1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
# mypy: allow-untyped-defs
import itertools
import logging
import operator
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Tuple
import torch
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.utils import ReinplaceCounters, ReInplaceTrigger
from torch._higher_order_ops.triton_kernel_wrap import (
kernel_side_table,
triton_kernel_wrapper_functional,
)
from torch._inductor import config, inductor_prims
from torch._inductor.fx_utils import get_node_storage, is_node_realized
from torch._inductor.lowering import (
inplaceable_foreach_ops as inplaceable_foreach_ops_lowerings,
)
from torch._inductor.virtualized import V
from torch.fx.immutable_collections import immutable_dict
from torch.fx.passes.reinplace import _is_view_op
from torch.utils import _pytree as pytree
log = logging.getLogger(__name__)
aten = torch.ops.aten
@dataclass(frozen=True)
class InplaceableOp:
inplace_op: Callable[..., Any]
mutated_arg: int
extra_check: Callable[[torch.fx.Node], bool] = lambda node: True
_SCATTER_OP_TO_VIEW = {
torch.ops.aten.diagonal_scatter.default: torch.ops.aten.diagonal.default,
torch.ops.aten.select_scatter.default: torch.ops.aten.select.int,
torch.ops.aten.slice_scatter.default: torch.ops.aten.slice.Tensor,
torch.ops.aten.as_strided_scatter.default: torch.ops.aten.as_strided.default,
}
_VIEW_OP_TO_SCATTER = {v: k for k, v in _SCATTER_OP_TO_VIEW.items()}
def graph_call_function(graph: torch.fx.Graph, fn, *args, **kwargs):
fake_args, fake_kwargs = pytree.tree_map(
lambda node: node.meta["val"] if isinstance(node, torch.fx.Node) else node,
(args, kwargs),
)
with V.fake_mode:
fake_result = fn(*fake_args, **fake_kwargs)
node = graph.call_function(fn, args, kwargs)
node.meta["val"] = fake_result
return node
@dataclass
class ViewOp:
target: torch._ops.OpOverload
args: Tuple[Any, ...]
kwargs: Dict[str, Any]
def _inplace_generalized_scatter(
inp: torch.Tensor, src: torch.Tensor, view_ops: List[ViewOp]
) -> torch.Tensor:
tmp = inp
for view in view_ops:
fake_args, fake_kwargs = pytree.tree_map(
lambda node: node.meta["val"] if isinstance(node, torch.fx.Node) else node,
(view.args, view.kwargs),
)
tmp = view.target(tmp, *fake_args, **fake_kwargs)
try:
tmp.copy_(src)
except RuntimeError as e:
raise RuntimeError(
f"shape error in scatter op, can not broadcast {src.shape} to {tmp.shape}"
) from e
return inp
def _generalized_scatter(
inp: torch.Tensor, src: torch.Tensor, view_ops: List[ViewOp]
) -> torch.Tensor:
out = inp.clone()
return _inplace_generalized_scatter(out, src, view_ops)
def _decompose_scatter_functional_helper(
graph: torch.fx.Graph,
inp: torch.Tensor,
src: torch.Tensor,
view_ops: List[ViewOp],
) -> torch.fx.Node:
view_op, view_ops_tail = view_ops[0], view_ops[1:]
if view_ops_tail:
view = graph_call_function(
graph, view_op.target, inp, *view_op.args, **view_op.kwargs
)
src = _decompose_scatter_functional_helper(graph, view, src, view_ops[1:]) # type: ignore[assignment]
return graph_call_function(
graph,
_VIEW_OP_TO_SCATTER[view_op.target],
inp,
src,
*view_op.args,
**view_op.kwargs,
)
def _decompose_scatter_functional(
graph: torch.fx.Graph, node: torch.fx.Node
) -> torch.fx.Node:
"""Decompose _generalized_scatter to a sequence of view_scatter operations
e.g. _generalized_scatter(inp, src, [(aten.slice, 0, 0, 10), (aten.slice, 1, 10, -10)])
will become
view = aten.slice(inp, 0, 0, 10)
view_updated = aten.slice_scatter(view, src, 1, 10, -10)
inp_updated = aten.slice_scatter(inp, view_updated, 0, 0, 10)
"""
assert node.target is _generalized_scatter
inp, src, view_ops = node.args
