm: torch.fx.GraphModule, inplace=False) -> torch.fx.GraphModule:
"""
Fuses Convolution/BN layers for inference purposes.
"""
modules_patterns = [
(torch.nn.Conv1d, torch.nn.BatchNorm1d),
(torch.nn.Conv2d, torch.nn.BatchNorm2d),
(torch.nn.Conv3d, torch.nn.BatchNorm3d),
]
module_function_patterns = [
(torch.nn.Conv1d, F.batch_norm),
(torch.nn.Conv2d, F.batch_norm),
(torch.nn.Conv3d, F.batch_norm),
]
modules = dict(gm.named_modules())
class ConvBNFusion:
def __init__(
self,
bn_node,
conv_module,
bn_module=None, # For BN Module
bn_running_mean=None, # For Functional BN
bn_running_var=None,
bn_eps=None,
bn_weight=None,
bn_bias=None,
) -> None:
self.bn_nodes = [
bn_node,
]
self.conv_module = conv_module
self.bn_module = bn_module
self.bn_running_mean = bn_running_mean
self.bn_running_var = bn_running_var
self.bn_eps = bn_eps
self.bn_weight = bn_weight
self.bn_bias = bn_bias
self.fusion_enabled = True
def add_bn_node(self, bn_node):
self.bn_nodes.append(bn_node)
def disable_fusion(self):
self.fusion_enabled = False
def is_fusion_enabled(self):
return self.fusion_enabled
conv_bn_to_fuse: Dict[int, ConvBNFusion] = {}
for pattern in modules_patterns:
conv_bn_to_fuse.clear()
for node in gm.graph.nodes:
if matches_module_pattern(pattern, node, modules):
if len(node.args[0].users) > 1: # Output of conv is used by other nodes
continue
conv = modules[node.args[0].target]
bn = modules[node.target]
eval_mode = all(not n.training for n in [conv, bn])
if not eval_mode:
continue
if not bn.track_running_stats:
continue
# Do hash based on the module name of conv
hash_id = hash(node.args[0].target)
if hash_id not in conv_bn_to_fuse:
conv_bn_to_fuse[hash_id] = ConvBNFusion(node, conv, bn)
else:
if bn == conv_bn_to_fuse[hash_id].bn_module:
# Do fusion if same bn module
conv_bn_to_fuse[hash_id].add_bn_node(node)
else:
# Disable the conv bn folding if conv shared by different bn
conv_bn_to_fuse[hash_id].disable_fusion()
for conv_bn_fusion in conv_bn_to_fuse.values():
if conv_bn_fusion.is_fusion_enabled():
bn_nodes = conv_bn_fusion.bn_nodes
conv = conv_bn_fusion.conv_module
bn = conv_bn_fusion.bn_module
fused_conv = fuse_conv_bn_eval(conv, bn)
for bn_node in bn_nodes:
replace_node_module(bn_node.args[0], modules, fused_conv)
bn_node.replace_all_uses_with(bn_node.args[0])
gm.graph.erase_node(bn_node)
gm.graph.lint()
for pattern in module_function_patterns:
conv_bn_to_fuse.clear()
for node in gm.graph.nodes:
if matches_module_function_pattern(pattern, node, modules):
# TODO: support kwargs.
if len(node.args) != 8:
continue
conv = modules[node.args[0].target]
bn_training = node.args[5]
bn_eps = node.args[7]
if conv.training or bn_training:
continue
if type(bn_eps) is not float:
continue
def _used_by_same_conv_module(users):
conv_module_name = users[0].args[0].target
return all(
conv_module_name == user.args[0].target for user in users
)
bn_args_is_constant = all(
n.op == "get_attr"
and (len(n.users) == 1 or _used_by_same_conv_module(list(n.users)))
for n in node.args[1:5]
)
if not bn_args_is_constant:
continue
bn_running_mean = fetch_attr(node.args[1].target, gm)
bn_running_var = fetch_attr(node.args[2].target, gm)
bn_weight = fetch_attr(node.args[3].target, gm)
bn_bias = fetch_attr(node.args[4].target, gm)
if bn_running_mean is None or bn_running_var is None:
continue
# Do hash based on the module name of conv
hash_id = hash(node.args[0].target)
if hash_id not in conv_bn_to_fuse:
conv_bn_to_fuse[hash_id] = ConvBNFusion(
node,
conv,
bn_running_mean=bn_running_mean,
bn_running_var=bn_running_var,
bn_eps=bn_eps,
bn_weight=bn_weight,
bn_bias=bn_bias,
)
else:
if (
hash(bn_running_mean)
== hash(conv_bn_to_fuse[hash_id].bn_running_mean)
and hash(bn_running_var)
== hash(conv_bn_to_fuse[hash_id].bn_running_var)
and torch.allclose(
torch.tensor(bn_eps),
torch.tensor(conv_bn_to_fuse[hash_id].bn_eps),
)
and hash(bn_weight) == hash(conv_bn_to_fuse[hash_id].bn_weight)
and hash(bn_bias) == hash(conv_bn_to_fuse[hash_id].bn_bias)
):
# Do fusion if same functional bn
conv_bn_to_fuse[hash_id].add_bn_node(node)
else:
