1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
|
import contextlib
import functools
import itertools
import logging
import operator
import os
import re
import sys
import time
from collections import defaultdict
from contextlib import contextmanager
from types import ModuleType
from typing import (
Any,
Callable,
DefaultDict,
Dict,
Iterable,
Iterator,
List,
NoReturn,
Optional,
Sequence,
Tuple,
TYPE_CHECKING,
Union,
)
import sympy
from sympy import Expr
import torch
import torch._logging
import torch.fx
from torch import device, Tensor
from torch._decomp import get_decompositions
from torch._dynamo.utils import defake, dynamo_timed
from torch._logging import LazyString, trace_structured
from torch._prims_common import make_channels_last_strides_for
from torch._subclasses.fake_tensor import FakeTensor
from torch.fx import GraphModule
from torch.fx.experimental._backward_state import BackwardState
from torch.fx.experimental.sym_node import magic_methods, method_to_operator
from torch.fx.experimental.symbolic_shapes import (
free_unbacked_symbols,
has_free_symbols,
resolve_unbacked_bindings,
RuntimeAssert,
ShapeEnv,
SympyBoolean,
SymTypes,
)
from torch.fx.graph import Graph
from torch.fx.node import Node
from torch.utils._mode_utils import no_dispatch
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.numbers import int_oo
from . import config, ir, metrics
from .codegen.common import (
BackendFeature,
DeviceOpOverrides,
get_backend_features,
get_device_op_overrides,
get_wrapper_codegen_for_device,
init_backend_registration,
)
from .codegen.wrapper import PythonWrapperCodegen
from .exc import (
CppWrapperCodegenError,
LoweringException,
MissingOperatorWithDecomp,
MissingOperatorWithoutDecomp,
)
from .ir import (
Constant,
DonatedBuffer,
FixedLayout,
get_device_type,
InputBuffer,
Pointwise,
Reduction,
StorageBox,
TensorBox,
TorchBindObject,
)
from .lowering import (
constrain_to_fx_strides,
FALLBACK_ALLOW_LIST,
fallback_handler,
fallback_node_due_to_unsupported_type,
lowerings,
make_fallback,
maybe_layout_constraints,
needs_realized_inputs,
require_contiguous,
unsupported_output_tensor,
)
from .runtime import autotune_cache
from .runtime.autotune_cache import AutotuneCacheBundler
from .scheduler import BaseSchedulerNode
from .sizevars import SizeVarAllocator
from .utils import (
convert_shape_to_inductor,
gather_origins,
get_cloned_parameter_buffer_name,
get_donated_idxs,
get_sympy_Expr_dtype,
is_same_tensor,
maybe_get_suppress_shape_guards_ctx,
normalize_name,
should_assume_input_aligned,
)
from .virtualized import NullHandler, V
if TYPE_CHECKING:
from torch._higher_order_ops.effects import _EffectType
from torch._inductor.codecache import output_code_log
log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
aten = torch.ops.aten
_post_grad_graph_counter = itertools.count()
if config.is_fbcode():
from torch._inductor.fb.utils import log_module_code
else:
def log_module_code(*args: Any, **kwargs: Any) -> None:
pass
def supported_dtype_of_cpp_wrapper(dtype: torch.dtype, device_type: str) -> bool:
supported_dtype = {
torch.float32,
torch.float64,
torch.int64,
torch.int32,
torch.int16,
torch.int8,
torch.uint8,
torch.bool,
torch.bfloat16,
torch.complex32,
torch.complex64,
torch.complex128,
torch.float16,
}
if device_type == "cuda":
supported_dtype.add(torch.float8_e4m3fn)
supported_dtype.add(torch.float8_e5m2)
supported_dtype.add(torch.float8_e4m3fnuz)
supported_dtype.add(torch.float8_e5m2fnuz)
return dtype in supported_dtype
def may_get_constant_buffer_dtype(constant_buffer: sympy.Expr) -> Optional[torch.dtype]:
assert isinstance(
constant_buffer, (sympy.Symbol, sympy.Expr, sympy.core.numbers.Integer)
), "get_constant_buffer_dtype only supports input of sympy.Symbol, sympy.Expr or sympy.core.numbers.Integer"
if isinstance(constant_buffer, sympy.core.numbers.Integer):
return torch.int64
if isinstance(constant_buffer, sympy.Expr):
return get_sympy_Expr_dtype(constant_buffer)
if constant_buffer.is_integer:
return torch.int64
elif constant_buffer.is_float:
return torch.float32
else:
return None
def is_magic_method(op: Any) -> bool:
magic_ops = {method_to_operator(m) for m in magic_methods}
return op in magic_ops
def getattr_recursive(
obj: GraphModule, target: str
) -> Union[Tensor, torch._C.ScriptObject, GraphModule]:
target_atoms = target.split(".")
attr_itr = obj
for i, atom in enumerate(target_atoms):
if not hasattr(attr_itr, atom):
raise RuntimeError(
f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}"
)
attr_itr = getattr(attr_itr, atom)
return attr_itr
def get_user_visible_output_strides(g: Graph) -> Dict[Node, Tuple[int, ...]]:
ret: Dict[Node, Tuple[int, ...]] = {}
output_node = g.find_nodes(op="output")[0]
if "user_visible_output_idxs" not in output_node.meta:
return ret
for idx, node in enumerate(output_node.args[0]):
if idx in output_node.meta["user_visible_output_idxs"]:
ret[node] = output_node.meta["original_output_strides"][idx]
return ret
def mark_nodes_dislike_padding(
g: Graph, user_visible_output_strides: Dict[Node, Tuple[int, ...]]
) -> None:
"""
Nodes like convolution/convolution_backward want its input to be dense.
If we pad their inputs, we result in extra calls to copy kernels! On the other hand, padding usually helps reduction.
The pass finds nodes that dislike padding. These are nodes that can be reached
from a convolution/convolution_backward in the backward direction without
going thru a reduction.
"""
if not config.comprehensive_padding:
return
ops_dislike_padding = {
aten.convolution,
aten.convolution_backward,
aten._scaled_mm,
}
# what's a better way to collect the reduction ops?
ops_like_padding = {
aten.var_mean,
aten.sum,
aten.mean,
aten.prod,
aten.any,
aten.amin,
aten.amax,
aten.min,
aten.max,
aten.argmin,
aten.argmax,
aten.scatter_reduce,
}
def _get_overload_packet(
node: torch.fx.Node,
) -> Optional[torch._ops.OpOverloadPacket]:
return (
node.target._overloadpacket
if node.op == "call_function"
# hasattr on OpOverloadPacket is slow, do isinstance first
and isinstance(node.target, torch._ops.OpOverload)
and hasattr(node.target, "_overloadpacket")
else None
)
output_node = g.find_nodes(op="output")[0]
for cur in reversed(g.nodes):
op = _get_overload_packet(cur)
if not op:
continue
if op in ops_dislike_padding:
cur.meta["dislike_padding"] = True
if cur.meta.get("dislike_padding", False):
# propagate
for prior in cur.all_input_nodes:
prior_op = _get_overload_packet(prior)
if not prior_op:
continue
if prior_op not in ops_like_padding:
prior.meta["dislike_padding"] = True
# We only want to mark output nodes. So, move it after the above prior nodes process.
if not config.pad_outputs and cur in user_visible_output_strides:
cur.meta["dislike_padding"] = True
class GraphLowering(torch.fx.Interpreter):
graph_outputs: List[ir.IRNode]
def symbolic_sizes_strides(
self, ex: torch.Tensor
) -> Tuple[Sequence[Union[int, Expr]], Sequence[Union[int, Expr]]]:
"""
Support dynamic shapes and dynamic strides by assigning variables
to each dimension. We duck-shape tensors, so if two tensors
have the same size they get assigned the same symbolic variable.
