File: graph.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2133 lines) | stat: -rw-r--r-- 90,077 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
import contextlib
import functools
import itertools
import logging
import operator
import os
import re
import sys
import time
from collections import defaultdict
from contextlib import contextmanager
from types import ModuleType
from typing import (
    Any,
    Callable,
    DefaultDict,
    Dict,
    Iterable,
    Iterator,
    List,
    NoReturn,
    Optional,
    Sequence,
    Tuple,
    TYPE_CHECKING,
    Union,
)

import sympy
from sympy import Expr

import torch
import torch._logging
import torch.fx
from torch import device, Tensor
from torch._decomp import get_decompositions
from torch._dynamo.utils import defake, dynamo_timed
from torch._logging import LazyString, trace_structured
from torch._prims_common import make_channels_last_strides_for
from torch._subclasses.fake_tensor import FakeTensor
from torch.fx import GraphModule
from torch.fx.experimental._backward_state import BackwardState
from torch.fx.experimental.sym_node import magic_methods, method_to_operator
from torch.fx.experimental.symbolic_shapes import (
    free_unbacked_symbols,
    has_free_symbols,
    resolve_unbacked_bindings,
    RuntimeAssert,
    ShapeEnv,
    SympyBoolean,
    SymTypes,
)
from torch.fx.graph import Graph
from torch.fx.node import Node
from torch.utils._mode_utils import no_dispatch
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.numbers import int_oo

from . import config, ir, metrics
from .codegen.common import (
    BackendFeature,
    DeviceOpOverrides,
    get_backend_features,
    get_device_op_overrides,
    get_wrapper_codegen_for_device,
    init_backend_registration,
)
from .codegen.wrapper import PythonWrapperCodegen
from .exc import (
    CppWrapperCodegenError,
    LoweringException,
    MissingOperatorWithDecomp,
    MissingOperatorWithoutDecomp,
)
from .ir import (
    Constant,
    DonatedBuffer,
    FixedLayout,
    get_device_type,
    InputBuffer,
    Pointwise,
    Reduction,
    StorageBox,
    TensorBox,
    TorchBindObject,
)
from .lowering import (
    constrain_to_fx_strides,
    FALLBACK_ALLOW_LIST,
    fallback_handler,
    fallback_node_due_to_unsupported_type,
    lowerings,
    make_fallback,
    maybe_layout_constraints,
    needs_realized_inputs,
    require_contiguous,
    unsupported_output_tensor,
)
from .runtime import autotune_cache
from .runtime.autotune_cache import AutotuneCacheBundler
from .scheduler import BaseSchedulerNode
from .sizevars import SizeVarAllocator
from .utils import (
    convert_shape_to_inductor,
    gather_origins,
    get_cloned_parameter_buffer_name,
    get_donated_idxs,
    get_sympy_Expr_dtype,
    is_same_tensor,
    maybe_get_suppress_shape_guards_ctx,
    normalize_name,
    should_assume_input_aligned,
)
from .virtualized import NullHandler, V


if TYPE_CHECKING:
    from torch._higher_order_ops.effects import _EffectType

from torch._inductor.codecache import output_code_log


log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")

aten = torch.ops.aten

_post_grad_graph_counter = itertools.count()

if config.is_fbcode():
    from torch._inductor.fb.utils import log_module_code
else:

    def log_module_code(*args: Any, **kwargs: Any) -> None:
        pass


def supported_dtype_of_cpp_wrapper(dtype: torch.dtype, device_type: str) -> bool:
    supported_dtype = {
        torch.float32,
        torch.float64,
        torch.int64,
        torch.int32,
        torch.int16,
        torch.int8,
        torch.uint8,
        torch.bool,
        torch.bfloat16,
        torch.complex32,
        torch.complex64,
        torch.complex128,
        torch.float16,
    }
    if device_type == "cuda":
        supported_dtype.add(torch.float8_e4m3fn)
        supported_dtype.add(torch.float8_e5m2)
        supported_dtype.add(torch.float8_e4m3fnuz)
        supported_dtype.add(torch.float8_e5m2fnuz)

    return dtype in supported_dtype


def may_get_constant_buffer_dtype(constant_buffer: sympy.Expr) -> Optional[torch.dtype]:
    assert isinstance(
        constant_buffer, (sympy.Symbol, sympy.Expr, sympy.core.numbers.Integer)
    ), "get_constant_buffer_dtype only supports input of sympy.Symbol, sympy.Expr or sympy.core.numbers.Integer"
    if isinstance(constant_buffer, sympy.core.numbers.Integer):
        return torch.int64

    if isinstance(constant_buffer, sympy.Expr):
        return get_sympy_Expr_dtype(constant_buffer)

    if constant_buffer.is_integer:
        return torch.int64
    elif constant_buffer.is_float:
        return torch.float32
    else:
        return None


def is_magic_method(op: Any) -> bool:
    magic_ops = {method_to_operator(m) for m in magic_methods}
    return op in magic_ops


def getattr_recursive(
    obj: GraphModule, target: str
) -> Union[Tensor, torch._C.ScriptObject, GraphModule]:
    target_atoms = target.split(".")
    attr_itr = obj
    for i, atom in enumerate(target_atoms):
        if not hasattr(attr_itr, atom):
            raise RuntimeError(
                f"Node referenced nonexistent target {'.'.join(target_atoms[:i])}"
            )
        attr_itr = getattr(attr_itr, atom)
    return attr_itr


def get_user_visible_output_strides(g: Graph) -> Dict[Node, Tuple[int, ...]]:
    ret: Dict[Node, Tuple[int, ...]] = {}
    output_node = g.find_nodes(op="output")[0]

    if "user_visible_output_idxs" not in output_node.meta:
        return ret

    for idx, node in enumerate(output_node.args[0]):
        if idx in output_node.meta["user_visible_output_idxs"]:
            ret[node] = output_node.meta["original_output_strides"][idx]
    return ret


def mark_nodes_dislike_padding(
    g: Graph, user_visible_output_strides: Dict[Node, Tuple[int, ...]]
) -> None:
    """
    Nodes like convolution/convolution_backward want its input to be dense.
    If we pad their inputs, we result in extra calls to copy kernels!  On the other hand, padding usually helps reduction.

    The pass finds nodes that dislike padding. These are nodes that can be reached
    from a convolution/convolution_backward in the backward direction without
    going thru a reduction.
    """
    if not config.comprehensive_padding:
        return
    ops_dislike_padding = {
        aten.convolution,
        aten.convolution_backward,
        aten._scaled_mm,
    }
    # what's a better way to collect the reduction ops?
    ops_like_padding = {
        aten.var_mean,
        aten.sum,
        aten.mean,
        aten.prod,
        aten.any,
        aten.amin,
        aten.amax,
        aten.min,
        aten.max,
        aten.argmin,
        aten.argmax,
        aten.scatter_reduce,
    }

    def _get_overload_packet(
        node: torch.fx.Node,
    ) -> Optional[torch._ops.OpOverloadPacket]:
        return (
            node.target._overloadpacket
            if node.op == "call_function"
            # hasattr on OpOverloadPacket is slow, do isinstance first
            and isinstance(node.target, torch._ops.OpOverload)
            and hasattr(node.target, "_overloadpacket")
            else None
        )

    output_node = g.find_nodes(op="output")[0]

    for cur in reversed(g.nodes):
        op = _get_overload_packet(cur)
        if not op:
            continue
        if op in ops_dislike_padding:
            cur.meta["dislike_padding"] = True

        if cur.meta.get("dislike_padding", False):
            # propagate
            for prior in cur.all_input_nodes:
                prior_op = _get_overload_packet(prior)
                if not prior_op:
                    continue
                if prior_op not in ops_like_padding:
                    prior.meta["dislike_padding"] = True
        # We only want to mark output nodes. So, move it after the above prior nodes process.
        if not config.pad_outputs and cur in user_visible_output_strides:
            cur.meta["dislike_padding"] = True


class GraphLowering(torch.fx.Interpreter):
    graph_outputs: List[ir.IRNode]

    def symbolic_sizes_strides(
        self, ex: torch.Tensor
    ) -> Tuple[Sequence[Union[int, Expr]], Sequence[Union[int, Expr]]]:
        """
        Support dynamic shapes and dynamic strides by assigning variables
        to each dimension.  We duck-shape tensors, so if two tensors
        have the same size they get assigned the same symbolic variable.
        """
        if self.reuse_shape_env:
            return convert_shape_to_inductor(ex.size()), convert_shape_to_inductor(
                ex.stride()
            )
        else:
            from torch._dynamo.source import ConstantSource