return _decompose_scatter_functional_helper(graph, *node.args) # type: ignore[arg-type]
def _decompose_scatter_mutating(
graph: torch.fx.Graph, node: torch.fx.Node
) -> torch.fx.Node:
"""Decompose _generalized_scatter using mutations
e.g. _generalized_scatter(inp, src, [(aten.slice, 0, 0, 10), (aten.slice, 1, 10, -10)])
will become
inp_updated = aten.clone(inp)
slice1 = aten.slice(inp_updated, 0, 0, 10)
slice2 = aten.slice(slice1, 1, 10, -10)
slice2.copy_(src)
"""
assert node.target in (_generalized_scatter, _inplace_generalized_scatter)
inp, src, view_ops = node.args
assert not node.kwargs
if node.target is _generalized_scatter:
inp = graph_call_function(graph, aten.clone, inp)
tmp = inp
for view in view_ops: # type: ignore[union-attr]
tmp = graph_call_function(graph, view.target, tmp, *view.args, **view.kwargs) # type: ignore[union-attr]
graph_call_function(graph, aten.copy_.default, tmp, src)
return inp # type: ignore[return-value]
# View ops whose view_scatter op is lowered into mutations anyway,
# so is never a pessimisation to decompose.
_ALWAYS_MUTATING_SCATTER_OPS = {
aten.as_strided.default,
aten.diagonal.default,
}
def scatter_always_uses_mutation(node: torch.fx.Node) -> bool:
_, _, view_ops = node.args
return any(view.target in _ALWAYS_MUTATING_SCATTER_OPS for view in view_ops) # type: ignore[union-attr]
def should_reinplace_scatter(node: torch.fx.Node) -> bool:
"""Choose between mutating and functional scatter decompositions
Reinplacing view scatter ops can be pessimising as it blocks fusion with the
input or output tensor computations. However, it is still profitable if the
input and output would have been realized anyway.
"""
inp, src, view_ops = node.args
# Mutating scatter ops unconditionally realize input and output
if scatter_always_uses_mutation(node):
return True
if is_node_realized(inp) and is_node_realized(node): # type: ignore[arg-type]
return True
# If the output is copied back into the input, this forces both to be
# realized as the output is a user of the input
if inp.op in ("placeholder", "get_attr") and any( # type: ignore[union-attr]
user.target is aten.copy_.default and user.args[0] is inp for user in node.users
):
return True
# Otherwise, assume fusions will make functional variants profitable
return False
def decompose_generalized_scatter(graph: torch.fx.Graph) -> None:
"""Replace _generalized_scatter with normal aten ops"""
for node in itertools.chain(
graph.find_nodes(op="call_function", target=_generalized_scatter),
graph.find_nodes(op="call_function", target=_inplace_generalized_scatter),
):
use_mutation = (
node.target is _inplace_generalized_scatter
or scatter_always_uses_mutation(node)
)
with graph.inserting_before(node):
if use_mutation:
new_node = _decompose_scatter_mutating(graph, node)
else:
new_node = _decompose_scatter_functional(graph, node)
node.replace_all_uses_with(new_node)
graph.erase_node(node)
def canonicalize_view_scatter_ops(graph: torch.fx.Graph) -> None:
"""
This canonicalizes view scatter ops into a generalized form, defined as:
def scatter(inp, src, views):
tmp = inp.clone()
for view in views:
tmp = view(tmp)
tmp.copy_(src)
We also fuse consecutive view scatter ops of the form
a = scatter(view2(self), src, [view1])
b = scatter(self, a, [view2])
which can be rewritten as
b = scatter(self, src, [view2, view1])
a = view2(b)
This is both more efficient as we only do a single scatter, and also
easier to reinplace since there is only one use of `self`
"""
node_to_view_base: Dict[torch.fx.Node, torch.fx.Node] = {}
node_to_view_op: Dict[torch.fx.Node, List[ViewOp]] = defaultdict(list)
def handle_views(node: torch.fx.Node):
inp = node.args[0]