"""
if self.reuse_shape_env:
return convert_shape_to_inductor(ex.size()), convert_shape_to_inductor(
ex.stride()
)
else:
from torch._dynamo.source import ConstantSource
# TODO: this should not be needed once #93059 lands
# https://github.com/pytorch/pytorch/pull/94031#discussion_r1096044816
# TODO: make a dedicated UnknownSource for this?
# NB: This is using the legacy default behavior from
# create_symbolic_sizes_strides_storage_offset but we hope we can
# just delete this entirely
source = ConstantSource(
f"__inductor_unknown_tensor_{len(self._shape_env.var_to_val)}"
)
(
size,
stride,
_,
) = self._shape_env.create_symbolic_sizes_strides_storage_offset(
ex,
source,
)
r_size = [i.node.expr if isinstance(i, torch.SymInt) else i for i in size]
r_stride = [i.node.expr if isinstance(i, torch.SymInt) else i for i in stride]
return r_size, r_stride
def static_sizes_strides(
self, ex: torch.Tensor
) -> Tuple[List[sympy.Expr], List[sympy.Expr]]:
"""
Primarily used to weights
"""
size = [sympy.Integer(i) for i in ex.size()]
stride = [sympy.Integer(i) for i in ex.stride()]
return size, stride
def __init__(
self,
gm: torch.fx.GraphModule,
example_inputs: Optional[Sequence[object]] = None,
shape_env: Optional[ShapeEnv] = None,
graph_id: Optional[int] = None,
cpp_wrapper: bool = False,
aot_mode: bool = False,
layout_opt: Optional[bool] = None,
extern_node_serializer: Optional[
Callable[[List[ir.ExternKernelNode]], Any]
] = None,
is_inference: bool = False,
is_backward: bool = False,
is_const_graph: bool = False,
const_output_index: Optional[Dict[str, int]] = None,
const_code: Optional[str] = None,
const_module: Optional["GraphLowering"] = None,
name: Optional[str] = None,
inputs_to_check: Optional[Sequence[int]] = None,
) -> None:
super().__init__(gm)
self.example_inputs = example_inputs
self.layout_opt = (
layout_opt
if layout_opt is not None
else self.decide_layout_opt(gm, is_inference=is_inference)
)
self.num_channels_last_conv = 0
self.is_inference = is_inference
self.is_backward = is_backward
self.is_const_graph = is_const_graph
self.const_code = const_code
self.const_module = const_module
self.inputs_to_check = inputs_to_check
self.extra_traceback = False # we do our own error wrapping
if shape_env is None:
shape_env = ShapeEnv()
self.reuse_shape_env = False
else:
self._shape_env = shape_env
self.reuse_shape_env = True
self._shape_env = shape_env
# We are going to start code generating runtime asserts, so make sure
# you don't start adding new ones in the lowering process
shape_env.freeze_runtime_asserts()
# We're going to mutate ras_by_symbol as we finish generating them
self.ras_by_symbol: Dict[
Optional[sympy.Symbol], List[RuntimeAssert]
] = shape_env.deferred_runtime_asserts.copy()
self.bound_unbacked_symbols: OrderedSet[sympy.Symbol] = OrderedSet()
self.sizevars = SizeVarAllocator(shape_env)
self.graph_input_names: List[str] = []
self.graph_inputs: Dict[str, TensorBox] = {}
self.graph_inputs_original: Dict[str, InputBuffer] = {}
self.zero_dim_cpu_tensor_list: OrderedSet[str] = OrderedSet()
self.device_types: OrderedSet[str] = (
const_module.device_types if const_module else OrderedSet()
)
self.device_idxs: OrderedSet[int] = (
const_module.device_idxs if const_module else OrderedSet()
)
self.device_type = "cpu"
self.buffers: List[ir.Buffer] = []
self.operations: List[ir.Operation] = []
self.const_output_index: Dict[str, int] = (
const_output_index if const_output_index else {}
)
self.folded_constants: OrderedSet[str] = (
OrderedSet(const_output_index.keys())
if const_output_index
else OrderedSet()
)
self.constants: Dict[str, torch.Tensor] = (
const_module.constants if const_module else {}
)
self.torchbind_constants: Dict[str, torch._C.ScriptObject] = {}
self.seen_subgraphs: Dict[str, ir.Subgraph] = {}
self.constant_reprs: Dict[str, str] = {}
self.removed_operations: OrderedSet[str] = OrderedSet()
self.removed_buffers: OrderedSet[str] = OrderedSet()
self.removed_inplace_buffers: OrderedSet[str] = OrderedSet()
self.mutated_buffers: OrderedSet[str] = OrderedSet()
self.never_reuse_buffers: OrderedSet[str] = OrderedSet()
self.inplaced_to_remove: OrderedSet[str] = OrderedSet()
self.device_ops: DeviceOpOverrides = None # type: ignore[assignment]
self.wrapper_code: PythonWrapperCodegen = None # type: ignore[assignment]
# See `ProxyExecutor Design Note` in ir.py for more details
self.extern_kernel_nodes: List[ir.ExternKernelNode] = []
from torch._inductor.extern_node_serializer import extern_node_json_serializer
self.extern_node_serializer: Callable[[List[ir.ExternKernelNode]], Any] = (
extern_node_serializer
if config.is_fbcode() and extern_node_serializer
else extern_node_json_serializer
)
self.current_node: torch.fx.Node = None # type: ignore[assignment]
self.lists: Dict[str, List[str]] = {}
self.mutated_inputs: OrderedSet[str] = OrderedSet()
self.mutated_input_idxs: List[int] = []
self.name_to_buffer: Dict[str, ir.Buffer] = {}
self.name_to_users: DefaultDict[str, List[ir.IRNode]] = defaultdict(list)
self.name_to_op: Dict[str, ir.Operation] = {}
self.creation_time = time.time()
self.name = name # type: ignore[assignment]
self.cpp_wrapper = cpp_wrapper
# record multi_kernel choice for cpp_wrapper so the second pass knows
# which sub-kernel is picked. Copy cpp_wrapper to another variable
# since cpp_wrapper flag is OrderedSet to false for the first pass of codegen.
self.record_multi_kernel_choice = cpp_wrapper
self.multi_kernel_to_choice: Dict[str, str] = {}
self.aot_mode = aot_mode
self.graph_id = graph_id
self.post_grad_graph_id = next(_post_grad_graph_counter)
self.scheduler: torch._inductor.scheduler.Scheduler = None # type: ignore[assignment]
# current_device is set only during codegen of a device-specific kernel
# a graph can have many devices
self.current_device: Optional[torch.device] = None
self.nodes_prefer_channels_last = (
self.find_nodes_prefer_channels_last() if self.layout_opt else OrderedSet()
)
self._warned_fallback = {"aten.convolution_backward"}
self.user_visible_output_strides = get_user_visible_output_strides(gm.graph)
mark_nodes_dislike_padding(gm.graph, self.user_visible_output_strides)
self.cache_key: str = "" # This is the cache key for the compiled artifact
self.cache_path: str = "" # This is the path in the filesystem where the compiled artifact is stored
self.cache_linemap: List[
Tuple[int, str]
] = (
[]
) # This is the linemap used by the profiler to mark custom compiled kernels getting run
# Used if lowering encounters cases where cudagraphs are not supported
self.disable_cudagraphs_reason: Optional[str] = None
# only keeping one node per device for stack trace purposes
self.device_node_mapping: Dict[torch.device, torch.fx.Node] = {}
self.orig_gm: torch.fx.GraphModule = gm.__copy__()
self.dynamo_flat_name_to_original_fqn = self.module.meta.get( # type: ignore[operator, union-attr]
"dynamo_flat_name_to_original_fqn", {}
)
self.allocated_constant_name: Dict[str, str] = (
const_module.allocated_constant_name if const_module is not None else {}
)
init_backend_registration()
self.get_backend_features = functools.lru_cache(None)(get_backend_features)
self.effectful_ops: Dict[_EffectType, ir.Buffer] = {}
self.aligned_inputs: OrderedSet[str] = OrderedSet()
self.no_fuse_buffer_names: OrderedSet[str] = OrderedSet()
# Below field is related to printing debug intermediate tensor values info for debugging
self.all_codegen_kernel_names: OrderedSet[str] = OrderedSet()
# state used by for Kernel.workspace
self.workspace_id = itertools.count()
# track the current placeholder index that we are processing
self.placeholder_idx = -1
self.bw_donated_idxs = get_donated_idxs()
def has_feature(
self,
device: Union[torch._inductor.ir.IRNode, device, None],
feature: BackendFeature,
) -> bool:
assert isinstance(feature, BackendFeature), feature
return feature in self.get_backend_features(get_device_type(device))
def get_current_device_or_throw(self) -> torch.device:
if device := self.current_device:
return device
else:
raise RuntimeError("No current device")
@contextlib.contextmanager
def set_current_device(self, device: torch.device) -> Iterator[None]:
prior = self.current_device
self.current_device = device
try:
yield
finally:
self.current_device = prior
def get_training_phase(self) -> str:
if self.is_inference:
return "inference"
if self.is_backward:
return "backward"
return "forward"
@staticmethod
def decide_layout_opt(gm: GraphModule, *, is_inference: bool) -> bool:
"""
Decide if we should enable layout optimization for this graph based on
heuristics.