            # TODO: this should not be needed once #93059 lands
            # https://github.com/pytorch/pytorch/pull/94031#discussion_r1096044816
            # TODO: make a dedicated UnknownSource for this?
            # NB: This is using the legacy default behavior from
            # create_symbolic_sizes_strides_storage_offset but we hope we can
            # just delete this entirely
            source = ConstantSource(
                f"__inductor_unknown_tensor_{len(self._shape_env.var_to_val)}"
            )
            (
                size,
                stride,
                _,
            ) = self._shape_env.create_symbolic_sizes_strides_storage_offset(
                ex,
                source,
            )

        r_size = [i.node.expr if isinstance(i, torch.SymInt) else i for i in size]
        r_stride = [i.node.expr if isinstance(i, torch.SymInt) else i for i in stride]
        return r_size, r_stride

    def static_sizes_strides(
        self, ex: torch.Tensor
    ) -> Tuple[List[sympy.Expr], List[sympy.Expr]]:
        """
        Primarily used to weights
        """
        size = [sympy.Integer(i) for i in ex.size()]
        stride = [sympy.Integer(i) for i in ex.stride()]
        return size, stride

    def __init__(
        self,
        gm: torch.fx.GraphModule,
        example_inputs: Optional[Sequence[object]] = None,
        shape_env: Optional[ShapeEnv] = None,
        graph_id: Optional[int] = None,
        cpp_wrapper: bool = False,
        aot_mode: bool = False,
        layout_opt: Optional[bool] = None,
        extern_node_serializer: Optional[
            Callable[[List[ir.ExternKernelNode]], Any]
        ] = None,
        is_inference: bool = False,
        is_backward: bool = False,
        is_const_graph: bool = False,
        const_output_index: Optional[Dict[str, int]] = None,
        const_code: Optional[str] = None,
        const_module: Optional["GraphLowering"] = None,
        name: Optional[str] = None,
        inputs_to_check: Optional[Sequence[int]] = None,
    ) -> None:
        super().__init__(gm)
        self.example_inputs = example_inputs
        self.layout_opt = (
            layout_opt
            if layout_opt is not None
            else self.decide_layout_opt(gm, is_inference=is_inference)
        )
        self.num_channels_last_conv = 0
        self.is_inference = is_inference
        self.is_backward = is_backward
        self.is_const_graph = is_const_graph
        self.const_code = const_code
        self.const_module = const_module
        self.inputs_to_check = inputs_to_check

        self.extra_traceback = False  # we do our own error wrapping
        if shape_env is None:
            shape_env = ShapeEnv()
            self.reuse_shape_env = False
        else:
            self._shape_env = shape_env
            self.reuse_shape_env = True
        self._shape_env = shape_env
        # We are going to start code generating runtime asserts, so make sure
        # you don't start adding new ones in the lowering process
        shape_env.freeze_runtime_asserts()
        # We're going to mutate ras_by_symbol as we finish generating them
        self.ras_by_symbol: Dict[
            Optional[sympy.Symbol], List[RuntimeAssert]
        ] = shape_env.deferred_runtime_asserts.copy()
        self.bound_unbacked_symbols: OrderedSet[sympy.Symbol] = OrderedSet()
        self.sizevars = SizeVarAllocator(shape_env)
        self.graph_input_names: List[str] = []
        self.graph_inputs: Dict[str, TensorBox] = {}
        self.graph_inputs_original: Dict[str, InputBuffer] = {}
        self.zero_dim_cpu_tensor_list: OrderedSet[str] = OrderedSet()
        self.device_types: OrderedSet[str] = (
            const_module.device_types if const_module else OrderedSet()
        )
        self.device_idxs: OrderedSet[int] = (
            const_module.device_idxs if const_module else OrderedSet()
        )
        self.device_type = "cpu"
        self.buffers: List[ir.Buffer] = []
        self.operations: List[ir.Operation] = []
        self.const_output_index: Dict[str, int] = (
            const_output_index if const_output_index else {}
        )
        self.folded_constants: OrderedSet[str] = (
            OrderedSet(const_output_index.keys())
            if const_output_index
            else OrderedSet()
        )
        self.constants: Dict[str, torch.Tensor] = (
            const_module.constants if const_module else {}
        )
        self.torchbind_constants: Dict[str, torch._C.ScriptObject] = {}
        self.seen_subgraphs: Dict[str, ir.Subgraph] = {}
        self.constant_reprs: Dict[str, str] = {}
        self.removed_operations: OrderedSet[str] = OrderedSet()
        self.removed_buffers: OrderedSet[str] = OrderedSet()
        self.removed_inplace_buffers: OrderedSet[str] = OrderedSet()
        self.mutated_buffers: OrderedSet[str] = OrderedSet()
        self.never_reuse_buffers: OrderedSet[str] = OrderedSet()
        self.inplaced_to_remove: OrderedSet[str] = OrderedSet()
        self.device_ops: DeviceOpOverrides = None  # type: ignore[assignment]
        self.wrapper_code: PythonWrapperCodegen = None  # type: ignore[assignment]
        # See `ProxyExecutor Design Note` in ir.py for more details
        self.extern_kernel_nodes: List[ir.ExternKernelNode] = []

        from torch._inductor.extern_node_serializer import extern_node_json_serializer

        self.extern_node_serializer: Callable[[List[ir.ExternKernelNode]], Any] = (
            extern_node_serializer
            if config.is_fbcode() and extern_node_serializer
            else extern_node_json_serializer
        )

        self.current_node: torch.fx.Node = None  # type: ignore[assignment]
        self.lists: Dict[str, List[str]] = {}
        self.mutated_inputs: OrderedSet[str] = OrderedSet()
        self.mutated_input_idxs: List[int] = []
        self.name_to_buffer: Dict[str, ir.Buffer] = {}
        self.name_to_users: DefaultDict[str, List[ir.IRNode]] = defaultdict(list)
        self.name_to_op: Dict[str, ir.Operation] = {}
        self.creation_time = time.time()
        self.name = name  # type: ignore[assignment]
        self.cpp_wrapper = cpp_wrapper

        # record multi_kernel choice for cpp_wrapper so the second pass knows
        # which sub-kernel is picked. Copy cpp_wrapper to another variable
        # since cpp_wrapper flag is OrderedSet to false for the first pass of codegen.
        self.record_multi_kernel_choice = cpp_wrapper
        self.multi_kernel_to_choice: Dict[str, str] = {}

        self.aot_mode = aot_mode
        self.graph_id = graph_id
        self.post_grad_graph_id = next(_post_grad_graph_counter)
        self.scheduler: torch._inductor.scheduler.Scheduler = None  # type: ignore[assignment]

        # current_device is set only during codegen of a device-specific kernel
        # a graph can have many devices
        self.current_device: Optional[torch.device] = None

        self.nodes_prefer_channels_last = (
            self.find_nodes_prefer_channels_last() if self.layout_opt else OrderedSet()
        )
        self._warned_fallback = {"aten.convolution_backward"}
        self.user_visible_output_strides = get_user_visible_output_strides(gm.graph)
        mark_nodes_dislike_padding(gm.graph, self.user_visible_output_strides)
        self.cache_key: str = ""  # This is the cache key for the compiled artifact
        self.cache_path: str = ""  # This is the path in the filesystem where the compiled artifact is stored
        self.cache_linemap: List[
            Tuple[int, str]
        ] = (
            []
        )  # This is the linemap used by the profiler to mark custom compiled kernels getting run
        # Used if lowering encounters cases where cudagraphs are not supported
        self.disable_cudagraphs_reason: Optional[str] = None

        # only keeping one node per device for stack trace purposes
        self.device_node_mapping: Dict[torch.device, torch.fx.Node] = {}
        self.orig_gm: torch.fx.GraphModule = gm.__copy__()
        self.dynamo_flat_name_to_original_fqn = self.module.meta.get(  # type: ignore[operator, union-attr]
            "dynamo_flat_name_to_original_fqn", {}
        )
        self.allocated_constant_name: Dict[str, str] = (
            const_module.allocated_constant_name if const_module is not None else {}
        )
        init_backend_registration()
        self.get_backend_features = functools.lru_cache(None)(get_backend_features)

        self.effectful_ops: Dict[_EffectType, ir.Buffer] = {}
        self.aligned_inputs: OrderedSet[str] = OrderedSet()
        self.no_fuse_buffer_names: OrderedSet[str] = OrderedSet()

        # Below field is related to printing debug intermediate tensor values info for debugging
        self.all_codegen_kernel_names: OrderedSet[str] = OrderedSet()

        # state used by for Kernel.workspace
        self.workspace_id = itertools.count()

        # track the current placeholder index that we are processing
        self.placeholder_idx = -1

        self.bw_donated_idxs = get_donated_idxs()

    def has_feature(
        self,
        device: Union[torch._inductor.ir.IRNode, device, None],
        feature: BackendFeature,
    ) -> bool:
        assert isinstance(feature, BackendFeature), feature
        return feature in self.get_backend_features(get_device_type(device))

    def get_current_device_or_throw(self) -> torch.device:
        if device := self.current_device:
            return device
        else:
            raise RuntimeError("No current device")

    @contextlib.contextmanager
    def set_current_device(self, device: torch.device) -> Iterator[None]:
        prior = self.current_device
        self.current_device = device
        try:
            yield
        finally:
            self.current_device = prior

    def get_training_phase(self) -> str:
        if self.is_inference:
            return "inference"
        if self.is_backward:
            return "backward"
        return "forward"

    @staticmethod
    def decide_layout_opt(gm: GraphModule, *, is_inference: bool) -> bool:
        """
        Decide if we should enable layout optimization for this graph based on
        heuristics.
        """
        if not config.layout_optimization:
            return False

        if config.force_layout_optimization:
            return True

        conv_nodes = [
            n for n in gm.graph.nodes if n.target == torch.ops.aten.convolution.default
        ]
        nconv = len(conv_nodes)

        if nconv == 0:
            return False

        # For cpu backend and mkldnn enabled, we always use channels_last for better performance.
        if (
            torch.backends.mkldnn.enabled
            and torch.backends.mkldnn.is_available()
            and all(
                n.args[idx].meta["val"].device == torch.device("cpu")
                for n in conv_nodes
                for idx in [0, 1]
            )
        ):
            return True

        # Following models are skipped due to this:
        # jx_nest_base
        # volo_d1_224
        if len(list(gm.graph.nodes)) >= 300 * nconv:
            log.debug("Skipped layout opt because only a few conv")
            return False

        if any(
            has_free_symbols(n.args[idx].meta["val"])
            for n in conv_nodes
            for idx in [0, 1]
        ):
            log.debug(
                "See perf regression with dynamic shape. Follow up in https://github.com/pytorch/pytorch/issues/102670"
            )
            return False

        def is_grouped(n: Any) -> bool:
            meta_val = n.args[1].meta["val"]  # type: ignore[union-attr, operator]
            assert isinstance(meta_val, torch.Tensor)
            return n.args[-1] > 1 and meta_val.size(1) > 1  # type: ignore[union-attr, operator]

        def is_in_out_channel(n: torch.fx.Node) -> bool:
            return (
                n.args[1].meta["val"].size(0) * 2 <= n.args[1].meta["val"].size(1)  # type: ignore[union-attr, operator]
                and n.args[1].meta["val"].size(2) > 1  # type: ignore[union-attr, operator]
            )

        def is_small_channel(n: torch.fx.Node) -> bool:
            return (
                n.args[1].meta["val"].size(0) <= 64  # type: ignore[union-attr, operator]
                and n.args[1].meta["val"].size(1) <= 64  # type: ignore[union-attr, operator]
            )