node_to_view_base[node] = node_to_view_base.get(inp, inp) # type: ignore[arg-type]
node_to_view_op[node] = [
*node_to_view_op[inp], # type: ignore[index]
ViewOp(
node.target, # type: ignore[arg-type]
args=node.args[1:],
kwargs=node.kwargs,
),
]
def handle_view_scatter(node: torch.fx.Node):
assert len(node.args) >= 2
inp, src = node.args[:2]
scatter_view_op = ViewOp(
_SCATTER_OP_TO_VIEW[node.target],
args=node.args[2:],
kwargs=node.kwargs,
)
def can_fuse():
if src.target is not _generalized_scatter: # type: ignore[union-attr]
return False
src_inp, src_src, src_scatter_view_op = src.args # type: ignore[union-attr]
inp_base = node_to_view_base.get(inp, inp) # type: ignore[arg-type]
src_base = node_to_view_base.get(src_inp, src_inp) # type: ignore[arg-type]
return inp_base is src_base and node_to_view_op[src_inp] == [ # type: ignore[index]
*node_to_view_op[inp], # type: ignore[index]
scatter_view_op,
]
if not can_fuse():
with graph.inserting_before(node):
new_node = graph_call_function(
graph,
_generalized_scatter,
inp,
src,
[scatter_view_op],
)
node.replace_all_uses_with(new_node)
graph.erase_node(node)
return
src_inp, src_src, src_scatter_view_op = src.args # type: ignore[union-attr]
with graph.inserting_before(src): # type: ignore[arg-type]
new_node = graph_call_function(
graph,
_generalized_scatter,
inp,
src_src,
[scatter_view_op, *src_scatter_view_op], # type: ignore[misc]
)
node.replace_all_uses_with(new_node)
graph.erase_node(node)
if src.users: # type: ignore[union-attr]
new_src = graph_call_function(
graph,
_SCATTER_OP_TO_VIEW[node.target],
new_node,
*node.args[2:],
**node.kwargs,
)
handle_views(new_src)
src.replace_all_uses_with(new_src) # type: ignore[union-attr]
graph.erase_node(src) # type: ignore[arg-type]
for node in graph.nodes:
if _is_view_op(node.target):
handle_views(node)
elif node.target in _SCATTER_OP_TO_VIEW:
handle_view_scatter(node)
inplaceable_ops = {
aten.index_put.default: InplaceableOp(aten.index_put_.default, 0),
aten._unsafe_index_put.default: InplaceableOp(inductor_prims._unsafe_index_put_, 0),
_generalized_scatter: InplaceableOp(
_inplace_generalized_scatter,
0,
extra_check=should_reinplace_scatter,
),
}
try:
c10d_functional = torch.ops._c10d_functional
inplaceable_collective_ops = {
c10d_functional.all_reduce.default: InplaceableOp(
c10d_functional.all_reduce_.default, 0
),
c10d_functional.all_reduce_coalesced.default: InplaceableOp(
c10d_functional.all_reduce_coalesced_.default, 0
),
}
inplaceable_ops.update(inplaceable_collective_ops)
except AttributeError:
# _c10d_functional ops are only available when torch
# is built with USE_DISTRIBUTED=1.
pass
inplaceable_foreach_ops: Dict[torch._ops.OpOverload, InplaceableOp] = {}
for outplace_op, inplace_op in inplaceable_foreach_ops_lowerings.items():
inplaceable_foreach_ops[outplace_op] = InplaceableOp(inplace_op, 0)
inplaceable_triton_ops = {triton_kernel_wrapper_functional}
# Operators that don't depend on the tensor data
META_ONLY_OPS = {
aten.sym_size.int,
aten.sym_stride.int,
aten.sym_numel.default,
aten.sym_storage_offset.default,
}
def reinplace_inplaceable_ops_core(graph: torch.fx.Graph) -> None:
"""
Reinplaces in-placeable operations.
If there are no uses of a view of the mutated arg after the current node,
it is possible to inplace the op.
This above algorithm could be justified by observing side effects. While
we traverse the graph in forwards direction, only latter nodes could view
side effects of the current node. If the current node is not used later as
well as no view of this node is used later in the graph, then it is safe to
inplace as there would be no way to observe the side effects.