"""
if not config.layout_optimization:
return False
if config.force_layout_optimization:
return True
conv_nodes = [
n for n in gm.graph.nodes if n.target == torch.ops.aten.convolution.default
]
nconv = len(conv_nodes)
if nconv == 0:
return False
# For cpu backend and mkldnn enabled, we always use channels_last for better performance.
if (
torch.backends.mkldnn.enabled
and torch.backends.mkldnn.is_available()
and all(
n.args[idx].meta["val"].device == torch.device("cpu")
for n in conv_nodes
for idx in [0, 1]
)
):
return True
# Following models are skipped due to this:
# jx_nest_base
# volo_d1_224
if len(list(gm.graph.nodes)) >= 300 * nconv:
log.debug("Skipped layout opt because only a few conv")
return False
if any(
has_free_symbols(n.args[idx].meta["val"])
for n in conv_nodes
for idx in [0, 1]
):
log.debug(
"See perf regression with dynamic shape. Follow up in https://github.com/pytorch/pytorch/issues/102670"
)
return False
def is_grouped(n: Any) -> bool:
meta_val = n.args[1].meta["val"] # type: ignore[union-attr, operator]
assert isinstance(meta_val, torch.Tensor)
return n.args[-1] > 1 and meta_val.size(1) > 1 # type: ignore[union-attr, operator]
def is_in_out_channel(n: torch.fx.Node) -> bool:
return (
n.args[1].meta["val"].size(0) * 2 <= n.args[1].meta["val"].size(1) # type: ignore[union-attr, operator]
and n.args[1].meta["val"].size(2) > 1 # type: ignore[union-attr, operator]
)
def is_small_channel(n: torch.fx.Node) -> bool:
return (
n.args[1].meta["val"].size(0) <= 64 # type: ignore[union-attr, operator]
and n.args[1].meta["val"].size(1) <= 64 # type: ignore[union-attr, operator]
)
# only grouped convolutions benchmarked as slower in conv samples for inference only
if is_inference:
from torch.utils.flop_counter import FlopCounterMode
flop_counts: Dict[str, float] = defaultdict(float)
for node in conv_nodes:
success, args, kwargs = torch._inductor.fx_utils.get_fake_args_kwargs(
node
)
if success:
with FlopCounterMode(display=False) as flop_counter_mode:
with V.fake_mode:
node.target(*args, **kwargs)
counted_flops = flop_counter_mode.get_total_flops()
if is_grouped(node):
node_type = "grouped"
elif is_small_channel(node):
node_type = "small"
elif is_in_out_channel(node):
node_type = "in_out"
else:
node_type = "default"
flop_counts[node_type] += counted_flops
else:
log.debug("Conv inputs meta not found")
# average benchmarked channels last speedup / slowdown, < 1 is speedup.
# taken from the set of convolution inputs in benchmarks/dynamo/microbenchmarks/operator_inp_logs/torchbench_train/
# To regenerate these numbers follow https://gist.github.com/eellison/55d7a6ed6f39829d68ac56f95f4df5bb
GROUPED_MULTIPLIER = 1.358
DEFAULT_MULTIPLIER = 0.823
IN_OUT_MULTIPLIER = 0.725
SMALL_MULTIPLIER = 0.783
total_flops = sum(flop_counts.values())
# TODO - get different values per hardware
weighted_flops = (
flop_counts["grouped"] * GROUPED_MULTIPLIER
+ flop_counts["small"] * SMALL_MULTIPLIER
+ flop_counts["in_out"] * IN_OUT_MULTIPLIER
+ flop_counts["default"] * DEFAULT_MULTIPLIER
)
do_layout_opt = weighted_flops <= total_flops
if not do_layout_opt:
log.debug(
"Skipped layout opt in inference because weighted flops indicate slowdown, default: %d, channels last: %d",
total_flops,
weighted_flops,
)
return do_layout_opt
# Channels last layout can dramatically hurt grouped conv perf. E.g.
# Conv with arguments like
# {"input_shape": [32, 224, 112, 112], "weight_shape": [224, 112, 3, 3],
# "stride": [2, 2], "padding": [1, 1], "groups": 2}
# slows down 31x using channels last..
# But a lot of timm models use depthwise separable convolution which will
# result in grouped convolution with in-channel size == 1.
# For those grouped convolution, channels last still helps a lot.
# E.g.
# Conv with arguments
# {"input_shape": [128, 58, 56, 56], "weight_shape": [58, 1, 3, 3],
# "stride": [2, 2], "padding": [1, 1], "groups": 58}
# get 1.86x speedup with channels last layout.
#
# The following heuristics skip using channels-last if the model contains
# grouped convolution with in-channels > 1.
if any(map(is_grouped, conv_nodes)):
log.debug(
"Skip layout opt because found grouped convolution with >1 in_channels!"
)
return False
# For some models that contain convolution with larger in-channel than out-channel, applying
# channels last hurts performance.
# Following models are skipped due to this:
# - pytorch_unet
# - phlippe_densenet (slightly worse)
# - Background_Matting (1.22x -> 0.821x)
# - pytorch_CycleGAN_and_pix2pix (1.597x -> 1.294x)
if any(map(is_in_out_channel, conv_nodes)):
log.debug(
"Skip layout opt because some convolutions have smaller out_channel"
)
return False
# Following models are skipped due to this:
# - functorch_maml_omniglot
if all(map(is_small_channel, conv_nodes)):
log.debug("Skip layout opt because all convolution channels are too small")
return False
return True
def qualify_name(self, name: str) -> str:
"""Prepend the given name with the graph name if any."""
if self.name is not None:
return f"{self.name}_{name}"
return name
def make_subgraph(
self,
gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
subgraph_name: str,
) -> "SubgraphLowering":
"""
Make a subgraph of the current graph with all inherited parts, except
the graph module (`gm`) and `example_inputs`. The subgraphs are lowered
separately and lifted into a separate function in the parent output
wrapper code. The subgraph name is qualified by the parent graph's
name. Note that the lifting of subgraph is supported for python wrapper
only. For cpp wrapper, we inline the subgraphs in the parent wrapper.
"""
return SubgraphLowering(
parent=self,
gm=gm,
example_inputs=example_inputs,
shape_env=self._shape_env,
cpp_wrapper=self.cpp_wrapper,
aot_mode=self.aot_mode,
extern_node_serializer=self.extern_node_serializer,
is_inference=self.is_inference,
is_backward=self.is_backward,
name=self.qualify_name(subgraph_name),
)
def find_nodes_prefer_channels_last(self) -> OrderedSet[Node]:
"""
The rule to decide if an node prefer channels last is simple.
1. if it's input/output of a convolution
2. if one of its user prefers channels last
We have rule 1 because cudnn runs a faster convolution kernel for channels last inputs;
Rule 2 is also important. It makes sure that indirect inputs to convolution also prefers
channels last.
Consider the scenario: conv -> batch-norm -> relu -> conv
Without rule 2, batch-norm output may use a contiguous layout. That will cause 2 extra copies:
1. the output of batch-norm should be channels last initially since its input is a conv's output.
Forcing the batch-norm's output to be contiguous results in the first copy
2. The second conv's input is initially contiguous. This layout is propagated from the batch-norm's output.
We need convert it to channels last layout which results in the second copy.
With rule 2, we makes sure all the tensors in the chain uses channels last layout. So both copies
can be saved.
"""
output_set: OrderedSet[Node] = OrderedSet()
for n in reversed(self.module.graph.nodes): # type: ignore[arg-type, union-attr]
if n.target == torch.ops.aten.convolution.default:
output_set.add(n)
continue
for user in n.users:
if user in output_set:
output_set.add(n)
break
# need a second pass to add downstream nodes of those channel last nodes to the sets.
# This pass is especially needed to avoid mix-layout kernel inputs in backward pass.
#
# Let's say a conv-batchnorm 's output is passed to relu whose output is in turn returned
# from the fwd graph. Without this second pass, we will force relu's output to be contiguous.
# Then in the kernel in backward pass, the contiguous output of relu may be mix with other channels last
# tensors and passed to a kernel.
#
# This pass improve yolov3 training speedup from 1.116x (worse than disabling layout optimization speedup 1.196x) to 1.457x.
# It also improves dla102 training speedup from 1.240x (worse than disabling layout optimization speedup 1.523x) to 1.835x .