        # only grouped convolutions benchmarked as slower in conv samples for inference only
        if is_inference:
            from torch.utils.flop_counter import FlopCounterMode

            flop_counts: Dict[str, float] = defaultdict(float)
            for node in conv_nodes:
                success, args, kwargs = torch._inductor.fx_utils.get_fake_args_kwargs(
                    node
                )

                if success:
                    with FlopCounterMode(display=False) as flop_counter_mode:
                        with V.fake_mode:
                            node.target(*args, **kwargs)

                    counted_flops = flop_counter_mode.get_total_flops()
                    if is_grouped(node):
                        node_type = "grouped"
                    elif is_small_channel(node):
                        node_type = "small"
                    elif is_in_out_channel(node):
                        node_type = "in_out"
                    else:
                        node_type = "default"

                    flop_counts[node_type] += counted_flops
                else:
                    log.debug("Conv inputs meta not found")

            # average benchmarked channels last speedup / slowdown, < 1 is speedup.
            # taken from the set of convolution inputs in benchmarks/dynamo/microbenchmarks/operator_inp_logs/torchbench_train/
            # To regenerate these numbers follow https://gist.github.com/eellison/55d7a6ed6f39829d68ac56f95f4df5bb
            GROUPED_MULTIPLIER = 1.358
            DEFAULT_MULTIPLIER = 0.823
            IN_OUT_MULTIPLIER = 0.725
            SMALL_MULTIPLIER = 0.783

            total_flops = sum(flop_counts.values())
            # TODO - get different values per hardware
            weighted_flops = (
                flop_counts["grouped"] * GROUPED_MULTIPLIER
                + flop_counts["small"] * SMALL_MULTIPLIER
                + flop_counts["in_out"] * IN_OUT_MULTIPLIER
                + flop_counts["default"] * DEFAULT_MULTIPLIER
            )
            do_layout_opt = weighted_flops <= total_flops
            if not do_layout_opt:
                log.debug(
                    "Skipped layout opt in inference because weighted flops indicate slowdown, default: %d, channels last: %d",
                    total_flops,
                    weighted_flops,
                )
            return do_layout_opt

        # Channels last layout can dramatically hurt grouped conv perf. E.g.
        # Conv with arguments like
        #   {"input_shape": [32, 224, 112, 112], "weight_shape": [224, 112, 3, 3],
        #    "stride": [2, 2], "padding": [1, 1], "groups": 2}
        # slows down 31x using channels last..

        # But a lot of timm models use depthwise separable convolution which will
        # result in grouped convolution with in-channel size == 1.
        # For those grouped convolution, channels last still helps a lot.
        # E.g.
        # Conv with arguments
        #   {"input_shape": [128, 58, 56, 56], "weight_shape": [58, 1, 3, 3],
        #    "stride": [2, 2], "padding": [1, 1], "groups": 58}
        # get 1.86x speedup with channels last layout.
        #
        # The following heuristics skip using channels-last if the model contains
        # grouped convolution with in-channels > 1.
        if any(map(is_grouped, conv_nodes)):
            log.debug(
                "Skip layout opt because found grouped convolution with >1 in_channels!"
            )
            return False

        # For some models that contain convolution with larger in-channel than out-channel, applying
        # channels last hurts performance.
        # Following models are skipped due to this:
        # - pytorch_unet
        # - phlippe_densenet (slightly worse)
        # - Background_Matting (1.22x -> 0.821x)
        # - pytorch_CycleGAN_and_pix2pix (1.597x -> 1.294x)
        if any(map(is_in_out_channel, conv_nodes)):
            log.debug(
                "Skip layout opt because some convolutions have smaller out_channel"
            )
            return False

        # Following models are skipped due to this:
        # - functorch_maml_omniglot
        if all(map(is_small_channel, conv_nodes)):
            log.debug("Skip layout opt because all convolution channels are too small")
            return False

        return True

    def qualify_name(self, name: str) -> str:
        """Prepend the given name with the graph name if any."""
        if self.name is not None:
            return f"{self.name}_{name}"
        return name

    def make_subgraph(
        self,
        gm: torch.fx.GraphModule,
        example_inputs: List[torch.Tensor],
        subgraph_name: str,
    ) -> "SubgraphLowering":
        """
        Make a subgraph of the current graph with all inherited parts, except
        the graph module (`gm`) and `example_inputs`.  The subgraphs are lowered
        separately and lifted into a separate function in the parent output
        wrapper code.  The subgraph name is qualified by the parent graph's
        name. Note that the lifting of subgraph is supported for python wrapper
        only. For cpp wrapper, we inline the subgraphs in the parent wrapper.
        """
        return SubgraphLowering(
            parent=self,
            gm=gm,
            example_inputs=example_inputs,
            shape_env=self._shape_env,
            cpp_wrapper=self.cpp_wrapper,
            aot_mode=self.aot_mode,
            extern_node_serializer=self.extern_node_serializer,
            is_inference=self.is_inference,
            is_backward=self.is_backward,
            name=self.qualify_name(subgraph_name),
        )

    def find_nodes_prefer_channels_last(self) -> OrderedSet[Node]:
        """
        The rule to decide if an node prefer channels last is simple.
        1. if it's input/output of a convolution
        2. if one of its user prefers channels last

        We have rule 1 because cudnn runs a faster convolution kernel for channels last inputs;
        Rule 2 is also important. It makes sure that indirect inputs to convolution also prefers
        channels last.

        Consider the scenario: conv -> batch-norm -> relu -> conv
        Without rule 2, batch-norm output may use a contiguous layout. That will cause 2 extra copies:
        1. the output of batch-norm should be channels last initially since its input is a conv's output.
           Forcing the batch-norm's output to be contiguous results in the first copy
        2. The second conv's input is initially contiguous. This layout is propagated from the batch-norm's output.
           We need convert it to channels last layout which results in the second copy.
        With rule 2, we makes sure all the tensors in the chain uses channels last layout. So both copies
        can be saved.
        """
        output_set: OrderedSet[Node] = OrderedSet()
        for n in reversed(self.module.graph.nodes):  # type: ignore[arg-type, union-attr]
            if n.target == torch.ops.aten.convolution.default:
                output_set.add(n)
                continue

            for user in n.users:
                if user in output_set:
                    output_set.add(n)
                    break

        # need a second pass to add downstream nodes of those channel last nodes to the sets.
        # This pass is especially needed to avoid mix-layout kernel inputs in backward pass.
        #
        # Let's say a conv-batchnorm 's output is passed to relu whose output is in turn returned
        # from the fwd graph. Without this second pass, we will force relu's output to be contiguous.
        # Then in the kernel in backward pass, the contiguous output of relu may be mix with other channels last
        # tensors and passed to a kernel.
        #
        # This pass improve yolov3 training speedup from 1.116x (worse than disabling layout optimization speedup 1.196x) to 1.457x.
        # It also improves dla102 training speedup from 1.240x (worse than disabling layout optimization speedup 1.523x) to 1.835x .
        # This also helps the following models:
        # - res2net101_26w_4s
        # - res2net50_14w_8s
        # - sebotnet33ts_256
        for n in self.module.graph.nodes:  # type: ignore[union-attr]
            if n in output_set:
                output_set.update(n.users)

        return output_set

    def warn_fallback(self, name: str) -> None:
        if name not in self._warned_fallback:
            self._warned_fallback.add(name)
            perf_hint_log.info("Using FallbackKernel: %s", name)

    def add_device_info(self, device: torch.device) -> None:
        self.device_types.add(device.type)
        if device.index is not None:
            self.device_idxs.add(device.index)
        if V.graph.current_node and device not in self.device_node_mapping:
            self.device_node_mapping[device] = V.graph.current_node

    @property
    def fake_mode(self) -> torch._subclasses.fake_tensor.FakeTensorMode:
        return V.fake_mode

    def try_get_buffer(
        self, buffer_name: str
    ) -> Optional[Union[ir.TensorBox, ir.Buffer]]:
        if buffer_name in self.name_to_buffer:
            return self.name_to_buffer[buffer_name]
        if buffer_name in self.graph_inputs:
            return self.graph_inputs[buffer_name]
        if buffer_name in self.constants:
            data = V.graph.constants[buffer_name]
            return ir.ConstantBuffer(
                name=buffer_name,
                layout=ir.FixedLayout(
                    data.device, data.dtype, *V.graph.static_sizes_strides(data)
                ),
            )

        return None

    def add_symbol_graph_input(self, symbol: sympy.Expr) -> None:
        raise RuntimeError("Should not be called for the main graph")

    def get_buffer(self, buffer_name: str) -> Union[ir.TensorBox, ir.Buffer]:
        buf = self.try_get_buffer(buffer_name)
        if buf is not None:
            return buf
        raise RuntimeError(f"Failed to find buffer matching name {buffer_name}")