This condition is slightly different for graph inputs where they can only
be inplaced if the above condition is true and there's a copy_ in the
epilogue that signals that the caller wants to observe the mutation.
Unlike JIT Inductor, AOTInductor currently unlifts weights and buffers from
input args, so instead of checking mutation on placeholder, AOTInductor
checks mutation on get_attr. This is subject to change in future.
"""
copy_args_to_copy_nodes = {}
# maps argument to the first copy_ node that mutates it.
copy_nodes = {}
mutated_inputs = set()
storage_to_nodes = defaultdict(list)
node_order: Dict[Any, int] = {}
for i, node in enumerate(reversed(graph.nodes)):
node_order[node] = len(graph.nodes) - i - 1
storage_to_nodes[get_node_storage(node)].append(node)
if node.target == aten.copy_.default and node.args[0].op in (
"placeholder",
"get_attr",
):
dst = node.args[0]
src = node.args[1]
# If the target is a getitem and it indexes a possible clone,
# then skip over it
if src.target == operator.getitem and (
(
src.args[0].target == triton_kernel_wrapper_functional
and src.args[0].kwargs["kwargs"][src.args[1]] == node.args[0]
)
or (src.args[0].target in inplaceable_foreach_ops)
or (src.args[0].target == torch.ops.higher_order.auto_functionalized)
):
src = src.args[0]
copy_args_to_copy_nodes[(dst, src)] = node
copy_nodes[dst] = node
mutated_inputs.add(node.args[0])
def any_use_of_views_after_node(node, shared_view_nodes, *, copy_node, mutated_arg):
node_loc = node_order[node]
copy_node_loc = node_order[copy_node] if copy_node is not None else None
def is_meta_only_user(node):
if _is_view_op(node.target):
return all(is_meta_only_user(u) for u in node.users)
return node.target in META_ONLY_OPS
for view in shared_view_nodes:
for user in view.users:
user_loc = node_order[user]
# Skip all users before node
if user_loc <= node_loc:
continue
# Ignore uses after the copy_ epilogue node, where the input
# has already been mutated anyway
if copy_node_loc is not None and copy_node_loc <= user_loc:
continue
# Reinplacing does not change shape metadata
if is_meta_only_user(user):
continue
# If our graph looks like:
# foo(mutated_arg)
# mutated_arg.copy_(other)
# then it's safe for us to reinplace foo because mutated_arg
# will get overwritten anyways.
if (
user.target is torch.ops.aten.copy_.default
and mutated_arg is user.args[0]
):
continue
return True
return False
def can_inplace(node, mutated_arg):
if isinstance(mutated_arg, (list, tuple)):
unique_storages = {get_node_storage(arg) for arg in mutated_arg}
if len(unique_storages) != len(mutated_arg):
# at least two Tensors in mutated_arg alias each other, so we can't reinplace it.
# We can probably do better (that is, reinplace one of them and clone the other)
# but that requires more work and mutable List[Tensor] are not that common.
return False
return all(can_inplace(node, arg) for arg in mutated_arg)
if get_node_storage(mutated_arg) is None:
return False
shared_view_nodes = storage_to_nodes[get_node_storage(mutated_arg)]
if mutated_arg.op in ("placeholder", "get_attr"):
# Get the first copy_ node that mutates the mutated_arg.
copy_node = copy_nodes.get(mutated_arg, None)
if copy_node is None:
# There is no copy_ back to the candidate mutated_arg (which is a graph input).
# Therefore the semantics of the program are that it does not mutate
# mutated_arg, so we cannot re-inplace it.
return False
if any_use_of_views_after_node(
node, shared_view_nodes, copy_node=copy_node, mutated_arg=mutated_arg
):
return False
return True
elif any(view.op in ("placeholder", "get_attr") for view in shared_view_nodes):