# This also helps the following models:
# - res2net101_26w_4s
# - res2net50_14w_8s
# - sebotnet33ts_256
for n in self.module.graph.nodes: # type: ignore[union-attr]
if n in output_set:
output_set.update(n.users)
return output_set
def warn_fallback(self, name: str) -> None:
if name not in self._warned_fallback:
self._warned_fallback.add(name)
perf_hint_log.info("Using FallbackKernel: %s", name)
def add_device_info(self, device: torch.device) -> None:
self.device_types.add(device.type)
if device.index is not None:
self.device_idxs.add(device.index)
if V.graph.current_node and device not in self.device_node_mapping:
self.device_node_mapping[device] = V.graph.current_node
@property
def fake_mode(self) -> torch._subclasses.fake_tensor.FakeTensorMode:
return V.fake_mode
def try_get_buffer(
self, buffer_name: str
) -> Optional[Union[ir.TensorBox, ir.Buffer]]:
if buffer_name in self.name_to_buffer:
return self.name_to_buffer[buffer_name]
if buffer_name in self.graph_inputs:
return self.graph_inputs[buffer_name]
if buffer_name in self.constants:
data = V.graph.constants[buffer_name]
return ir.ConstantBuffer(
name=buffer_name,
layout=ir.FixedLayout(
data.device, data.dtype, *V.graph.static_sizes_strides(data)
),
)
return None
def add_symbol_graph_input(self, symbol: sympy.Expr) -> None:
raise RuntimeError("Should not be called for the main graph")
def get_buffer(self, buffer_name: str) -> Union[ir.TensorBox, ir.Buffer]:
buf = self.try_get_buffer(buffer_name)
if buf is not None:
return buf
raise RuntimeError(f"Failed to find buffer matching name {buffer_name}")
def get_dtype(self, buffer_name: str) -> torch.dtype:
if buffer_name in self.constants:
return self.constants[buffer_name].dtype
# For a mutation op we should return the dtype of the buffer being mutated
if (
hasattr(self.scheduler, "mutation_real_name")
and buffer_name in self.scheduler.mutation_real_name
):
mutated_buf = self.scheduler.mutation_real_name[buffer_name]
if mutated_buf in self.name_to_buffer:
return self.name_to_buffer[mutated_buf].get_dtype()
if mutated_buf in self.graph_inputs:
return self.graph_inputs[mutated_buf].get_dtype()
if buffer_name in self.name_to_buffer:
return self.name_to_buffer[buffer_name].get_dtype()
if buffer_name in self.graph_inputs:
return self.graph_inputs[buffer_name].get_dtype()
m = re.match(r"(as_strided|reinterpret_tensor)\(([a-zA-Z0-9_]+),", buffer_name)
if m:
return self.get_dtype(m.group(1))
raise KeyError(f"could not find {buffer_name}")
def get_numel(self, buffer_name: str) -> Union[int, Expr]:
if buffer_name in self.constants:
return self.constants[buffer_name].numel()
if buffer_name in self.name_to_buffer:
buf = self.name_to_buffer[buffer_name]
if not buf.has_tensor_output():
return 1
return buf.get_numel()
if buffer_name in self.graph_inputs:
return self.graph_inputs[buffer_name].get_numel()
raise KeyError(f"could not find {buffer_name}")
def run(self, *args: Any) -> Any: # type: ignore[override]
with dynamo_timed("GraphLowering.run"):
return super().run(*args)
def register_operation(self, op: ir.Operation) -> str:
assert op.operation_name is None, f"Operation registered twice: {op}"
assert isinstance(op, ir.Operation)
name = self.qualify_name(f"op{len(self.operations)}")
self.operations.append(op)
self.name_to_op[name] = op
op.operation_name = name
return name
def register_buffer(self, buffer: ir.Buffer, *, set_name: bool = False) -> str:
name = self.qualify_name(f"buf{len(self.buffers)}")
self.buffers.append(buffer)
self.name_to_buffer[name] = buffer
device = buffer.get_device()
if (
# Skip empty CPU tensor so that CUDA graphs can succeed, see https://github.com/pytorch/pytorch/pull/114144
device is not None
and not (
isinstance(buffer, ir.ComputedBuffer)
and buffer.is_zero_elements()
and device == torch.device("cpu")
)
):
self.add_device_info(device)
if set_name:
buffer.name = name
return name
def register_operation_list(self, operation_names: List[str]) -> str:
name = self.qualify_name("list_" + "_".join(operation_names))
self.lists[name] = operation_names
return name
def register_users_of(
self, node_output: Union[Iterable[ir.IRNode], ir.IRNode]
) -> None:
def register(value: Union[Iterable[ir.IRNode], ir.IRNode]) -> None:
if isinstance(value, (list, tuple)):
for x in value:
register(x)
if isinstance(value, ir.TensorBox):
for read_name in value.get_read_names():
self.name_to_users[read_name].append(value)
register(node_output)
def mark_buffer_mutated(self, name: str) -> None:
"""
When a buffer is mutated we need to make sure all the reads to
the old version are realized before the mutation happens.
"""
assert isinstance(name, str)
self.mutated_buffers.add(name)
if name not in self.name_to_users:
return
for user in self.name_to_users[name]:
user.realize()
def get_original_value_of_constant(self, name: str) -> torch.Tensor:
"""
In AOTI, module buffers may have been mutated during the tracing and compilation.
Thus we need to read from previously stored original buffers, to make sure the
generated model.so uses correct initial values.
"""
assert name in self.allocated_constant_name and name in self.constants, (
"Can not find the original value for " + name
)
orig_name = get_cloned_parameter_buffer_name(self.allocated_constant_name[name])
return (
self.module.meta[orig_name] # type: ignore[index]
if orig_name in self.module.meta # type: ignore[operator]
else self.constants[name]
)
def allocate_non_dup_const_name(
self, name: Optional[str], data: Union[Tensor]
) -> str:
if not config.aot_inductor.use_runtime_constant_folding:
for constant_name, value in self.constants.items():
if is_same_tensor(data, value):
return constant_name
if name is None:
name = f"constant{len(self.constants)}"
orig_name = name
if name[0].isdigit():
name = f"constant_{name}"
name = self.qualify_name(name)
# We may generate a var name for each constant in the codegen.
# Let's only keep sane characters.
prefix = normalize_name(name)
name = prefix
cnt = 0
while name in self.constants:
name = f"{prefix}_{cnt}"
cnt += 1
self.constants[name] = data
self.constant_reprs[name] = (
f"{data.device!r} {data.dtype!r} "
f"{tuple(data.size())!r} {tuple(data.stride())!r} "
f"{hash(data):x}"
)
self.allocated_constant_name[name] = orig_name # type: ignore[assignment]
return name
def add_tensor_constant(
self, data: Tensor, name: Optional[str] = None
) -> TensorBox:
new_name = self.allocate_non_dup_const_name(name, data)
return TensorBox.create(
ir.ConstantBuffer(
name=new_name,
layout=FixedLayout(
data.device, data.dtype, *self.static_sizes_strides(data)
),
)
)
def constant_name(self, name: str, device_override: Optional[torch.device]) -> str:
"""
We AOT copy constants to the devices they are needed on.
If device_override doesn't match the constant's device, then
copy it and return a different name.
"""
if self.constants[name].device == device_override or device_override is None:
return name
with torch.utils._python_dispatch._disable_current_modes():
# caller might have OrderedSet fake tensor mode which will create a fake tensor
# when calling .to, so unset modes here
return self.allocate_non_dup_const_name(
f"{name}_{device_override.type}{device_override.index or 0}",
self.constants[name].to(device_override),
)
def placeholder(
self, target: str, args: Tuple[object], kwargs: Dict[str, object] # type: ignore[override]
) -> Union[Expr, TensorBox, None]:
self.placeholder_idx += 1
example = super().placeholder(target, args, kwargs) # type: ignore[arg-type]
target = self.qualify_name(target)
if isinstance(example, SymTypes):
expr = example.node.expr
self.graph_inputs[target] = expr
self.graph_input_names.append(target)
return expr
elif isinstance(example, (int, bool, float)):
expr = sympy.sympify(example)
self.graph_inputs[target] = expr
self.graph_input_names.append(target)
return expr
elif example is None:
self.graph_input_names.append(target)
return None
if isinstance(example, BackwardState):
# Ignored arg, must be unused
# Alternately we could filter this out in AotAutograd
self.graph_input_names.append(target)
return None
assert isinstance(example, torch.Tensor), example
# todo(chilli): We can remove the last check once we turn buffers into
# static shape tensors. That's a hack to workaround Inductor believing
# the buffer should be static but us passing in a fake tensor with
# symbolic shapes.
if not example._has_symbolic_sizes_strides:
# the first N inputs are weights
sizes, strides = self.static_sizes_strides(example)
else:
sizes, strides = self.symbolic_sizes_strides(example) # type: ignore[assignment]
if (
self.is_backward
and self.bw_donated_idxs
and self.placeholder_idx in self.bw_donated_idxs
):
tensor = TensorBox.create(
DonatedBuffer(
name=target,
layout=FixedLayout(example.device, example.dtype, sizes, strides),
)
)
else:
# TODO(jansel): handle input aliasing
tensor = TensorBox.create(
InputBuffer(
name=target,
layout=FixedLayout(example.device, example.dtype, sizes, strides),
)
)
self.graph_inputs[target] = tensor
self.graph_input_names.append(target)
self.graph_inputs_original[target] = tensor.data.data
if self.current_node.users: # cudagraphs should work with an unused CPU input
self.add_device_info(example.device)