    def get_dtype(self, buffer_name: str) -> torch.dtype:
        if buffer_name in self.constants:
            return self.constants[buffer_name].dtype
        # For a mutation op we should return the dtype of the buffer being mutated
        if (
            hasattr(self.scheduler, "mutation_real_name")
            and buffer_name in self.scheduler.mutation_real_name
        ):
            mutated_buf = self.scheduler.mutation_real_name[buffer_name]
            if mutated_buf in self.name_to_buffer:
                return self.name_to_buffer[mutated_buf].get_dtype()
            if mutated_buf in self.graph_inputs:
                return self.graph_inputs[mutated_buf].get_dtype()
        if buffer_name in self.name_to_buffer:
            return self.name_to_buffer[buffer_name].get_dtype()
        if buffer_name in self.graph_inputs:
            return self.graph_inputs[buffer_name].get_dtype()
        m = re.match(r"(as_strided|reinterpret_tensor)\(([a-zA-Z0-9_]+),", buffer_name)
        if m:
            return self.get_dtype(m.group(1))
        raise KeyError(f"could not find {buffer_name}")

    def get_numel(self, buffer_name: str) -> Union[int, Expr]:
        if buffer_name in self.constants:
            return self.constants[buffer_name].numel()
        if buffer_name in self.name_to_buffer:
            buf = self.name_to_buffer[buffer_name]
            if not buf.has_tensor_output():
                return 1
            return buf.get_numel()
        if buffer_name in self.graph_inputs:
            return self.graph_inputs[buffer_name].get_numel()
        raise KeyError(f"could not find {buffer_name}")

    def run(self, *args: Any) -> Any:  # type: ignore[override]
        with dynamo_timed("GraphLowering.run"):
            return super().run(*args)

    def register_operation(self, op: ir.Operation) -> str:
        assert op.operation_name is None, f"Operation registered twice: {op}"
        assert isinstance(op, ir.Operation)
        name = self.qualify_name(f"op{len(self.operations)}")
        self.operations.append(op)
        self.name_to_op[name] = op
        op.operation_name = name
        return name

    def register_buffer(self, buffer: ir.Buffer, *, set_name: bool = False) -> str:
        name = self.qualify_name(f"buf{len(self.buffers)}")
        self.buffers.append(buffer)
        self.name_to_buffer[name] = buffer
        device = buffer.get_device()
        if (
            # Skip empty CPU tensor so that CUDA graphs can succeed, see https://github.com/pytorch/pytorch/pull/114144
            device is not None
            and not (
                isinstance(buffer, ir.ComputedBuffer)
                and buffer.is_zero_elements()
                and device == torch.device("cpu")
            )
        ):
            self.add_device_info(device)

        if set_name:
            buffer.name = name
        return name

    def register_operation_list(self, operation_names: List[str]) -> str:
        name = self.qualify_name("list_" + "_".join(operation_names))
        self.lists[name] = operation_names
        return name

    def register_users_of(
        self, node_output: Union[Iterable[ir.IRNode], ir.IRNode]
    ) -> None:
        def register(value: Union[Iterable[ir.IRNode], ir.IRNode]) -> None:
            if isinstance(value, (list, tuple)):
                for x in value:
                    register(x)
            if isinstance(value, ir.TensorBox):
                for read_name in value.get_read_names():
                    self.name_to_users[read_name].append(value)

        register(node_output)

    def mark_buffer_mutated(self, name: str) -> None:
        """
        When a buffer is mutated we need to make sure all the reads to
        the old version are realized before the mutation happens.
        """
        assert isinstance(name, str)
        self.mutated_buffers.add(name)

        if name not in self.name_to_users:
            return

        for user in self.name_to_users[name]:
            user.realize()

    def get_original_value_of_constant(self, name: str) -> torch.Tensor:
        """
        In AOTI, module buffers may have been mutated during the tracing and compilation.
        Thus we need to read from previously stored original buffers, to make sure the
        generated model.so uses correct initial values.
        """
        assert name in self.allocated_constant_name and name in self.constants, (
            "Can not find the original value for " + name
        )
        orig_name = get_cloned_parameter_buffer_name(self.allocated_constant_name[name])
        return (
            self.module.meta[orig_name]  # type: ignore[index]
            if orig_name in self.module.meta  # type: ignore[operator]
            else self.constants[name]
        )

    def allocate_non_dup_const_name(
        self, name: Optional[str], data: Union[Tensor]
    ) -> str:
        if not config.aot_inductor.use_runtime_constant_folding:
            for constant_name, value in self.constants.items():
                if is_same_tensor(data, value):
                    return constant_name

        if name is None:
            name = f"constant{len(self.constants)}"
        orig_name = name
        if name[0].isdigit():
            name = f"constant_{name}"
        name = self.qualify_name(name)
        # We may generate a var name for each constant in the codegen.
        # Let's only keep sane characters.
        prefix = normalize_name(name)
        name = prefix
        cnt = 0
        while name in self.constants:
            name = f"{prefix}_{cnt}"
            cnt += 1
        self.constants[name] = data
        self.constant_reprs[name] = (
            f"{data.device!r} {data.dtype!r} "
            f"{tuple(data.size())!r} {tuple(data.stride())!r} "
            f"{hash(data):x}"
        )
        self.allocated_constant_name[name] = orig_name  # type: ignore[assignment]
        return name

    def add_tensor_constant(
        self, data: Tensor, name: Optional[str] = None
    ) -> TensorBox:
        new_name = self.allocate_non_dup_const_name(name, data)
        return TensorBox.create(
            ir.ConstantBuffer(
                name=new_name,
                layout=FixedLayout(
                    data.device, data.dtype, *self.static_sizes_strides(data)
                ),
            )
        )

    def constant_name(self, name: str, device_override: Optional[torch.device]) -> str:
        """
        We AOT copy constants to the devices they are needed on.
        If device_override doesn't match the constant's device, then
        copy it and return a different name.
        """
        if self.constants[name].device == device_override or device_override is None:
            return name
        with torch.utils._python_dispatch._disable_current_modes():
            # caller might have OrderedSet fake tensor mode which will create a fake tensor
            # when calling .to, so unset modes here
            return self.allocate_non_dup_const_name(
                f"{name}_{device_override.type}{device_override.index or 0}",
                self.constants[name].to(device_override),
            )

    def placeholder(
        self, target: str, args: Tuple[object], kwargs: Dict[str, object]  # type: ignore[override]
    ) -> Union[Expr, TensorBox, None]:
        self.placeholder_idx += 1
        example = super().placeholder(target, args, kwargs)  # type: ignore[arg-type]
        target = self.qualify_name(target)
        if isinstance(example, SymTypes):
            expr = example.node.expr
            self.graph_inputs[target] = expr
            self.graph_input_names.append(target)
            return expr
        elif isinstance(example, (int, bool, float)):
            expr = sympy.sympify(example)
            self.graph_inputs[target] = expr
            self.graph_input_names.append(target)
            return expr
        elif example is None:
            self.graph_input_names.append(target)
            return None
        if isinstance(example, BackwardState):
            # Ignored arg, must be unused
            # Alternately we could filter this out in AotAutograd
            self.graph_input_names.append(target)
            return None
        assert isinstance(example, torch.Tensor), example
        # todo(chilli): We can remove the last check once we turn buffers into
        # static shape tensors. That's a hack to workaround Inductor believing
        # the buffer should be static but us passing in a fake tensor with
        # symbolic shapes.
        if not example._has_symbolic_sizes_strides:
            # the first N inputs are weights
            sizes, strides = self.static_sizes_strides(example)
        else:
            sizes, strides = self.symbolic_sizes_strides(example)  # type: ignore[assignment]

        if (
            self.is_backward
            and self.bw_donated_idxs
            and self.placeholder_idx in self.bw_donated_idxs
        ):
            tensor = TensorBox.create(
                DonatedBuffer(
                    name=target,
                    layout=FixedLayout(example.device, example.dtype, sizes, strides),
                )
            )
        else:
            # TODO(jansel): handle input aliasing
            tensor = TensorBox.create(
                InputBuffer(
                    name=target,
                    layout=FixedLayout(example.device, example.dtype, sizes, strides),
                )
            )

        self.graph_inputs[target] = tensor
        self.graph_input_names.append(target)
        self.graph_inputs_original[target] = tensor.data.data
        if self.current_node.users:  # cudagraphs should work with an unused CPU input
            self.add_device_info(example.device)

        # Note: [Input Alignment handling in Inductor]
        # Alignment matters for generating efficient code. Some operations,
        # e.g. vectorized loads, can only be performed on aligned inputs.
        #
        # But if we codegen assuming aligned inputs and then get unaligned
        # inputs at runtime, then we are forced to clone - which is bad for
        # both perf and memory usage.
        #
        # One option would be to guard on storage_offset%ALIGNMENT, and then
        # codegen based on this. But storage_offset guards turned out to be
        # expensive and cause recompiles; Instead, we're generating code
        # based on the alignment of the example input without guarding.
        with maybe_get_suppress_shape_guards_ctx():
            if should_assume_input_aligned(example):
                self.aligned_inputs.add(target)
        return tensor

    def call_function(self, target: Callable, args: Any, kwargs: Dict[str, Any]) -> Any:  # type: ignore[type-arg, override]
        if target is operator.getitem and isinstance(args[0], (list, tuple, dict)):
            return super().call_function(target, args, kwargs)

        # hasattr on OpOverloadPacket is slow, check isinstance first
        if not isinstance(target, torch._ops.OpOverloadPacket) and hasattr(
            target, "_inductor_lowering_function"
        ):
            # passthrough lowerings from .pattern_matcher
            return target(*args, **kwargs)

        if target not in lowerings:
            assert isinstance(
                target, torch._ops.OpOverload
            ), f"{target} is not an OpOverload"
            base_name = target.name().split(".")[0]
            if base_name in FALLBACK_ALLOW_LIST:
                make_fallback(target, warn=False, override_decomp=True)
            elif config.implicit_fallbacks:
                error = (
                    MissingOperatorWithDecomp
                    if get_decompositions([target])
                    else MissingOperatorWithoutDecomp
                )
                log.info(
                    "Creating implicit fallback for:\n%s",
                    error.operator_str(target, args, kwargs),
                )

                decided_constraint = require_contiguous

                # use contiguous unless the (custom) op asks something else
                # explicitly
                if torch._C.Tag.needs_fixed_stride_order in target.tags:
                    decided_constraint = constrain_to_fx_strides  # type: ignore[assignment]
                elif torch._C.Tag.flexible_layout in target.tags:
                    decided_constraint = None  # type: ignore[assignment]