# Disable the conv bn folding if conv shared by different bn
conv_bn_to_fuse[hash_id].disable_fusion()
for conv_bn_fusion in conv_bn_to_fuse.values():
if conv_bn_fusion.is_fusion_enabled():
bn_nodes = conv_bn_fusion.bn_nodes
conv = conv_bn_fusion.conv_module
bn_running_mean = conv_bn_fusion.bn_running_mean
bn_running_var = conv_bn_fusion.bn_running_var
bn_eps = conv_bn_fusion.bn_eps
bn_weight = conv_bn_fusion.bn_weight
bn_bias = conv_bn_fusion.bn_bias
fused_conv = copy.deepcopy(conv)
fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights(
fused_conv.weight,
fused_conv.bias,
bn_running_mean,
bn_running_var,
bn_eps,
bn_weight,
bn_bias,
)
for bn_node in bn_nodes:
replace_node_module(bn_node.args[0], modules, fused_conv)
bn_node.replace_all_uses_with(bn_node.args[0])
gm.graph.erase_node(bn_node)
gm.graph.lint()
gm.recompile()
return gm
class NormalizedLinearNode:
def __init__(self, node: torch.fx.Node) -> None:
assert node.op == "call_function"
assert node.target in [torch.nn.functional.linear]
self.node: torch.fx.Node = node
def get_input(self) -> torch.fx.Node:
if len(self.node.args) > 0:
return self.node.args[0] # type: ignore[return-value]
else:
return self.node.kwargs["input"] # type: ignore[return-value]
def get_weight(self) -> torch.fx.Node:
if len(self.node.args) > 1:
return self.node.args[1] # type: ignore[return-value]
else:
return self.node.kwargs["weight"] # type: ignore[return-value]
def get_bias(self) -> torch.fx.Node:
if len(self.node.args) > 2:
return self.node.args[2] # type: ignore[return-value]
else:
return self.node.kwargs["bias"] if "bias" in self.node.kwargs else None # type: ignore[return-value]
class NormalizedMatmulNode:
def __init__(self, node: torch.fx.Node) -> None:
assert node.op == "call_function"
assert node.target in [torch.bmm, torch.matmul]
self.node: torch.fx.Node = node
def get_input(self) -> torch.fx.Node:
if len(self.node.args) > 0:
return self.node.args[0] # type: ignore[return-value]
else:
return self.node.kwargs["input"] # type: ignore[return-value]
def get_other(self) -> torch.fx.Node:
if len(self.node.args) > 1:
return self.node.args[1] # type: ignore[return-value]
else:
return self.node.kwargs["other"] # type: ignore[return-value]
def check_permute(node: torch.fx.Node) -> bool:
ranks = len(node.meta["tensor_meta"].shape)
if len(node.args) > 3:
permutation = [node.args[i] % ranks for i in range(1, ranks + 1)] # type: ignore[operator]
elif (
"permutation" in node.kwargs
and node.kwargs["permutation"] is not None
and len(node.kwargs["permutation"]) > 2 # type: ignore[arg-type]
):
permutation = [i % ranks for i in node.kwargs["permutation"]] # type: ignore[operator, union-attr]
else:
return False
allowed_permutation = list(range(ranks))
allowed_permutation[-1] = ranks - 2
allowed_permutation[-2] = ranks - 1
return permutation == allowed_permutation
def sink_cat_after_pointwise(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
def one_user(node):
users = list(node.users)
return users[0] if len(users) == 1 else None
def is_view(node):
view = {"view"}
return node.op == "call_method" and node.target in view
def is_pointwise_unary(node):
pointwise = {torch.relu, torch.tanh, "relu", "tanh"}
return node.op in {"call_function", "call_method"} and node.target in pointwise
g = module.graph
for node in g.nodes:
if node.op != "call_function" or node.target != torch.cat:
continue
cat_or_view = node
while True:
user = one_user(cat_or_view)
if not user or not is_view(user):
break
cat_or_view = user
if user and is_pointwise_unary(user):
with g.inserting_before(node):
def cat_args(tensors, dim=0):
return tensors, dim
tensors, dim = cat_args(*node.args, **node.kwargs)
new_kwargs = {
name: val for name, val in user.kwargs.items() if name != "input"
}
new_tensors = [
g.create_node(user.op, user.target, args=(arg,), kwargs=new_kwargs)
for arg in tensors
]
new_cat = g.create_node(
"call_function", torch.cat, args=(new_tensors, dim)
)
user.replace_all_uses_with(cat_or_view)
node.replace_all_uses_with(new_cat)
g.erase_node(user)
g.erase_node(node)