# Note: [Input Alignment handling in Inductor]
# Alignment matters for generating efficient code. Some operations,
# e.g. vectorized loads, can only be performed on aligned inputs.
#
# But if we codegen assuming aligned inputs and then get unaligned
# inputs at runtime, then we are forced to clone - which is bad for
# both perf and memory usage.
#
# One option would be to guard on storage_offset%ALIGNMENT, and then
# codegen based on this. But storage_offset guards turned out to be
# expensive and cause recompiles; Instead, we're generating code
# based on the alignment of the example input without guarding.
with maybe_get_suppress_shape_guards_ctx():
if should_assume_input_aligned(example):
self.aligned_inputs.add(target)
return tensor
def call_function(self, target: Callable, args: Any, kwargs: Dict[str, Any]) -> Any: # type: ignore[type-arg, override]
if target is operator.getitem and isinstance(args[0], (list, tuple, dict)):
return super().call_function(target, args, kwargs)
# hasattr on OpOverloadPacket is slow, check isinstance first
if not isinstance(target, torch._ops.OpOverloadPacket) and hasattr(
target, "_inductor_lowering_function"
):
# passthrough lowerings from .pattern_matcher
return target(*args, **kwargs)
if target not in lowerings:
assert isinstance(
target, torch._ops.OpOverload
), f"{target} is not an OpOverload"
base_name = target.name().split(".")[0]
if base_name in FALLBACK_ALLOW_LIST:
make_fallback(target, warn=False, override_decomp=True)
elif config.implicit_fallbacks:
error = (
MissingOperatorWithDecomp
if get_decompositions([target])
else MissingOperatorWithoutDecomp
)
log.info(
"Creating implicit fallback for:\n%s",
error.operator_str(target, args, kwargs),
)
decided_constraint = require_contiguous
# use contiguous unless the (custom) op asks something else
# explicitly
if torch._C.Tag.needs_fixed_stride_order in target.tags:
decided_constraint = constrain_to_fx_strides # type: ignore[assignment]
elif torch._C.Tag.flexible_layout in target.tags:
decided_constraint = None # type: ignore[assignment]
# for implicitly fallback ops, we conservatively requires
# contiguous input since some eager kernels does not
# support non-contiguous inputs. They may silently cause
# accuracy problems. Check https://github.com/pytorch/pytorch/issues/140452
make_fallback(target, layout_constraint=decided_constraint)
elif get_decompositions([target]):
# There isn't a good way to dynamically patch this in
# since AOT Autograd already ran. The error message tells
# the user how to fix it.
raise MissingOperatorWithDecomp(target, args, kwargs)
else:
raise MissingOperatorWithoutDecomp(target, args, kwargs)
try:
log.debug(" via %s", lowerings[target]) # type: ignore[index]
n = self.current_node
layout_constraints = maybe_layout_constraints(target)
if layout_constraints:
old_args, old_kwargs = args, kwargs
args, kwargs = layout_constraints(n, *args, **kwargs)
out = lowerings[target](*args, **kwargs) # type: ignore[index]
if layout_constraints:
# layout_constraints are allowed to make new copies of the inputs.
# if they do, and if the target is mutable, then we need to
# write the new values back into the original inputs.
self.propagate_mutation(n, old_args, old_kwargs, args, kwargs) # type: ignore[possibly-undefined]
return out
except Exception as e:
raise LoweringException(e, target, args, kwargs).with_traceback(
e.__traceback__
) from None
@staticmethod
def can_inline_constant(t: torch.Tensor) -> bool:
"""
True if this is a small constant attr that will be inlined.
"""
return len(t.shape) == 1 and t.shape[0] <= 8
def get_attr(
self, target: str, args: Tuple[()], kwargs: Dict[str, object] # type: ignore[override]
) -> Union[Constant, TensorBox, ir.Subgraph, TorchBindObject]:
# this is a constant
value = getattr_recursive(self.module, target) # type: ignore[arg-type]
if isinstance(value, torch.fx.GraphModule):
# Reuse the existing subgraph if we have seen it before already.
if target in self.seen_subgraphs:
return self.seen_subgraphs[target]
out = ir.Subgraph(name=target, graph_module=value)
self.seen_subgraphs[target] = out
return out
if isinstance(value, torch._C.ScriptObject):
self.torchbind_constants[target] = value
self.constant_reprs[target] = ""
return TorchBindObject(name=target, value=value)
assert isinstance(value, torch.Tensor)
if (
config.aot_inductor.use_runtime_constant_folding
or config.always_keep_tensor_constants
or unsupported_output_tensor(value)
):
return self.add_tensor_constant(value, target)
with no_dispatch():
if value.shape == ():
return Constant(
value=value.item(), dtype=value.dtype, device=value.device
)
if self.can_inline_constant(value):
log.debug("Inlining constant: %s ", str(target))
# tensor lowering has constant inlining logic
from .lowering import tensor
return tensor(value.tolist(), dtype=value.dtype, device=value.device)
return self.add_tensor_constant(value, target)
def call_module(self, target: Any, args: Any, kwargs: Any) -> NoReturn:
raise AssertionError
def call_method(self, target: Any, args: Any, kwargs: Any) -> NoReturn:
raise AssertionError
def output(
self, target: str, args: Tuple[object], kwargs: Dict[str, object] # type: ignore[override]
) -> None:
result = super().output(target, args, kwargs) # type: ignore[arg-type]
if not isinstance(result, (tuple, list)):
# nested subgraphs can have singleton outputs
result = (result,)
assert isinstance(result, (tuple, list)), type(result)
assert all(
isinstance(
x,
(
TensorBox,
ir.Constant,
type(None),
ir.ConstantBuffer,
sympy.Expr,
sympy.logic.boolalg.Boolean,
int,
ir.EffectfulKernel,
),
)
for x in result
), result
fx_node_args = V.graph.current_node.args[0] # type: ignore[arg-type]
if not isinstance(fx_node_args, (tuple, list)):
# nested subgraphs can have singleton outputs
fx_node_args = (fx_node_args,)
result = [ir.ExternKernel.realize_input(x) for x in result]
result_correct_strides = []
assert len(fx_node_args) == len(result)
for r, fx_node in zip(result, fx_node_args):
if not isinstance(r, (ir.TensorBox, ir.BaseView)):
result_correct_strides.append(r)
elif isinstance(r.get_output_spec(), ir.CommBufferLayout):
# Active references to persistent comm buffers are not allowed
# outside of graphs
result_correct_strides.append(ir.ExternKernel.copy_input(r))
else:
# AOT Autograd tries to detect stride divergence of inductor from output metadata.
# Here, we try to avoid spurious divergence by matching insignificant strides such as
result_correct_strides.append(
self.try_match_insignificant_strides(
r, fx_node.meta["val"].stride()
)
)
self.graph_outputs = result_correct_strides
value: ir.IRNode
for name, value in self.graph_inputs.items():
assert isinstance(
value, (TensorBox, sympy.Expr)
), f"Unsupported inductor graph input type: {type(value)}"
if not isinstance(value, TensorBox):
continue
value.realize()
assert isinstance(value, TensorBox)
value = value.data
assert isinstance(value, ir.StorageBox)
value_storage_box = value
value = value.data
if not isinstance(value, InputBuffer) or value.get_name() != name:
# one of our inputs was mutated, need to turn that into a copy
ir.MutationLayoutSHOULDREMOVE.realize_into(
value, self.graph_inputs_original[name]
)
# replace output with mutated input
try:
ind = self.graph_outputs.index(value_storage_box)
self.graph_outputs[ind] = self.graph_inputs_original[name]
except ValueError:
pass
self.finalize()
log.debug(
"Force channels last inputs for %d conv for the current graph with id %d",
self.num_channels_last_conv,
self.graph_id if self.graph_id is not None else -1,
)
def finalize(self) -> None:
for buf in self.buffers:
buf.decide_layout()
@contextmanager
def set_current_node(self, node: torch.fx.Node): # type: ignore[no-untyped-def]
old = self.current_node
try:
self.current_node = node
yield
finally:
self.current_node = old
def try_match_insignificant_strides(
self,
tensor: Union[ir.TensorBox, ir.BaseView],
meta_strides_inp: Tuple[Union[int, torch.SymInt], ...],
) -> Union[ir.TensorBox, ir.BaseView]:
"""
Tries to match the strides of the tensor to those in the meta_strides. Strides of insignificant
dimensions - size 0 or 1 - will be updated.
If there are real stride differences (NHWC vs NCHW) then the input will be returned.
"""
# should have already been realized
assert torch._inductor.ir.is_storage_and_layout(tensor)
meta_strides = [
s.node.expr if isinstance(s, torch.SymInt) else s for s in meta_strides_inp
]
if all(
self.sizevars.statically_known_equals(s1, s2)
for s1, s2 in zip(meta_strides, tensor.get_stride())
):
return tensor # type: ignore[arg-type]
def significant_strides_equal(
shape: Sequence[Union[Expr, int]],
meta_strides: Sequence[Union[Expr, int]],
tensor_strides: Sequence[Union[Expr, int]],
) -> bool:
for dim, s1, s2 in zip(shape, meta_strides, tensor_strides):
if self.sizevars.statically_known_leq(dim, 1): # type: ignore[arg-type]
continue
if not self.sizevars.statically_known_equals(s1, s2):
return False
return True
if not significant_strides_equal(
tensor.get_size(), meta_strides, tensor.get_stride()
):
return tensor
storage, old_layout = torch._inductor.ir.as_storage_and_layout(tensor)
new_stride = [*old_layout.stride]
for i, s in enumerate(tensor.get_size()):
if self.sizevars.statically_known_leq(s, 1): # type: ignore[arg-type]
new_stride[i] = meta_strides[i]
new_layout = torch._inductor.ir.FixedLayout(
old_layout.device,
old_layout.dtype,
old_layout.size,
new_stride,
old_layout.offset,
)
return ir.TensorBox(
torch._inductor.ir.ReinterpretView(data=storage, layout=new_layout)
)
def propagate_mutation(
self,
fx_node: torch.fx.Node,
old_args: Tuple[Any],
old_kwargs: Dict[str, Any],
new_args: Tuple[Any],
new_kwargs: Dict[str, Any],
) -> None:
"""Propagate mutations on new_args/new_kwargs back to old_args/old_kwargs.
Assumes we may have cloned old_args/old_kwargs into new_args/new_kwargs
and then called fx_node(*new_args, **new_kwargs).
If fx_node mutates any of new_args/new_kwargs, and they are different from
old_args/old_kwargs, then we need to update the original tensor.