                # for implicitly fallback ops, we conservatively requires
                # contiguous input since some eager kernels does not
                # support non-contiguous inputs. They may silently cause
                # accuracy problems. Check https://github.com/pytorch/pytorch/issues/140452
                make_fallback(target, layout_constraint=decided_constraint)

            elif get_decompositions([target]):
                # There isn't a good way to dynamically patch this in
                # since AOT Autograd already ran.  The error message tells
                # the user how to fix it.
                raise MissingOperatorWithDecomp(target, args, kwargs)
            else:
                raise MissingOperatorWithoutDecomp(target, args, kwargs)

        try:
            log.debug("  via %s", lowerings[target])  # type: ignore[index]

            n = self.current_node
            layout_constraints = maybe_layout_constraints(target)
            if layout_constraints:
                old_args, old_kwargs = args, kwargs
                args, kwargs = layout_constraints(n, *args, **kwargs)

            out = lowerings[target](*args, **kwargs)  # type: ignore[index]

            if layout_constraints:
                # layout_constraints are allowed to make new copies of the inputs.
                # if they do, and if the target is mutable, then we need to
                # write the new values back into the original inputs.
                self.propagate_mutation(n, old_args, old_kwargs, args, kwargs)  # type: ignore[possibly-undefined]

            return out
        except Exception as e:
            raise LoweringException(e, target, args, kwargs).with_traceback(
                e.__traceback__
            ) from None

    @staticmethod
    def can_inline_constant(t: torch.Tensor) -> bool:
        """
        True if this is a small constant attr that will be inlined.
        """
        return len(t.shape) == 1 and t.shape[0] <= 8

    def get_attr(
        self, target: str, args: Tuple[()], kwargs: Dict[str, object]  # type: ignore[override]
    ) -> Union[Constant, TensorBox, ir.Subgraph, TorchBindObject]:
        # this is a constant
        value = getattr_recursive(self.module, target)  # type: ignore[arg-type]

        if isinstance(value, torch.fx.GraphModule):
            # Reuse the existing subgraph if we have seen it before already.
            if target in self.seen_subgraphs:
                return self.seen_subgraphs[target]

            out = ir.Subgraph(name=target, graph_module=value)
            self.seen_subgraphs[target] = out
            return out

        if isinstance(value, torch._C.ScriptObject):
            self.torchbind_constants[target] = value
            self.constant_reprs[target] = ""
            return TorchBindObject(name=target, value=value)

        assert isinstance(value, torch.Tensor)
        if (
            config.aot_inductor.use_runtime_constant_folding
            or config.always_keep_tensor_constants
            or unsupported_output_tensor(value)
        ):
            return self.add_tensor_constant(value, target)

        with no_dispatch():
            if value.shape == ():
                return Constant(
                    value=value.item(), dtype=value.dtype, device=value.device
                )
            if self.can_inline_constant(value):
                log.debug("Inlining constant: %s ", str(target))
                # tensor lowering has constant inlining logic
                from .lowering import tensor

                return tensor(value.tolist(), dtype=value.dtype, device=value.device)

        return self.add_tensor_constant(value, target)

    def call_module(self, target: Any, args: Any, kwargs: Any) -> NoReturn:
        raise AssertionError

    def call_method(self, target: Any, args: Any, kwargs: Any) -> NoReturn:
        raise AssertionError

    def output(
        self, target: str, args: Tuple[object], kwargs: Dict[str, object]  # type: ignore[override]
    ) -> None:
        result = super().output(target, args, kwargs)  # type: ignore[arg-type]
        if not isinstance(result, (tuple, list)):
            # nested subgraphs can have singleton outputs
            result = (result,)
        assert isinstance(result, (tuple, list)), type(result)
        assert all(
            isinstance(
                x,
                (
                    TensorBox,
                    ir.Constant,
                    type(None),
                    ir.ConstantBuffer,
                    sympy.Expr,
                    sympy.logic.boolalg.Boolean,
                    int,
                    ir.EffectfulKernel,
                ),
            )
            for x in result
        ), result

        fx_node_args = V.graph.current_node.args[0]  # type: ignore[arg-type]
        if not isinstance(fx_node_args, (tuple, list)):
            # nested subgraphs can have singleton outputs
            fx_node_args = (fx_node_args,)
        result = [ir.ExternKernel.realize_input(x) for x in result]
        result_correct_strides = []

        assert len(fx_node_args) == len(result)
        for r, fx_node in zip(result, fx_node_args):
            if not isinstance(r, (ir.TensorBox, ir.BaseView)):
                result_correct_strides.append(r)
            elif isinstance(r.get_output_spec(), ir.CommBufferLayout):
                # Active references to persistent comm buffers are not allowed
                # outside of graphs
                result_correct_strides.append(ir.ExternKernel.copy_input(r))
            else:
                # AOT Autograd tries to detect stride divergence of inductor from output metadata.
                # Here, we try to avoid spurious divergence by matching insignificant strides such as
                result_correct_strides.append(
                    self.try_match_insignificant_strides(
                        r, fx_node.meta["val"].stride()
                    )
                )

        self.graph_outputs = result_correct_strides
        value: ir.IRNode
        for name, value in self.graph_inputs.items():
            assert isinstance(
                value, (TensorBox, sympy.Expr)
            ), f"Unsupported inductor graph input type: {type(value)}"
            if not isinstance(value, TensorBox):
                continue
            value.realize()
            assert isinstance(value, TensorBox)
            value = value.data
            assert isinstance(value, ir.StorageBox)
            value_storage_box = value
            value = value.data
            if not isinstance(value, InputBuffer) or value.get_name() != name:
                # one of our inputs was mutated, need to turn that into a copy
                ir.MutationLayoutSHOULDREMOVE.realize_into(
                    value, self.graph_inputs_original[name]
                )
                # replace output with mutated input
                try:
                    ind = self.graph_outputs.index(value_storage_box)
                    self.graph_outputs[ind] = self.graph_inputs_original[name]
                except ValueError:
                    pass

        self.finalize()
        log.debug(
            "Force channels last inputs for %d conv for the current graph with id %d",
            self.num_channels_last_conv,
            self.graph_id if self.graph_id is not None else -1,
        )

    def finalize(self) -> None:
        for buf in self.buffers:
            buf.decide_layout()

    @contextmanager
    def set_current_node(self, node: torch.fx.Node):  # type: ignore[no-untyped-def]
        old = self.current_node
        try:
            self.current_node = node
            yield
        finally:
            self.current_node = old

    def try_match_insignificant_strides(
        self,
        tensor: Union[ir.TensorBox, ir.BaseView],
        meta_strides_inp: Tuple[Union[int, torch.SymInt], ...],
    ) -> Union[ir.TensorBox, ir.BaseView]:
        """
        Tries to match the strides of the tensor to those in the meta_strides. Strides of insignificant
        dimensions - size 0 or 1 - will be updated.

        If there are real stride differences (NHWC vs NCHW) then the input will be returned.
        """

        # should have already been realized
        assert torch._inductor.ir.is_storage_and_layout(tensor)

        meta_strides = [
            s.node.expr if isinstance(s, torch.SymInt) else s for s in meta_strides_inp
        ]

        if all(
            self.sizevars.statically_known_equals(s1, s2)
            for s1, s2 in zip(meta_strides, tensor.get_stride())
        ):
            return tensor  # type: ignore[arg-type]

        def significant_strides_equal(
            shape: Sequence[Union[Expr, int]],
            meta_strides: Sequence[Union[Expr, int]],
            tensor_strides: Sequence[Union[Expr, int]],
        ) -> bool:
            for dim, s1, s2 in zip(shape, meta_strides, tensor_strides):
                if self.sizevars.statically_known_leq(dim, 1):  # type: ignore[arg-type]
                    continue

                if not self.sizevars.statically_known_equals(s1, s2):
                    return False

            return True

        if not significant_strides_equal(
            tensor.get_size(), meta_strides, tensor.get_stride()
        ):
            return tensor

        storage, old_layout = torch._inductor.ir.as_storage_and_layout(tensor)
        new_stride = [*old_layout.stride]
        for i, s in enumerate(tensor.get_size()):
            if self.sizevars.statically_known_leq(s, 1):  # type: ignore[arg-type]
                new_stride[i] = meta_strides[i]

        new_layout = torch._inductor.ir.FixedLayout(
            old_layout.device,
            old_layout.dtype,
            old_layout.size,
            new_stride,
            old_layout.offset,
        )
        return ir.TensorBox(
            torch._inductor.ir.ReinterpretView(data=storage, layout=new_layout)
        )

    def propagate_mutation(
        self,
        fx_node: torch.fx.Node,
        old_args: Tuple[Any],
        old_kwargs: Dict[str, Any],
        new_args: Tuple[Any],
        new_kwargs: Dict[str, Any],
    ) -> None:
        """Propagate mutations on new_args/new_kwargs back to old_args/old_kwargs.

        Assumes we may have cloned old_args/old_kwargs into new_args/new_kwargs
        and then called fx_node(*new_args, **new_kwargs).