g.lint()
module.recompile()
return module
def linear_permute_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in module.graph.find_nodes(op="call_method", target="permute"):
if check_permute(node):
if len(node.args) > 0:
input_node = node.args[0]
else:
input_node = node.kwargs["input"]
if (
input_node.op == "call_function"
and input_node.target == torch.nn.functional.linear
):
normalized = NormalizedLinearNode(input_node)
input = normalized.get_input()
weight = normalized.get_weight()
bias = normalized.get_bias()
with module.graph.inserting_before(node):
fused_node = module.graph.call_function(
linear_transpose, args=(input, weight, bias)
)
node.replace_all_uses_with(fused_node)
module.graph.erase_node(node)
if len(input_node.users) == 0:
module.graph.erase_node(input_node)
module.graph.lint()
module.recompile()
return module
# Y1 = X * W^T + bias
# Y2 = Y1.permute(0, 2, 1)
# ---->
# Y2 = (W * X^T + bias.unsqueeze(-1))^T
def linear_transpose(
input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor]
) -> torch.Tensor:
if bias is None:
return torch.matmul(weight, input.transpose(-1, -2))
return torch.matmul(weight, input.transpose(-1, -2)) + bias.unsqueeze(-1)
def permute_linear_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in module.graph.find_nodes(
op="call_function", target=torch.nn.functional.linear
):
if len(node.args) > 0:
input_node = node.args[0]
else:
input_node = node.kwargs["input"]
if (
input_node.op == "call_method"
and input_node.target == "permute"
and check_permute(input_node)
):
normalized = NormalizedLinearNode(node)
if len(input_node.args) > 0:
input = input_node.args[0]
else:
input = input_node.kwargs["input"]
weight = normalized.get_weight()
bias = normalized.get_bias()
with module.graph.inserting_before(node):
fused_node = module.graph.call_function(
transpose_linear, args=(input, weight, bias)
)
node.replace_all_uses_with(fused_node)
module.graph.erase_node(node)
if len(input_node.users) == 0:
module.graph.erase_node(input_node)
module.graph.lint()
module.recompile()
return module
def permute_matmul_fusion(module: torch.fx.GraphModule) -> torch.fx.GraphModule:
for node in itertools.chain(
module.graph.find_nodes(op="call_function", target=torch.bmm),
module.graph.find_nodes(op="call_function", target=torch.matmul),
):
normalized = NormalizedMatmulNode(node)
input_A_node = normalized.get_input()
input_B_node = normalized.get_other()
input_A = input_A_node
input_B = input_B_node
Atrans = Btrans = False
if (
input_A_node.op == "call_method"
and input_A_node.target == "permute"
and check_permute(input_A_node)
):
Atrans = True
if len(input_A_node.args) > 0:
input_A = input_A_node.args[0] # type: ignore[assignment]
else:
input_A = input_A_node.kwargs["input"] # type: ignore[assignment]
if (
input_B_node.op == "call_method"
and input_B_node.target == "permute"
and check_permute(input_B_node)
):
Btrans = True
if len(input_B_node.args) > 0:
input_B = input_B_node.args[0] # type: ignore[assignment]
else:
input_B = input_B_node.kwargs["input"] # type: ignore[assignment]
if Atrans or Btrans:
with module.graph.inserting_before(node):
fused_node = module.graph.call_function(
transpose_matmul,
args=(input_A, input_B, Atrans, Btrans),
)
node.replace_all_uses_with(fused_node)
module.graph.erase_node(node)
if Atrans and len(input_A_node.users) == 0:
module.graph.erase_node(input_A_node)
if Btrans and len(input_B_node.users) == 0:
module.graph.erase_node(input_B_node)
module.graph.lint()
module.recompile()
return module
# X1 = X.permute(0, 2, 1)
# Y1 = X1 * W1^T + bias1
# ---->
# Y2 = X1.transpose(-1, -2) * W1^T + bias1
def transpose_linear(
input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor]
) -> torch.Tensor:
if bias is None:
return torch.matmul(input.transpose(-1, -2), weight.t())
return torch.matmul(input.transpose(-1, -2), weight.t()) + bias
def transpose_matmul(
A: torch.Tensor, B: torch.Tensor, Atrans: bool, Btrans: bool
) -> torch.Tensor:
if Atrans:
A = A.transpose(-1, -2)
if Btrans:
B = B.transpose(-1, -2)
return torch.matmul(A, B)
|