"""
assert len(old_args) == len(new_args)
assert len(old_kwargs) == len(new_kwargs)
if fx_node.target is torch.ops.higher_order.triton_kernel_wrapper_mutation:
kwargs = fx_node.kwargs["kwargs"]
assert isinstance(kwargs, dict)
mutated = torch._higher_order_ops.triton_kernel_wrap.get_mutated_tensors(
old_kwargs["kernel_idx"],
old_kwargs["constant_args_idx"],
{
k: v.meta["val"] if isinstance(v, torch.fx.Node) else v
for k, v in kwargs.items()
},
)
for name in mutated:
old_arg = old_kwargs["kwargs"][name]
new_arg = new_kwargs["kwargs"][name]
if old_arg is new_args:
continue
self.call_function(torch.ops.aten.copy_.default, (old_arg, new_arg), {})
return
assert isinstance(fx_node.target, torch._ops.OpOverload)
def maybe_propagate(
schema_arg: torch._C.Argument, old_arg: ir.IRNode, new_arg: ir.IRNode
) -> None:
if old_arg is new_arg:
return
if schema_arg.alias_info is not None and schema_arg.alias_info.is_write:
# The lowering for copy_ is smart enough to "replace" old_arg with
# new_arg in all future uses so a copy_ kernel never gets emitted.
# old_arg, new_arg may be immutable_list
if isinstance(old_arg, ir.IRNode):
old_arg = (old_arg,) # type: ignore[assignment]
new_arg = (new_arg,) # type: ignore[assignment]
for old_arg_item, new_arg_item in zip(old_arg, new_arg): # type: ignore[call-overload]
if old_arg_item is new_arg_item:
continue
self.call_function(
torch.ops.aten.copy_.default, (old_arg_item, new_arg_item), {}
)
schema = fx_node.target._schema
for idx, (old_arg, new_arg) in enumerate(zip(old_args, new_args)):
schema_arg = schema.arguments[idx]
maybe_propagate(schema_arg, old_arg, new_arg)
schema_kwargs = {arg.name: arg for arg in schema.arguments}
for key in old_kwargs.keys():
old_arg = old_kwargs[key]
new_arg = new_kwargs[key]
schema_arg = schema_kwargs[key]
maybe_propagate(schema_arg, old_arg, new_arg)
def run_node(self, n: torch.fx.Node) -> object:
def debug(msg: str) -> None:
log.debug("lowering %s %s", LazyString(n.format_node), msg)
from torch._inductor.compiler_bisector import CompilerBisector
buffer_watermark = len(self.buffers)
operation_watermark = len(self.operations)
origins = {n}
is_call_function = n.op == "call_function"
if is_call_function:
args, kwargs = self.fetch_args_kwargs_from_env(n)
origins |= gather_origins(args, kwargs)
with ir.IRNode.current_origins(origins), self.set_current_node( # type: ignore[arg-type]
n
), V.set_current_node(
n
):
if (
n.op == "call_function"
and n.target is not operator.getitem
and (
fallback_node_due_to_unsupported_type(n)
or CompilerBisector.disable_subsystem(
"inductor", "lowerings", lambda: repr(n)
)
)
):
debug("fallback_handler")
result = fallback_handler(n.target, add_to_fallback_set=False)(
*args, **kwargs # type: ignore[possibly-undefined]
)
elif (
n.op == "call_function"
and n.target is torch.ops.higher_order.triton_kernel_wrapper_mutation
and config.triton_kernel_default_layout_constraint != "flexible_layout"
):
debug("user_defined_triton_kernel_layout_constraints")
if (
config.triton_kernel_default_layout_constraint
== "needs_fixed_stride_order"
):
old_args = args # type: ignore[possibly-undefined]
old_kwargs = kwargs # type: ignore[possibly-undefined]
args, kwargs = constrain_to_fx_strides(n, *args, **kwargs) # type: ignore[index]
result = self.call_function(n.target, args, kwargs) # type: ignore[arg-type]
self.propagate_mutation(n, old_args, old_kwargs, args, kwargs) # type: ignore[possibly-undefined]
else:
raise RuntimeError(
f"Unknown triton_kernel_default_layout_constraint: {config.triton_kernel_default_layout_constraint}"
)
elif is_magic_method(n.target):
# TODO: this is sus, it probably should be handled in the
# lowerings themselves similarly to sym_size/sym-stride
# https://github.com/pytorch/pytorch/issues/127789
debug("is_magic_method")
if isinstance(
n.meta["val"], (torch.SymInt, torch.SymFloat, torch.SymBool)
):
result = n.meta["val"].node.expr
else:
result = super().run_node(n)
else:
debug("")
result = super().run_node(n)
# require the same stride order for dense outputs,
# 1. user-land view() will not throw because inductor
# output different strides than eager
# long term the solution is to make view() always succeed
# with infallible strides.
# 2: as_strided ops, we need make sure its input has same size/stride with
# eager model to align with eager behavior.
as_strided_ops = [
torch.ops.aten.as_strided.default,
torch.ops.aten.as_strided_.default,
torch.ops.aten.as_strided_scatter.default,
torch.ops.aten.resize.default,
torch.ops.aten.resize_as.default,
]
is_output = any(user.op == "output" for user in n.users)
is_user_visible = n in self.user_visible_output_strides
is_input_for_as_strided = any(
user.target in as_strided_ops for user in n.users
)
if n.meta.get("inductor_realize_to_strides", False) and isinstance(
result, TensorBox
):
result.realize()
strides = n.meta["val"].stride()
sym_strides = torch._inductor.utils.any_is_symbolic(*strides)
if result.maybe_get_stride() != strides and not sym_strides:
stride_order = ir.get_stride_order(strides)
result = ir.ExternKernel.require_stride_order(result, stride_order)
if (
is_output
and isinstance(result, TensorBox)
and isinstance(result.data, ir.BaseView)
):
# Realize so that outputs are correctly aliased
result.realize()
if (is_output or is_input_for_as_strided) and isinstance(
n.meta["val"], torch.Tensor
):
if is_user_visible:
strides = self.user_visible_output_strides.get(n)
else:
strides = n.meta["val"].stride()
if strides is not None and len(strides) > 0:
allow_padding = (
config.pad_outputs or not is_user_visible
) and not is_input_for_as_strided
dense = torch._prims_common.is_non_overlapping_and_dense(
n.meta["val"]
)
unbacked_symbols_in_strides = (
len(free_unbacked_symbols(strides)) > 0
)
if (
not unbacked_symbols_in_strides
and dense
and len(result.get_size()) == 4
and n in self.nodes_prefer_channels_last
and not is_user_visible
and not is_input_for_as_strided
):
strides = ir.FlexibleLayout.stride_ordered_for_memory_format(
result.get_size(), torch.channels_last
)
if not unbacked_symbols_in_strides and len(strides):
# To avoid converting possible view ops to a copy kernel, we use the previous
# require_exact_strides to handle views. But ultimately it's better to require
# the right strides at the tensor definition.
if n.meta["val"]._is_view() or isinstance(
result.data, ir.BaseView
):
result = ir.ExternKernel.require_stride_order(
result,
ir.get_stride_order(strides),
allow_padding=allow_padding,
)
else:
strides = [
s.node.expr if isinstance(s, torch.SymInt) else s
for s in strides
]
result = ir.ExternKernel.require_exact_strides(
result, strides, allow_padding=allow_padding
)
# Realize if (1) any user need inputs realized, or (2) there is
# already too many reads and rematerializing can be bad.
num_users = len(OrderedSet(n.users))
if num_users > 1 and isinstance(result, TensorBox):
for user in n.users:
if user.target in needs_realized_inputs:
result.realize_hint()
# This inclusion is somewhat controversial (from
# discussion between Horace, Natalia, and Elias).
# Currently, it's not very clear why this is helpful.
# The general idea here is that even though a node may
# have FlexibleLayout, we still often *treat* it as if
# it was contiguous. This appears to sometimes result in
# suboptimal behavior.
#
# When we do a better job selecting layout, we should
# revisit this.
need_fixed_layout = [
torch.ops.aten.convolution_backward.default,
torch.ops.aten.mm.default,
torch.ops.aten._int_mm.default,
]
need_fixed_channels_last_layout = []
if not self.layout_opt:
need_fixed_layout.append(torch.ops.aten.convolution.default)
if torch._C._has_mkldnn:
need_fixed_layout += [
torch.ops.mkldnn._linear_pointwise.default,
torch.ops.mkldnn._linear_pointwise.binary,
torch.ops.aten.mkldnn_rnn_layer.default,
torch.ops.onednn.qlinear_pointwise.default,
torch.ops.onednn.qlinear_pointwise.tensor,
torch.ops.onednn.qlinear_pointwise.binary,
torch.ops.onednn.qlinear_pointwise.binary_tensor,
]
need_fixed_channels_last_layout += [
torch.ops.mkldnn._convolution_pointwise.default,
torch.ops.mkldnn._convolution_pointwise.binary,
torch.ops.mkldnn._convolution_pointwise_.binary,
torch.ops.mkldnn._convolution_transpose_pointwise.default,
torch.ops.onednn.qconv2d_pointwise.default,
torch.ops.onednn.qconv2d_pointwise.binary,
]
if torch._C.has_mkl:
need_fixed_layout += [torch.ops.mkl._mkl_linear.default]
if user.target in need_fixed_layout:
result = ir.ExternKernel.require_stride_order(
result,
ir.get_stride_order(n.meta["val"].stride()),
allow_padding=True,
)
if (
user.target in need_fixed_channels_last_layout
and n is user.args[0]
):
result = ir.ExternKernel.require_stride_order(
result,
ir.get_stride_order(
make_channels_last_strides_for(n.meta["val"].shape)
),
)
if user.op == "output":
if isinstance(result.data.data, (Pointwise, Reduction)):
result.realize()
# TODO(jansel): introduce a store vs inline choice
result.mark_reuse(len(n.users))
# Realize if the IRNode already has accumulated lots of reads
if isinstance(result, TensorBox) and result.has_exceeded_max_reads():
# Prevent excessive accumulation in a computed buffer, when
# there are multiple branches each with small number of memory
# reads, but they converge to a user.
result.realize_hint()