        If fx_node mutates any of new_args/new_kwargs, and they are different from
        old_args/old_kwargs, then we need to update the original tensor.
        """
        assert len(old_args) == len(new_args)
        assert len(old_kwargs) == len(new_kwargs)

        if fx_node.target is torch.ops.higher_order.triton_kernel_wrapper_mutation:
            kwargs = fx_node.kwargs["kwargs"]
            assert isinstance(kwargs, dict)
            mutated = torch._higher_order_ops.triton_kernel_wrap.get_mutated_tensors(
                old_kwargs["kernel_idx"],
                old_kwargs["constant_args_idx"],
                {
                    k: v.meta["val"] if isinstance(v, torch.fx.Node) else v
                    for k, v in kwargs.items()
                },
            )
            for name in mutated:
                old_arg = old_kwargs["kwargs"][name]
                new_arg = new_kwargs["kwargs"][name]
                if old_arg is new_args:
                    continue
                self.call_function(torch.ops.aten.copy_.default, (old_arg, new_arg), {})
            return

        assert isinstance(fx_node.target, torch._ops.OpOverload)

        def maybe_propagate(
            schema_arg: torch._C.Argument, old_arg: ir.IRNode, new_arg: ir.IRNode
        ) -> None:
            if old_arg is new_arg:
                return
            if schema_arg.alias_info is not None and schema_arg.alias_info.is_write:
                # The lowering for copy_ is smart enough to "replace" old_arg with
                # new_arg in all future uses so a copy_ kernel never gets emitted.
                # old_arg, new_arg may be immutable_list
                if isinstance(old_arg, ir.IRNode):
                    old_arg = (old_arg,)  # type: ignore[assignment]
                    new_arg = (new_arg,)  # type: ignore[assignment]

                for old_arg_item, new_arg_item in zip(old_arg, new_arg):  # type: ignore[call-overload]
                    if old_arg_item is new_arg_item:
                        continue
                    self.call_function(
                        torch.ops.aten.copy_.default, (old_arg_item, new_arg_item), {}
                    )

        schema = fx_node.target._schema
        for idx, (old_arg, new_arg) in enumerate(zip(old_args, new_args)):
            schema_arg = schema.arguments[idx]
            maybe_propagate(schema_arg, old_arg, new_arg)

        schema_kwargs = {arg.name: arg for arg in schema.arguments}

        for key in old_kwargs.keys():
            old_arg = old_kwargs[key]
            new_arg = new_kwargs[key]
            schema_arg = schema_kwargs[key]
            maybe_propagate(schema_arg, old_arg, new_arg)

    def run_node(self, n: torch.fx.Node) -> object:
        def debug(msg: str) -> None:
            log.debug("lowering %s %s", LazyString(n.format_node), msg)

        from torch._inductor.compiler_bisector import CompilerBisector

        buffer_watermark = len(self.buffers)
        operation_watermark = len(self.operations)

        origins = {n}
        is_call_function = n.op == "call_function"
        if is_call_function:
            args, kwargs = self.fetch_args_kwargs_from_env(n)
            origins |= gather_origins(args, kwargs)
        with ir.IRNode.current_origins(origins), self.set_current_node(  # type: ignore[arg-type]
            n
        ), V.set_current_node(
            n
        ):
            if (
                n.op == "call_function"
                and n.target is not operator.getitem
                and (
                    fallback_node_due_to_unsupported_type(n)
                    or CompilerBisector.disable_subsystem(
                        "inductor", "lowerings", lambda: repr(n)
                    )
                )
            ):
                debug("fallback_handler")
                result = fallback_handler(n.target, add_to_fallback_set=False)(
                    *args, **kwargs  # type: ignore[possibly-undefined]
                )
            elif (
                n.op == "call_function"
                and n.target is torch.ops.higher_order.triton_kernel_wrapper_mutation
                and config.triton_kernel_default_layout_constraint != "flexible_layout"
            ):
                debug("user_defined_triton_kernel_layout_constraints")
                if (
                    config.triton_kernel_default_layout_constraint
                    == "needs_fixed_stride_order"
                ):
                    old_args = args  # type: ignore[possibly-undefined]
                    old_kwargs = kwargs  # type: ignore[possibly-undefined]
                    args, kwargs = constrain_to_fx_strides(n, *args, **kwargs)  # type: ignore[index]
                    result = self.call_function(n.target, args, kwargs)  # type: ignore[arg-type]
                    self.propagate_mutation(n, old_args, old_kwargs, args, kwargs)  # type: ignore[possibly-undefined]
                else:
                    raise RuntimeError(
                        f"Unknown triton_kernel_default_layout_constraint: {config.triton_kernel_default_layout_constraint}"
                    )
            elif is_magic_method(n.target):
                # TODO: this is sus, it probably should be handled in the
                # lowerings themselves similarly to sym_size/sym-stride
                # https://github.com/pytorch/pytorch/issues/127789
                debug("is_magic_method")
                if isinstance(
                    n.meta["val"], (torch.SymInt, torch.SymFloat, torch.SymBool)
                ):
                    result = n.meta["val"].node.expr
                else:
                    result = super().run_node(n)
            else:
                debug("")
                result = super().run_node(n)

            # require the same stride order for dense outputs,
            # 1. user-land view() will not throw because inductor
            # output different strides than eager
            # long term the solution is to make view() always succeed
            # with infallible strides.
            # 2: as_strided ops, we need make sure its input has same size/stride with
            # eager model to align with eager behavior.
            as_strided_ops = [
                torch.ops.aten.as_strided.default,
                torch.ops.aten.as_strided_.default,
                torch.ops.aten.as_strided_scatter.default,
                torch.ops.aten.resize.default,
                torch.ops.aten.resize_as.default,
            ]
            is_output = any(user.op == "output" for user in n.users)
            is_user_visible = n in self.user_visible_output_strides
            is_input_for_as_strided = any(
                user.target in as_strided_ops for user in n.users
            )

            if n.meta.get("inductor_realize_to_strides", False) and isinstance(
                result, TensorBox
            ):
                result.realize()
                strides = n.meta["val"].stride()
                sym_strides = torch._inductor.utils.any_is_symbolic(*strides)
                if result.maybe_get_stride() != strides and not sym_strides:
                    stride_order = ir.get_stride_order(strides)
                    result = ir.ExternKernel.require_stride_order(result, stride_order)
            if (
                is_output
                and isinstance(result, TensorBox)
                and isinstance(result.data, ir.BaseView)
            ):
                # Realize so that outputs are correctly aliased
                result.realize()

            if (is_output or is_input_for_as_strided) and isinstance(
                n.meta["val"], torch.Tensor
            ):
                if is_user_visible:
                    strides = self.user_visible_output_strides.get(n)
                else:
                    strides = n.meta["val"].stride()

                if strides is not None and len(strides) > 0:
                    allow_padding = (
                        config.pad_outputs or not is_user_visible
                    ) and not is_input_for_as_strided
                    dense = torch._prims_common.is_non_overlapping_and_dense(
                        n.meta["val"]
                    )
                    unbacked_symbols_in_strides = (
                        len(free_unbacked_symbols(strides)) > 0
                    )
                    if (
                        not unbacked_symbols_in_strides
                        and dense
                        and len(result.get_size()) == 4
                        and n in self.nodes_prefer_channels_last
                        and not is_user_visible
                        and not is_input_for_as_strided
                    ):
                        strides = ir.FlexibleLayout.stride_ordered_for_memory_format(
                            result.get_size(), torch.channels_last
                        )
                    if not unbacked_symbols_in_strides and len(strides):
                        # To avoid converting possible view ops to a copy kernel, we use the previous
                        # require_exact_strides to handle views. But ultimately it's better to require
                        # the right strides at the tensor definition.
                        if n.meta["val"]._is_view() or isinstance(
                            result.data, ir.BaseView
                        ):
                            result = ir.ExternKernel.require_stride_order(
                                result,
                                ir.get_stride_order(strides),
                                allow_padding=allow_padding,
                            )
                        else:
                            strides = [
                                s.node.expr if isinstance(s, torch.SymInt) else s
                                for s in strides
                            ]
                            result = ir.ExternKernel.require_exact_strides(
                                result, strides, allow_padding=allow_padding
                            )

            # Realize if (1) any user need inputs realized, or (2) there is
            # already too many reads and rematerializing can be bad.
            num_users = len(OrderedSet(n.users))
            if num_users > 1 and isinstance(result, TensorBox):
                for user in n.users:
                    if user.target in needs_realized_inputs:
                        result.realize_hint()
                        # This inclusion is somewhat controversial (from
                        # discussion between Horace, Natalia, and Elias).
                        # Currently, it's not very clear why this is helpful.
                        # The general idea here is that even though a node may
                        # have FlexibleLayout, we still often *treat* it as if
                        # it was contiguous. This appears to sometimes result in
                        # suboptimal behavior.
                        #
                        # When we do a better job selecting layout, we should
                        # revisit this.
                        need_fixed_layout = [
                            torch.ops.aten.convolution_backward.default,
                            torch.ops.aten.mm.default,
                            torch.ops.aten._int_mm.default,
                        ]
                        need_fixed_channels_last_layout = []
                        if not self.layout_opt:
                            need_fixed_layout.append(torch.ops.aten.convolution.default)
                        if torch._C._has_mkldnn:
                            need_fixed_layout += [
                                torch.ops.mkldnn._linear_pointwise.default,
                                torch.ops.mkldnn._linear_pointwise.binary,
                                torch.ops.aten.mkldnn_rnn_layer.default,
                                torch.ops.onednn.qlinear_pointwise.default,
                                torch.ops.onednn.qlinear_pointwise.tensor,
                                torch.ops.onednn.qlinear_pointwise.binary,
                                torch.ops.onednn.qlinear_pointwise.binary_tensor,
                            ]
                            need_fixed_channels_last_layout += [
                                torch.ops.mkldnn._convolution_pointwise.default,
                                torch.ops.mkldnn._convolution_pointwise.binary,
                                torch.ops.mkldnn._convolution_pointwise_.binary,
                                torch.ops.mkldnn._convolution_transpose_pointwise.default,
                                torch.ops.onednn.qconv2d_pointwise.default,
                                torch.ops.onednn.qconv2d_pointwise.binary,
                            ]
                            if torch._C.has_mkl:
                                need_fixed_layout += [torch.ops.mkl._mkl_linear.default]
                        if user.target in need_fixed_layout:
                            result = ir.ExternKernel.require_stride_order(
                                result,
                                ir.get_stride_order(n.meta["val"].stride()),
                                allow_padding=True,
                            )
                        if (
                            user.target in need_fixed_channels_last_layout
                            and n is user.args[0]
                        ):
                            result = ir.ExternKernel.require_stride_order(
                                result,
                                ir.get_stride_order(
                                    make_channels_last_strides_for(n.meta["val"].shape)
                                ),
                            )
                    if user.op == "output":
                        if isinstance(result.data.data, (Pointwise, Reduction)):
                            result.realize()