# This should never happen in auto_functionalize_v2 non-inference mode,
# since all mutated_arg are bases.
# If mutated arg is view of any of the inputs of the graph,
# do not allow for inplacing.
# This would require more sophisticated algorithm to handle
return False
else:
return not any_use_of_views_after_node(
node, shared_view_nodes, copy_node=None, mutated_arg=mutated_arg
)
def log_inplace_results(
node_name,
old_tensors_to_clone,
tensors_to_clone,
missed_args,
missed_nodes,
trigger,
):
# Total size of possibly_missed_reinplacing_opportunities for tensors with static shapes.
missed_bytes = 0
def bytes(node):
t = node.meta.get("val", None)
if (
t is not None
and isinstance(t.element_size(), int)
and isinstance(t.numel(), int)
):
return t.element_size() * t.numel()
else:
return 0
for node in missed_nodes:
if isinstance(node, (list, tuple)):
for n in node:
missed_bytes += bytes(n)
else:
missed_bytes += bytes(node)
log.info(
"For node %s, attempted to reinplace %s. We were unable to reinplace %s; "
"%s (if non-empty) are possible missed reinplacing opportunities that may be bad for "
"memory usage and performance. Total size of missed opportunities with static shapes is"
" : %s bytes.",
node_name,
old_tensors_to_clone,
tensors_to_clone,
missed_args,
missed_bytes,
)
ReinplaceCounters.add_missed_opportunities(trigger, len(missed_args))
ReinplaceCounters.add_missed_bytes(trigger, missed_bytes)
replace_dict: Dict[torch.fx.Node, torch.fx.Node] = {}
def reinplace_and_refine_tensors_to_clone(
old_tensors_to_clone, kwargs, node_name, trigger
):
tensors_to_clone: List[str] = []
storage_of_reinplaced_args = set()
# Those used to count possibly_missed_reinplacing_opportunities
missed_nodes = []
missed_args = []
def tensor_with_same_storage_already_reinplaced(arg):
if isinstance(arg, (list, tuple)):
return any(
get_node_storage(a) in storage_of_reinplaced_args for a in arg
)
return get_node_storage(mutated_arg) in storage_of_reinplaced_args
for arg in old_tensors_to_clone:
assert arg in kwargs
mutated_arg = kwargs[arg]
# Let's say we have:
# - op(x, y) that mutates both x and y
# - new_x, new_y = functional_op(x, y) is the functional variant
# If we are presented with functional_op(x, x), we must not reinplace
# this into op(x, x), because then it would be writing to the same Tensor.
# Instead, it's OK to reinplace one of them and to clone the other:
# >>> y = x.clone()
# >>> op(x, y)
# This also applies if we have views: functional_op(x, x[0])
# should not reinplace into op(x, x[0]).
should_attempt_reinplace = not tensor_with_same_storage_already_reinplaced(
mutated_arg
)
if should_attempt_reinplace and can_inplace(node, mutated_arg):
# In general, we probably do not need those optimizations.
copy_node = copy_args_to_copy_nodes.get((mutated_arg, node))
if copy_node is not None:
replace_dict[copy_node] = copy_node.args[0]
if not trigger == ReInplaceTrigger.AUTO_FUNC_V2:
for user in node.users:
# For auto_functionalize_v2, arg is the index of the base, where base at index i corresponds to
# output atindex size(out)+i.
# This used to compare string with integers before for auto_functionalize_v2. Not sure
# if it was needed for inplaceable_triton_ops?
if user.target == operator.getitem and user.args[1] == arg:
replace_dict[user] = mutated_arg
if isinstance(mutated_arg, (list, tuple)):
for a in mutated_arg:
storage_of_reinplaced_args.add(get_node_storage(a))
else:
storage_of_reinplaced_args.add(get_node_storage(mutated_arg))
else:
if should_attempt_reinplace:
missed_args.append(arg)
missed_nodes.append(mutated_arg)
tensors_to_clone.append(arg)
log_inplace_results(
node_name,
old_tensors_to_clone,
tensors_to_clone,
missed_args,
missed_nodes,
trigger,
)
return tensors_to_clone
for node in graph.nodes:
if (inplaceable_op := inplaceable_ops.get(node.target, None)) is not None:
mutated_arg = node.args[inplaceable_op.mutated_arg]
if can_inplace(node, mutated_arg) and inplaceable_op.extra_check(node):