# Realize if a Pointwise has too much stuff to be inlined.
# As this may cause RecursionError during Inductor's evaluation.
if isinstance(result, TensorBox) and isinstance(result.data, StorageBox):
curr = result.data.data
if isinstance(curr, Pointwise):
# Use inner fn as a rough proxy. Good enough.
if curr.has_large_inner_fn(threshold=100):
result.realize()
# This is not complete, but it doesn't have to be: origin_node
# tracking is best effort. The logic here critically relies on direct
# TensorBox -> StorageBox denoting a non-view; we don't bother trying
# to get views to work. Feel free to add any extra cases as needed.
#
# Note: we can't YOLO tree_map over this result, because if there are
# buffers or a view involved, we might not be able to validly assign
# the origin_node here.
if isinstance(result, TensorBox) and isinstance(result.data, ir.StorageBox):
if isinstance(result.data.data, ir.Loops):
result.data.data._post_init_setattr("origin_node", n)
elif isinstance(result.data.data, ir.Buffer):
result.data.data._post_init_setattr("origin_node", n)
if isinstance(result.data.data, ir.ComputedBuffer) and isinstance(
result.data.data.data, ir.Loops
):
result.data.data.data._post_init_setattr("origin_node", n)
# Not really multi-output, can straightforwardly recurse in
elif (
isinstance(result.data.data, ir.MultiOutput)
and not result.data.data.indices
):
if isinstance(result.data.data.inputs[0], ir.Buffer):
result.data.data.inputs[0]._post_init_setattr("origin_node", n)
self.register_users_of(result)
new_unbacked_defs: OrderedSet[sympy.Symbol] = OrderedSet()
for buf in self.buffers[buffer_watermark:]:
new_unbacked_defs |= buf.get_unbacked_symbol_defs()
for op in self.operations[operation_watermark:]:
new_unbacked_defs |= op.get_unbacked_symbol_defs()
def format_new_defs() -> str:
r = [
f"unbacked_symbol_defs={buf.get_unbacked_symbol_defs()} in:\n{buf}\n"
for buf in self.buffers[buffer_watermark:]
]
r.extend(
f"unbacked_symbol_defs={op.get_unbacked_symbol_defs()} in:\n{op}\n"
for op in self.operations[operation_watermark:]
)
return "***\n".join(r)
if n.op != "placeholder":
# Note [Backwards runtime asserts]
# Backwards poses an interesting problem for deferred runtime
# asserts. In the easy case, we may solely close over data
# dependent sized tensors, and there are no binding sites for
# unbacked SymInts. In this case, we can just drop all the
# runtime asserts on the floor: no non-placeholder bindings, no
# problem.
#
# However, it is *possible* for a fresh runtime assert to show up
# between forwards and backwards. Right now, the freezing process
# that happens when we lower forwards means that we will freeze
# runtime asserts, and then the moment the backwards lowering
# process attempts to add a new deferred runtime assert, we will
# fail. Let's say you remove that assert. Now when we get here,
# we need to make sure we actually emit these asserts (because we
# can't emit them in forwards, we already compiled it). So we
# have to do something here. But we don't want to reemit ALL
# deferred runtime asserts, we only want to emit the NEW ones.
# Therefore needing some sort of stratification in the ShapeEnv.
# This is all doable, it just hasn't been done yet.
shape_env = V.graph.sizevars.shape_env
def make_assert(expr: SympyBoolean, msg: str) -> None:
assert_op = ir.AssertScalar(expr, msg)
self.register_buffer(assert_op, set_name=True)
self.register_operation(assert_op)
for i0 in new_unbacked_defs:
ras = self.ras_by_symbol.pop(i0, [])
# NB: size-like not needed, we won't retrace
vr = shape_env.var_to_range[i0]
if not shape_env._default_unspecified_value_range().issubset(vr):
def is_convertible(s: Expr) -> bool:
if s in (int_oo, -int_oo):
return False
try:
int(s)
return True
except TypeError:
return False
if is_convertible(vr.lower):
make_assert(i0 >= vr.lower, f"{i0} >= {vr.lower}")
if is_convertible(vr.upper):
make_assert(i0 <= vr.upper, f"{i0} <= {vr.upper}")
for ra in ras:
fvs = free_unbacked_symbols(ra.expr)
missing = fvs - self.bound_unbacked_symbols
if missing:
i1 = min(missing, key=str)
self.ras_by_symbol.setdefault(i1, []).append(ra)
else:
make_assert(ra.expr, f"{ra.expr}")
self.bound_unbacked_symbols |= new_unbacked_defs
unbacked_bindings = resolve_unbacked_bindings(
V.graph.sizevars.shape_env, n.meta.get("unbacked_bindings", {})
)
assert unbacked_bindings is not None
# When we do lowering, it is possible we reallocate unbacked SymInts.
# So we need to line up the unbacked SymInts when performing the test
# here
#
# In principle, we could permit lowering to introduce MORE unbacked
# SymInts: as long as all the old unbacked ones are accounted for,
# it's fine for inductor to introduce extra calls to item()/unbacked()
# whatever. This actually happens in practice when an unbacked SymInt
# gets memoized away; naively, when Inductor reprocesses a kernel, it
# doesn't know that the memo still applies, and ends up allocating a
# new symbol. However, this is generally a bad thing: we may still
# end up needing to test equalities on the symbols, and a fresh
# symbol is likely to hit lots of GuardOnDataDependent errors that
# we already know facts for.
renamed_unbacked_bindings = OrderedSet(
V.fake_mode.shape_env.unbacked_renamings.get(s, s)
for s in unbacked_bindings.keys()
)
assert new_unbacked_defs >= renamed_unbacked_bindings, (
f"failed {new_unbacked_defs} >= {renamed_unbacked_bindings} (inductor >= fx)\n"
f"fx node is: {n.format_node()}\n"
f"new operations are:\n\n{format_new_defs()}"
)
return result
def validate_can_generate_cpp_wrapper(self) -> None:
if config.disable_cpp_codegen:
raise CppWrapperCodegenError("C++ codegen is disabled")
if sys.platform not in ["linux", "darwin", "win32"]:
raise CppWrapperCodegenError(f"Unsupported platform {sys.platform}")
for value in self.graph_inputs.values():
dtype = None
if isinstance(value, TensorBox):
dtype = value.get_dtype()
elif isinstance(
value, (sympy.Symbol, sympy.Expr, sympy.core.numbers.Integer)
):
dtype = may_get_constant_buffer_dtype(value)
if not supported_dtype_of_cpp_wrapper(dtype, self.device_type): # type: ignore[arg-type]
raise CppWrapperCodegenError(f"Unsupported input dtype {dtype}")
def init_wrapper_code(
self,
is_subgraph: bool = False,
subgraph_name: Optional[str] = None,
parent_wrapper_code: Optional[PythonWrapperCodegen] = None,
) -> None:
device_types = self.device_types.copy()
device_types.discard("cpu")
device_types.discard("meta")
# TODO(Eikan): Only support mixing cpu and other device now.
assert len(device_types) <= 1, "Does not support mixing {}".format(
"+".join(device_types)
)
only_cpu = len(device_types) == 0
self.device_type = "cpu" if only_cpu else device_types.pop()
if self.cpp_wrapper:
self.validate_can_generate_cpp_wrapper()
self.device_ops = get_device_op_overrides(self.device_type)
wrapper_code_gen_cls = get_wrapper_codegen_for_device(
self.device_type, self.cpp_wrapper
)
assert (
wrapper_code_gen_cls is not None
), f"Device {self.device_type} not supported"
self.wrapper_code = wrapper_code_gen_cls.create(
is_subgraph, subgraph_name, parent_wrapper_code
)
if self.const_module:
# If we have const module, we could reuse the kernels
# This could avoid duplication and save time on doing recompilation (if Triton.)
self.wrapper_code._names_iter = self.const_module.wrapper_code._names_iter
self.wrapper_code.src_to_kernel = (
self.const_module.wrapper_code.src_to_kernel
)
def codegen_with_cpp_wrapper(self) -> Tuple[str, List[Tuple[int, Node]]]:
"""
For GPU, Triton kernels are autotuned and stored as cubin files
"""
if any(device in self.device_types for device in ["cuda", "xpu"]):
if config.triton.autotune_at_compile_time:
# If autotune_at_compile_time is True, we can do the codegen in one-pass
# TODO: once autotune_at_compile_time is stable, we should delete the else branch
return self.codegen()
else:
# first pass
self.cpp_wrapper = False
compiled = self.compile_to_module().call
def materialize(
x: Union[torch.SymInt, torch.SymFloat, torch.Tensor]
) -> Union[int, float, torch.Tensor]:
if x is None:
return None
elif isinstance(x, (torch.SymInt, torch.SymFloat)):
# Need concrete value to run dynamic shapes and tune the result
return x.node.hint
elif isinstance(x, FakeTensor):
return defake(x)
else:
assert isinstance(
x, torch.Tensor
), "Unknown type when creating real inputs" + str(type(x))
return x
tracing_context = torch._guards.TracingContext.try_get()
if tracing_context is not None and not isinstance(
V.real_inputs, NullHandler
):
if tracing_context.output_strides:
tracing_context.output_strides.clear()
params_flat = [
param
for param in tracing_context.params_flat # type: ignore[union-attr]
if param is not None
]
real_inputs = [
materialize(x)
for x in itertools.chain(params_flat, V.real_inputs)
]
else:
# In the backward pass, V.real_inputs is not OrderedSet.
# Generating random inputs based on self.example_inputs sometimes can be problematic,
# e.g. illegal memory access. A comprehensive fix is to autotune in a separate process.
real_inputs = [
materialize(x) # type:ignore[arg-type]
for x in (
self.example_inputs # type:ignore[union-attr]
if isinstance(V.real_inputs, NullHandler)
else V.real_inputs
)
]
if self.mutated_inputs:
from .compile_fx import clone_preserve_strides
mutated_input_idxs = [
idx
for idx, name in enumerate(self.graph_inputs)
if name in self.mutated_inputs
and isinstance(real_inputs[idx], torch.Tensor)
]
for idx in mutated_input_idxs:
# clone mutated Tensor inputs to avoid mutating them in
# the first pass of the CPP wrapper-based compilation, as
# this will lead to a side effect on the example inputs:
# e.g. if torch.compile(f)(x) if called on input-mutating
# f, the inputs x will be mutated twice in the process:
# once here, and again when running the compiled model;
# this will also lead to a numerically incorrect output
mutated_inp = real_inputs[idx]
assert isinstance(mutated_inp, torch.Tensor)
real_inputs[idx] = clone_preserve_strides(mutated_inp)
del mutated_inp
with torch.utils._python_dispatch._disable_current_modes():
compiled(real_inputs)
del real_inputs
# second pass
self.cpp_wrapper = True
self.removed_buffers.clear()
self.removed_operations.clear()
self.inplaced_to_remove.clear()
V.graph.sizevars.precomputed_replacements.clear()
V.graph.sizevars.inv_precomputed_replacements.clear()
metrics.reset()
with config.patch({"triton.autotune_at_compile_time": False}):
return self.codegen()
else:
# cpu
return self.codegen()
def codegen(self) -> Tuple[str, List[Tuple[int, Node]]]:
with dynamo_timed("GraphLowering.codegen", log_pt2_compile_event=True):
from .scheduler import Scheduler
self.init_wrapper_code()
self.scheduler = Scheduler(self.operations)
V.debug.draw_orig_fx_graph(self.orig_gm, self.scheduler.nodes)
self.wrapper_code.push_codegened_graph(self)
self.scheduler.codegen()
log.debug(
"Finished codegen for all nodes. The list of kernel names available: %s",
V.graph.all_codegen_kernel_names,
)
result = self.wrapper_code.generate(self.is_inference)
self.wrapper_code.pop_codegened_graph()
return result
def codegen_subgraph(self, parent_graph: "GraphLowering") -> None:
"""
This is a more compact version of the `codegen()` above
where we codegen this graph as a subgraph of some parent
graph. The parent graph is passed as an argument: the
intention is to inline codegening of the subgraph in
the parent graph's wrapper code (including the generated
kerenls). The wrapper code is not finalized (via `.generate()`
call), as this will be done in the parent graph's `codegen()`.
"""
with dynamo_timed("GraphLowering.codegen_subgraph", log_pt2_compile_event=True):
from .scheduler import Scheduler
self.wrapper_code = parent_graph.wrapper_code
self.device_ops = parent_graph.device_ops
self.cpp_wrapper = parent_graph.cpp_wrapper
self.scheduler = Scheduler(self.operations)
self.scheduler.codegen()
def count_bytes(
self,
) -> Tuple[
int, List[Tuple[BaseSchedulerNode, int]], List[Tuple[BaseSchedulerNode, float]]
]:
total_bytes = 0
node_counts = []
node_runtimes = []
for node in self.scheduler.nodes:
num_bytes = node.get_read_write_buffers_sizes()
total_bytes += num_bytes
node_counts.append((node, num_bytes // 4))
node_runtimes.append((node, node.get_estimated_runtime()))
return total_bytes, node_counts, node_runtimes
@staticmethod
def save_output_code(code: str) -> None:
# No-op to be patched for unit tests
pass
def compile_to_module(self) -> ModuleType:
with dynamo_timed(
"GraphLowering.compile_to_module",
phase_name="code_gen",
log_pt2_compile_event=True,
dynamo_compile_column_us="inductor_code_gen_cumulative_compile_time_us",
):
return self._compile_to_module()
def _compile_to_module(self) -> ModuleType:
from .codecache import PyCodeCache
code, linemap = (
self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
)
if config.triton.autotune_at_compile_time:
tuning_code = (
'"""\n'
+ "Compile-time auto-tuning block: \n"
+ self.wrapper_code.kernel_autotune_defs.getvalue()
+ self.wrapper_code.kernel_autotune_calls.getvalue()
+ '"""\n'
)
code = tuning_code + code
GraphLowering.save_output_code(code)
output_code_log.debug("Output code: \n%s", code)
inductor_meta = autotune_cache.inductor_meta_from_config()
AutotuneCacheBundler.begin_compile(inductor_meta, code=code)
try:
linemap = [(line_no, node.stack_trace) for line_no, node in linemap] # type: ignore[misc]
key, path = PyCodeCache.write(code)
output_code_log.debug("Output code written to: %s", path)
except Exception:
trace_structured(
"inductor_output_code",
# Just omit the filename, I still want the code though!
payload_fn=lambda: code,
)
raise
else:
trace_structured(
"inductor_output_code",
lambda: {"filename": path},
payload_fn=lambda: code,
)
with dynamo_timed("PyCodeCache.load_by_key_path", log_pt2_compile_event=True):
mod = PyCodeCache.load_by_key_path(
key,
path,
linemap=linemap, # type: ignore[arg-type]
attrs={**self.constants, **self.torchbind_constants},
)
self.cache_key = key
self.cache_path = path
self.cache_linemap = linemap # type: ignore[assignment]
if config.profile_bandwidth_output:
# run the inputs code gen to get the bandwidth info
mod.benchmark_compiled_module(times=1, repeat=1)
# Logged twice as per https://github.com/pytorch/pytorch/pull/99038#discussion_r1167826029
# TODO. Revisit this once the logging API is more mature
assert mod.__file__ is not None
log_module_code(mod.__file__)
log.debug("Output code written to: %s", mod.__file__)
output_code_log.info("Output code written to: %s", mod.__file__)
if config.benchmark_kernel:
print(f"Compiled module path: {mod.__file__}", file=sys.stderr)
V.debug.output_code(mod.__file__)
V.debug.copy(os.path.splitext(mod.__file__)[0] + ".debug")
return mod
def get_output_names(self) -> List[str]:
return [
node.get_name()
for node in self.graph_outputs
if not isinstance(node, ir.NoneAsConstantBuffer)
and not isinstance(node, ir.ShapeAsConstantBuffer)
]
def is_unspec_arg(self, name: str) -> bool:
# dynamo wraps unspec variable as 0d CPU tensor,
# need to convert to scalar during codegen (triton only)
return (
name in self.graph_inputs.keys()
and self.graph_inputs[name].get_numel() == 1
and len(self.graph_inputs[name].get_size()) == 0
and get_device_type(self.graph_inputs[name]) == "cpu"
) or name in self.zero_dim_cpu_tensor_list
class SubgraphLowering(GraphLowering):
"""
Mostly a helper class for the subgraph lowering. The main goal is to call
init_wrapper_code with the subgraph related arguments.
"""
def __init__(self, parent: GraphLowering, *args: Any, **kwargs: Any) -> None:
self.parent = parent
super().__init__(*args, **kwargs)
def init_wrapper_code(
self,
is_subgraph: bool = False,
subgraph_name: Optional[str] = None,
parent_wrapper_code: Optional[PythonWrapperCodegen] = None,
) -> None:
super().init_wrapper_code(
is_subgraph=True,
subgraph_name=self.name,
parent_wrapper_code=self.parent.wrapper_code,
)
|