                # TODO(jansel): introduce a store vs inline choice
                result.mark_reuse(len(n.users))

            # Realize if the IRNode already has accumulated lots of reads
            if isinstance(result, TensorBox) and result.has_exceeded_max_reads():
                # Prevent excessive accumulation in a computed buffer, when
                # there are multiple branches each with small number of memory
                # reads, but they converge to a user.
                result.realize_hint()

            # Realize if a Pointwise has too much stuff to be inlined.
            # As this may cause RecursionError during Inductor's evaluation.
            if isinstance(result, TensorBox) and isinstance(result.data, StorageBox):
                curr = result.data.data
                if isinstance(curr, Pointwise):
                    # Use inner fn as a rough proxy. Good enough.
                    if curr.has_large_inner_fn(threshold=100):
                        result.realize()

        # This is not complete, but it doesn't have to be: origin_node
        # tracking is best effort.  The logic here critically relies on direct
        # TensorBox -> StorageBox denoting a non-view; we don't bother trying
        # to get views to work.  Feel free to add any extra cases as needed.
        #
        # Note: we can't YOLO tree_map over this result, because if there are
        # buffers or a view involved, we might not be able to validly assign
        # the origin_node here.
        if isinstance(result, TensorBox) and isinstance(result.data, ir.StorageBox):
            if isinstance(result.data.data, ir.Loops):
                result.data.data._post_init_setattr("origin_node", n)
            elif isinstance(result.data.data, ir.Buffer):
                result.data.data._post_init_setattr("origin_node", n)
                if isinstance(result.data.data, ir.ComputedBuffer) and isinstance(
                    result.data.data.data, ir.Loops
                ):
                    result.data.data.data._post_init_setattr("origin_node", n)
                # Not really multi-output, can straightforwardly recurse in
                elif (
                    isinstance(result.data.data, ir.MultiOutput)
                    and not result.data.data.indices
                ):
                    if isinstance(result.data.data.inputs[0], ir.Buffer):
                        result.data.data.inputs[0]._post_init_setattr("origin_node", n)

        self.register_users_of(result)

        new_unbacked_defs: OrderedSet[sympy.Symbol] = OrderedSet()
        for buf in self.buffers[buffer_watermark:]:
            new_unbacked_defs |= buf.get_unbacked_symbol_defs()
        for op in self.operations[operation_watermark:]:
            new_unbacked_defs |= op.get_unbacked_symbol_defs()

        def format_new_defs() -> str:
            r = [
                f"unbacked_symbol_defs={buf.get_unbacked_symbol_defs()} in:\n{buf}\n"
                for buf in self.buffers[buffer_watermark:]
            ]
            r.extend(
                f"unbacked_symbol_defs={op.get_unbacked_symbol_defs()} in:\n{op}\n"
                for op in self.operations[operation_watermark:]
            )
            return "***\n".join(r)

        if n.op != "placeholder":
            # Note [Backwards runtime asserts]
            # Backwards poses an interesting problem for deferred runtime
            # asserts.  In the easy case, we may solely close over data
            # dependent sized tensors, and there are no binding sites for
            # unbacked SymInts.  In this case, we can just drop all the
            # runtime asserts on the floor: no non-placeholder bindings, no
            # problem.
            #
            # However, it is *possible* for a fresh runtime assert to show up
            # between forwards and backwards.  Right now, the freezing process
            # that happens when we lower forwards means that we will freeze
            # runtime asserts, and then the moment the backwards lowering
            # process attempts to add a new deferred runtime assert, we will
            # fail.  Let's say you remove that assert.  Now when we get here,
            # we need to make sure we actually emit these asserts (because we
            # can't emit them in forwards, we already compiled it).  So we
            # have to do something here.  But we don't want to reemit ALL
            # deferred runtime asserts, we only want to emit the NEW ones.
            # Therefore needing some sort of stratification in the ShapeEnv.
            # This is all doable, it just hasn't been done yet.
            shape_env = V.graph.sizevars.shape_env

            def make_assert(expr: SympyBoolean, msg: str) -> None:
                assert_op = ir.AssertScalar(expr, msg)
                self.register_buffer(assert_op, set_name=True)
                self.register_operation(assert_op)

            for i0 in new_unbacked_defs:
                ras = self.ras_by_symbol.pop(i0, [])
                # NB: size-like not needed, we won't retrace
                vr = shape_env.var_to_range[i0]
                if not shape_env._default_unspecified_value_range().issubset(vr):

                    def is_convertible(s: Expr) -> bool:
                        if s in (int_oo, -int_oo):
                            return False
                        try:
                            int(s)
                            return True
                        except TypeError:
                            return False

                    if is_convertible(vr.lower):
                        make_assert(i0 >= vr.lower, f"{i0} >= {vr.lower}")
                    if is_convertible(vr.upper):
                        make_assert(i0 <= vr.upper, f"{i0} <= {vr.upper}")

                for ra in ras:
                    fvs = free_unbacked_symbols(ra.expr)
                    missing = fvs - self.bound_unbacked_symbols
                    if missing:
                        i1 = min(missing, key=str)
                        self.ras_by_symbol.setdefault(i1, []).append(ra)
                    else:
                        make_assert(ra.expr, f"{ra.expr}")

            self.bound_unbacked_symbols |= new_unbacked_defs

            unbacked_bindings = resolve_unbacked_bindings(
                V.graph.sizevars.shape_env, n.meta.get("unbacked_bindings", {})
            )
            assert unbacked_bindings is not None
            # When we do lowering, it is possible we reallocate unbacked SymInts.
            # So we need to line up the unbacked SymInts when performing the test
            # here
            #
            # In principle, we could permit lowering to introduce MORE unbacked
            # SymInts: as long as all the old unbacked ones are accounted for,
            # it's fine for inductor to introduce extra calls to item()/unbacked()
            # whatever.  This actually happens in practice when an unbacked SymInt
            # gets memoized away; naively, when Inductor reprocesses a kernel, it
            # doesn't know that the memo still applies, and ends up allocating a
            # new symbol.  However, this is generally a bad thing: we may still
            # end up needing to test equalities on the symbols, and a fresh
            # symbol is likely to hit lots of GuardOnDataDependent errors that
            # we already know facts for.
            renamed_unbacked_bindings = OrderedSet(
                V.fake_mode.shape_env.unbacked_renamings.get(s, s)
                for s in unbacked_bindings.keys()
            )
            assert new_unbacked_defs >= renamed_unbacked_bindings, (
                f"failed {new_unbacked_defs} >= {renamed_unbacked_bindings} (inductor >= fx)\n"
                f"fx node is: {n.format_node()}\n"
                f"new operations are:\n\n{format_new_defs()}"
            )

        return result

    def validate_can_generate_cpp_wrapper(self) -> None:
        if config.disable_cpp_codegen:
            raise CppWrapperCodegenError("C++ codegen is disabled")

        if sys.platform not in ["linux", "darwin", "win32"]:
            raise CppWrapperCodegenError(f"Unsupported platform {sys.platform}")

        for value in self.graph_inputs.values():
            dtype = None
            if isinstance(value, TensorBox):
                dtype = value.get_dtype()
            elif isinstance(
                value, (sympy.Symbol, sympy.Expr, sympy.core.numbers.Integer)
            ):
                dtype = may_get_constant_buffer_dtype(value)

            if not supported_dtype_of_cpp_wrapper(dtype, self.device_type):  # type: ignore[arg-type]
                raise CppWrapperCodegenError(f"Unsupported input dtype {dtype}")

    def init_wrapper_code(
        self,
        is_subgraph: bool = False,
        subgraph_name: Optional[str] = None,
        parent_wrapper_code: Optional[PythonWrapperCodegen] = None,
    ) -> None:
        device_types = self.device_types.copy()
        device_types.discard("cpu")
        device_types.discard("meta")
        # TODO(Eikan): Only support mixing cpu and other device now.
        assert len(device_types) <= 1, "Does not support mixing {}".format(
            "+".join(device_types)
        )
        only_cpu = len(device_types) == 0
        self.device_type = "cpu" if only_cpu else device_types.pop()

        if self.cpp_wrapper:
            self.validate_can_generate_cpp_wrapper()

        self.device_ops = get_device_op_overrides(self.device_type)
        wrapper_code_gen_cls = get_wrapper_codegen_for_device(
            self.device_type, self.cpp_wrapper
        )
        assert (
            wrapper_code_gen_cls is not None
        ), f"Device {self.device_type} not supported"
        self.wrapper_code = wrapper_code_gen_cls.create(
            is_subgraph, subgraph_name, parent_wrapper_code
        )

        if self.const_module:
            # If we have const module, we could reuse the kernels
            # This could avoid duplication and save time on doing recompilation (if Triton.)
            self.wrapper_code._names_iter = self.const_module.wrapper_code._names_iter
            self.wrapper_code.src_to_kernel = (
                self.const_module.wrapper_code.src_to_kernel
            )

