File: replace_random.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (143 lines) | stat: -rw-r--r-- 4,052 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# mypy: allow-untyped-defs
import collections
import logging

import torch
from torch.fx.passes.graph_transform_observer import GraphTransformObserver
from torch.fx.passes.shape_prop import _extract_tensor_metadata

from .. import config, inductor_prims
from ..pattern_matcher import (
    CallFunctionVarArgs,
    Match,
    PatternMatcherPass,
    register_graph_pattern,
)
from ..virtualized import V


log = logging.getLogger(__name__)
patterns = PatternMatcherPass()
aten = torch.ops.aten


def replace_random_passes(gm: torch.fx.GraphModule):
    """Modify the given FX graph to use backend-native random ops"""
    if config.fallback_random:
        return 0

    count = patterns.apply(gm)
    with GraphTransformObserver(gm, "fuse_seed_creation_pass"):
        count += fuse_seed_creation_pass(gm.graph)

    return count


def fuse_seed_creation_pass(graph: torch.fx.Graph):
    """
    Horizontally fuse all the seed generation on each device

        a = inductor_seed(dev)
        b = inductor_seed(dev)

    Becomes:
        seeds = inductor_seeds(2, dev)
        a = inductor_lookup_seed(seeds, 0)
        b = inductor_lookup_seed(seeds, 1)

    We do this because seed creation is entirely launch overhead bound.
    """
    device_seeds = collections.defaultdict(list)
    for node in graph.nodes:
        if CallFunctionVarArgs(inductor_prims.seed).match(node):
            device_seeds[node.args[0]].append(node)

    if not device_seeds:
        return 0

    for device, seeds in device_seeds.items():
        with graph.inserting_before(seeds[0]):
            combined = graph.call_function(inductor_prims.seeds, (len(seeds), device))
            with V.fake_mode:
                combined.meta["val"] = torch.empty(
                    [len(seeds)], device=device, dtype=torch.int64
                )
                combined.meta["tensor_meta"] = _extract_tensor_metadata(
                    combined.meta["val"]
                )

        for idx, seed in enumerate(seeds):
            with graph.inserting_before(seed):
                new_seed = graph.call_function(
                    inductor_prims.lookup_seed, (combined, idx)
                )
            seed.replace_all_uses_with(new_seed)
            new_seed.meta.update(seed.meta)
            graph.erase_node(seed)

    return len(device_seeds)


def default_kwargs(device):
    return {}


def get_device(device):
    if device is not None:
        return device
    return torch.empty([]).device  # default device


@register_graph_pattern(CallFunctionVarArgs(aten.rand.default), pass_dict=patterns)
@register_graph_pattern(CallFunctionVarArgs(aten.rand.generator), pass_dict=patterns)
@register_graph_pattern(CallFunctionVarArgs(aten.randn.default), pass_dict=patterns)
@register_graph_pattern(CallFunctionVarArgs(aten.randn.generator), pass_dict=patterns)
def replace_random(
    match: Match,
    size,
    *,
    generator=None,
    dtype=None,
    device=None,
    layout=None,
    pin_memory=None,
):
    if generator is not None:
        return

    def replacement(size):
        result = inductor_prims.random(
            size, inductor_prims.seed(device), mode, **default_kwargs(device)
        )
        if dtype is not None:
            result = result.to(dtype)
        return result

    mode = {
        aten.rand: "rand",
        aten.randn: "randn",
    }[
        match.output_node().target.overloadpacket  # type: ignore[union-attr]
    ]  # type: ignore[union-attr]
    device = get_device(device)
    match.replace_by_example(replacement, [size])


@register_graph_pattern(CallFunctionVarArgs(aten.randint.low), pass_dict=patterns)
def replace_randint(
    match: Match,
    low,
    high,
    size,
    *,
    dtype=torch.int64,
    device=None,
    layout=None,
    pin_memory=None,
):
    def replacement(low, high, size):
        result = inductor_prims.randint(low, high, size, inductor_prims.seed(device))
        return result.to(dtype)

    device = get_device(device)
    match.replace_by_example(replacement, [low, high, size])