# TODO(yifu): this doesn't properly remove copy epilogues for
# ops that mutate multiple inputs. Need to revise the copy
# node tracking logic to support the case.
copy_node = copy_args_to_copy_nodes.get((mutated_arg, node))
if copy_node is not None:
replace_dict[copy_node] = copy_node.args[0]
node.target = inplaceable_op.inplace_op
elif node.target == torch.ops.higher_order.auto_functionalized_v2:
_mutable_op = node.args[0]
kwargs = node.kwargs
all_bases = kwargs["_all_bases"]
bases_to_clone = range(len(all_bases))
base_tensors_dct = dict(enumerate(all_bases))
new_bases_to_clone: List[int] = reinplace_and_refine_tensors_to_clone(
bases_to_clone,
base_tensors_dct,
node.target,
ReInplaceTrigger.AUTO_FUNC_V2,
)
# Stash the metadata. There is a pass later on where we decompose
# auto_functionalized into clones + a mutable op; this metadata
# tells the decomp to only clone the following inputs
node.meta["only_clone_these_tensors"] = new_bases_to_clone
elif node.target == torch.ops.higher_order.auto_functionalized:
_mutable_op = node.args[0]
from torch._higher_order_ops.auto_functionalize import get_mutable_args
tensors_to_clone, _ = get_mutable_args(_mutable_op)
# Don't try to reinplace Optional[Tensor] args that are None.
tensors_to_clone = [
t for t in tensors_to_clone if node.kwargs[t] is not None
]
tensors_to_clone = reinplace_and_refine_tensors_to_clone(
tensors_to_clone,
node.kwargs,
_mutable_op._name,
ReInplaceTrigger.AUTO_FUNC_V1,
)
# Stash the metadata. There is a pass later on where we decompose
# auto_functionalized into clones + a mutable op; this metadata
# tells the decomp to only clone the following inputs
node.meta["only_clone_these_tensors"] = tensors_to_clone
elif node.target in inplaceable_triton_ops:
kernel_idx = node.kwargs["kernel_idx"]
kernel = kernel_side_table.get_kernel(kernel_idx)
from triton.runtime.autotuner import Autotuner
from triton.runtime.jit import JITFunction
if isinstance(kernel, JITFunction):
kernel_name = kernel.fn.__name__
elif isinstance(kernel, Autotuner):
if config.is_fbcode():
# Autotuner has different implementations for AMD and NV
if torch.version.hip is None:
kernel_name = kernel.base_fn.__name__
else:
kernel_name = kernel.fn.__name__
else:
kernel_name = kernel.base_fn.__name__
else:
raise AssertionError("Unknown triton kernel type")
# inplaceable_triton_ops take an additional argument called
# tensors_to_clone which contain a list of tensors to clone
# This pass iterates over them and sees which ones are safe
# to eliminate (i.e. no longer need the clones)
tensors_to_clone = reinplace_and_refine_tensors_to_clone(
node.kwargs["tensors_to_clone"],
node.kwargs["kwargs"],
kernel_name,
ReInplaceTrigger.TRITON_OPS,
)
kwargs = dict(node.kwargs)
kwargs["tensors_to_clone"] = tensors_to_clone
node.kwargs = immutable_dict(kwargs)
elif (
inplaceable_op := inplaceable_foreach_ops.get(node.target, None)
) is not None:
mutated_args = node.args[inplaceable_op.mutated_arg]
if not all((arg, node) in copy_args_to_copy_nodes for arg in mutated_args):
continue
if can_inplace(node, mutated_args):
for arg in mutated_args:
copy_node = copy_args_to_copy_nodes[(arg, node)]
replace_dict[copy_node] = copy_node.args[0]
node.target = inplaceable_op.inplace_op
for node, replacement in replace_dict.items():
while replacement in replace_dict:
replacement = replace_dict[replacement]
replace_dict[node] = replacement
node.replace_all_uses_with(replacement)
graph.erase_node(node)
def reinplace_inplaceable_ops(graph: torch.fx.Graph) -> None:
with enable_python_dispatcher():
canonicalize_view_scatter_ops(graph)
reinplace_inplaceable_ops_core(graph)
decompose_generalized_scatter(graph)
|