    def codegen_with_cpp_wrapper(self) -> Tuple[str, List[Tuple[int, Node]]]:
        """
        For GPU, Triton kernels are autotuned and stored as cubin files
        """
        if any(device in self.device_types for device in ["cuda", "xpu"]):
            if config.triton.autotune_at_compile_time:
                # If autotune_at_compile_time is True, we can do the codegen in one-pass
                # TODO: once autotune_at_compile_time is stable, we should delete the else branch
                return self.codegen()
            else:
                # first pass
                self.cpp_wrapper = False
                compiled = self.compile_to_module().call

                def materialize(
                    x: Union[torch.SymInt, torch.SymFloat, torch.Tensor]
                ) -> Union[int, float, torch.Tensor]:
                    if x is None:
                        return None
                    elif isinstance(x, (torch.SymInt, torch.SymFloat)):
                        # Need concrete value to run dynamic shapes and tune the result
                        return x.node.hint
                    elif isinstance(x, FakeTensor):
                        return defake(x)
                    else:
                        assert isinstance(
                            x, torch.Tensor
                        ), "Unknown type when creating real inputs" + str(type(x))
                        return x

                tracing_context = torch._guards.TracingContext.try_get()
                if tracing_context is not None and not isinstance(
                    V.real_inputs, NullHandler
                ):
                    if tracing_context.output_strides:
                        tracing_context.output_strides.clear()

                    params_flat = [
                        param
                        for param in tracing_context.params_flat  # type: ignore[union-attr]
                        if param is not None
                    ]
                    real_inputs = [
                        materialize(x)
                        for x in itertools.chain(params_flat, V.real_inputs)
                    ]
                else:
                    # In the backward pass, V.real_inputs is not OrderedSet.
                    # Generating random inputs based on self.example_inputs sometimes can be problematic,
                    # e.g. illegal memory access. A comprehensive fix is to autotune in a separate process.
                    real_inputs = [
                        materialize(x)  # type:ignore[arg-type]
                        for x in (
                            self.example_inputs  # type:ignore[union-attr]
                            if isinstance(V.real_inputs, NullHandler)
                            else V.real_inputs
                        )
                    ]

                if self.mutated_inputs:
                    from .compile_fx import clone_preserve_strides

                    mutated_input_idxs = [
                        idx
                        for idx, name in enumerate(self.graph_inputs)
                        if name in self.mutated_inputs
                        and isinstance(real_inputs[idx], torch.Tensor)
                    ]
                    for idx in mutated_input_idxs:
                        # clone mutated Tensor inputs to avoid mutating them in
                        # the first pass of the CPP wrapper-based compilation, as
                        # this will lead to a side effect on the example inputs:
                        # e.g. if torch.compile(f)(x) if called on input-mutating
                        # f, the inputs x will be mutated twice in the process:
                        # once here, and again when running the compiled model;
                        # this will also lead to a numerically incorrect output
                        mutated_inp = real_inputs[idx]
                        assert isinstance(mutated_inp, torch.Tensor)
                        real_inputs[idx] = clone_preserve_strides(mutated_inp)
                        del mutated_inp

                with torch.utils._python_dispatch._disable_current_modes():
                    compiled(real_inputs)
                del real_inputs

                # second pass
                self.cpp_wrapper = True
                self.removed_buffers.clear()
                self.removed_operations.clear()
                self.inplaced_to_remove.clear()
                V.graph.sizevars.precomputed_replacements.clear()
                V.graph.sizevars.inv_precomputed_replacements.clear()
                metrics.reset()
                with config.patch({"triton.autotune_at_compile_time": False}):
                    return self.codegen()
        else:
            # cpu
            return self.codegen()

    def codegen(self) -> Tuple[str, List[Tuple[int, Node]]]:
        with dynamo_timed("GraphLowering.codegen", log_pt2_compile_event=True):
            from .scheduler import Scheduler

            self.init_wrapper_code()

            self.scheduler = Scheduler(self.operations)
            V.debug.draw_orig_fx_graph(self.orig_gm, self.scheduler.nodes)

            self.wrapper_code.push_codegened_graph(self)
            self.scheduler.codegen()

            log.debug(
                "Finished codegen for all nodes. The list of kernel names available: %s",
                V.graph.all_codegen_kernel_names,
            )

            result = self.wrapper_code.generate(self.is_inference)
            self.wrapper_code.pop_codegened_graph()
            return result

    def codegen_subgraph(self, parent_graph: "GraphLowering") -> None:
        """
        This is a more compact version of the `codegen()` above
        where we codegen this graph as a subgraph of some parent
        graph. The parent graph is passed as an argument: the
        intention is to inline codegening of the subgraph in
        the parent graph's wrapper code (including the generated
        kerenls). The wrapper code is not finalized (via `.generate()`
        call), as this will be done in the parent graph's `codegen()`.
        """
        with dynamo_timed("GraphLowering.codegen_subgraph", log_pt2_compile_event=True):
            from .scheduler import Scheduler

            self.wrapper_code = parent_graph.wrapper_code
            self.device_ops = parent_graph.device_ops
            self.cpp_wrapper = parent_graph.cpp_wrapper

            self.scheduler = Scheduler(self.operations)
            self.scheduler.codegen()

    def count_bytes(
        self,
    ) -> Tuple[
        int, List[Tuple[BaseSchedulerNode, int]], List[Tuple[BaseSchedulerNode, float]]
    ]:
        total_bytes = 0
        node_counts = []
        node_runtimes = []
        for node in self.scheduler.nodes:
            num_bytes = node.get_read_write_buffers_sizes()
            total_bytes += num_bytes
            node_counts.append((node, num_bytes // 4))
            node_runtimes.append((node, node.get_estimated_runtime()))

        return total_bytes, node_counts, node_runtimes

    @staticmethod
    def save_output_code(code: str) -> None:
        # No-op to be patched for unit tests
        pass

    def compile_to_module(self) -> ModuleType:
        with dynamo_timed(
            "GraphLowering.compile_to_module",
            phase_name="code_gen",
            log_pt2_compile_event=True,
            dynamo_compile_column_us="inductor_code_gen_cumulative_compile_time_us",
        ):
            return self._compile_to_module()

    def _compile_to_module(self) -> ModuleType:
        from .codecache import PyCodeCache

        code, linemap = (
            self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
        )
        if config.triton.autotune_at_compile_time:
            tuning_code = (
                '"""\n'
                + "Compile-time auto-tuning block: \n"
                + self.wrapper_code.kernel_autotune_defs.getvalue()
                + self.wrapper_code.kernel_autotune_calls.getvalue()
                + '"""\n'
            )
            code = tuning_code + code
        GraphLowering.save_output_code(code)
        output_code_log.debug("Output code: \n%s", code)

        inductor_meta = autotune_cache.inductor_meta_from_config()
        AutotuneCacheBundler.begin_compile(inductor_meta, code=code)

        try:
            linemap = [(line_no, node.stack_trace) for line_no, node in linemap]  # type: ignore[misc]
            key, path = PyCodeCache.write(code)
            output_code_log.debug("Output code written to: %s", path)
        except Exception:
            trace_structured(
                "inductor_output_code",
                # Just omit the filename, I still want the code though!
                payload_fn=lambda: code,
            )
            raise
        else:
            trace_structured(
                "inductor_output_code",
                lambda: {"filename": path},
                payload_fn=lambda: code,
            )
        with dynamo_timed("PyCodeCache.load_by_key_path", log_pt2_compile_event=True):
            mod = PyCodeCache.load_by_key_path(
                key,
                path,
                linemap=linemap,  # type: ignore[arg-type]
                attrs={**self.constants, **self.torchbind_constants},
            )
        self.cache_key = key
        self.cache_path = path
        self.cache_linemap = linemap  # type: ignore[assignment]

        if config.profile_bandwidth_output:
            # run the inputs code gen to get the bandwidth info
            mod.benchmark_compiled_module(times=1, repeat=1)
        # Logged twice as per https://github.com/pytorch/pytorch/pull/99038#discussion_r1167826029
        # TODO. Revisit this once the logging API is more mature
        assert mod.__file__ is not None

        log_module_code(mod.__file__)
        log.debug("Output code written to: %s", mod.__file__)
        output_code_log.info("Output code written to: %s", mod.__file__)
        if config.benchmark_kernel:
            print(f"Compiled module path: {mod.__file__}", file=sys.stderr)
        V.debug.output_code(mod.__file__)
        V.debug.copy(os.path.splitext(mod.__file__)[0] + ".debug")
        return mod

    def get_output_names(self) -> List[str]:
        return [
            node.get_name()
            for node in self.graph_outputs
            if not isinstance(node, ir.NoneAsConstantBuffer)
            and not isinstance(node, ir.ShapeAsConstantBuffer)
        ]

    def is_unspec_arg(self, name: str) -> bool:
        # dynamo wraps unspec variable as 0d CPU tensor,
        # need to convert to scalar during codegen (triton only)
        return (
            name in self.graph_inputs.keys()
            and self.graph_inputs[name].get_numel() == 1
            and len(self.graph_inputs[name].get_size()) == 0
            and get_device_type(self.graph_inputs[name]) == "cpu"
        ) or name in self.zero_dim_cpu_tensor_list


class SubgraphLowering(GraphLowering):
    """
    Mostly a helper class for the subgraph lowering. The main goal is to call
    init_wrapper_code with the subgraph related arguments.
    """

    def __init__(self, parent: GraphLowering, *args: Any, **kwargs: Any) -> None:
        self.parent = parent
        super().__init__(*args, **kwargs)

    def init_wrapper_code(
        self,
        is_subgraph: bool = False,
        subgraph_name: Optional[str] = None,
        parent_wrapper_code: Optional[PythonWrapperCodegen] = None,
    ) -> None:
        super().init_wrapper_code(
            is_subgraph=True,
            subgraph_name=self.name,
            parent_wrapper_code=self.parent.wrapper_code,
        )