1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
from typing import List, Optional, Tuple, Union
import sympy
import torch
from .ir import Pointwise, TensorBox
from .lowering import fallback_handler, is_integer_type, register_lowering
from .virtualized import ops
# pyre-ignore[2,3]
def dense_idx_to_jagged_idx(batch_idx, seq_idx, offsets_loader, jagged_len):
# jagged_len + 1 is used as the upper bound,
# because the last sequence length may be zero
begin_idx = ops.indirect_indexing(
offsets_loader([batch_idx]),
jagged_len + 1,
)
end_idx = offsets_loader([batch_idx + 1])
jagged_idx = begin_idx + seq_idx
return jagged_idx, end_idx
def get_inverse_offsets(
offsets: TensorBox,
jagged_len: Union[int, sympy.Expr],
realize: bool = True,
) -> TensorBox:
"""
Returns "inverse_offsets" - the inverse of the offsets array.
offsets maps batch index (dense) to jagged index (i.e. offset into jagged tensor).
inverse_offsets maps jagged index to batch index.
e.g. for offsets [0, 3, 4, 9, 10] this will return
inverse_offsets = [0, 0, 0, 1, 2, 2, 2, 2, 2, 3]
For the given offsets, the computed inverse_offsets are cached
on the first call and reused in the further calls.
"""
if hasattr(offsets, "inverse_offsets"):
# inverse_offsets are already computed
# for these offsets: can reuse
return offsets.inverse_offsets
# ops.bucketize takes offsets.get_name() which doesn't exist on Pointwise
# kernels, i.e. we need to realize it before using. In other words, we need
# offsets to be in global memory so that we can binary search over the
# entire tensor
offsets.realize()
device: torch.device = offsets.get_device_or_error()
dtype: torch.dtype = offsets.get_dtype()
# pyre-ignore[2,3]
def inner_fn(index):
idx = index[0]
bucket = ops.bucketize(
values=ops.index_expr(idx, dtype),
boundaries=(
offsets.get_name(),
offsets.get_size()[-1],
offsets.get_size()[0] * offsets.get_stride()[0],
offsets.get_stride()[-1],
),
boundary_indices=0,
indexing_dtype=dtype,
right=True,
)
# ops.bucketize above returns 1-based bucket indices,
# but we need 0-based, hence we subtract 1 from batch
return bucket - 1
inverse_offsets = Pointwise.create(
device=device,
dtype=dtype,
inner_fn=inner_fn,
ranges=[jagged_len],
)
if realize:
# "freeze" the node so that it doesn't get inlined downstream.
inverse_offsets.realize()
# cache inverse_offsets for further reuse
offsets.inverse_offsets = inverse_offsets # type: ignore[attr-defined]
return inverse_offsets
def jagged_idx_to_dense_idx(
jagged_idx, # pyre-ignore[2]
inverse_offsets_loader, # pyre-ignore[2]
offsets_loader, # pyre-ignore[2]
batch_size: Union[int, sympy.Expr],
max_seq_len: Union[int, sympy.Expr],
offsets_dtype: torch.dtype,
) -> Tuple[sympy.Expr, sympy.Expr]:
batch_idx = ops.indirect_indexing(
inverse_offsets_loader([jagged_idx]),
batch_size + 1,
)
batch_start = offsets_loader([batch_idx])
seq = ops.index_expr(jagged_idx, offsets_dtype) - batch_start
# check=False because there may be sequences longer than max_seq_len
seq_idx = ops.indirect_indexing(seq, max_seq_len, check=False)
return batch_idx, seq_idx
def register_jagged_ops():
# pyre-ignore[56]
@register_lowering(torch.ops.aten._jagged_to_padded_dense_forward.default)
def _jagged_to_padded_dense_forward(
jagged_values: TensorBox,
jagged_offsets: List[TensorBox],
max_lengths: List[int], # list of ints/SymInts
padding_value: float = 0.0,
) -> TensorBox:
device = jagged_values.get_device_or_error()
dtype = jagged_values.get_dtype()
jagged_values_size = jagged_values.get_size()
# only handle the common case of a single jagged dimension
if (
len(jagged_offsets) != 1
or device.type != "cuda"
or device != jagged_offsets[0].get_device()
or len(jagged_values_size) != 2
or len(jagged_offsets[0].get_size()) != 1
or len(max_lengths) != len(jagged_offsets)
or not is_integer_type(jagged_offsets[0])
):
return fallback_handler(
torch.ops.aten._jagged_to_padded_dense_forward.default,
add_to_fallback_set=False,
)(
jagged_values,
jagged_offsets,
max_lengths,
padding_value,
)
offsets: TensorBox = jagged_offsets[0]
offsets_len = offsets.get_size()[0]
offsets_dtype = offsets.get_dtype()
batch_size = offsets_len - 1
max_seq_len = max_lengths[0]
embedding_len = jagged_values_size[1]
jagged_len = jagged_values_size[0]
output_size = [batch_size, max_seq_len, embedding_len]
values_loader = jagged_values.make_loader()
offsets_loader = offsets.make_loader()
# pyre-ignore[2,3,53]
def inner_fn(index):
# dense tensor size: [B, N, D]
batch_idx, seq_idx, emb_idx = index
jagged_idx, end_idx = dense_idx_to_jagged_idx(
batch_idx=batch_idx,
seq_idx=seq_idx,
offsets_loader=offsets_loader,
jagged_len=jagged_len,
)
return ops.masked(
ops.lt(
ops.index_expr(jagged_idx, offsets_dtype),
end_idx,
),
lambda: values_loader([jagged_idx, emb_idx]),
padding_value,
)
return Pointwise.create(
device=device,
dtype=dtype,
inner_fn=inner_fn,
ranges=output_size,
)
def _dense_to_jagged_forward_impl(
fallback_op, # pyre-ignore[2]
dense: TensorBox,
jagged_offsets: List[TensorBox],
jagged_len: Optional[int] = None,
) -> TensorBox:
device = dense.get_device_or_error()
dtype = dense.get_dtype()
dense_size = dense.get_size()
# only handle the common case of a single jagged dimension
if (
len(jagged_offsets) != 1
or device.type != "cuda"
or device != jagged_offsets[0].get_device()
or len(jagged_offsets[0].get_size()) != 1
or len(dense_size) != 3
or jagged_len is None
or not is_integer_type(jagged_offsets[0])
):
return fallback_handler(fallback_op, add_to_fallback_set=False)(
dense,
jagged_offsets,
jagged_len,
)
offsets: TensorBox = jagged_offsets[0]
offsets_dtype = offsets.get_dtype()
batch_size = dense_size[0]
max_seq_len = dense_size[1]
embedding_len = dense_size[-1]
output_size = [jagged_len, embedding_len]
dense_loader = dense.make_loader()
offsets_loader = offsets.make_loader()
inverse_offsets = get_inverse_offsets(
offsets=offsets,
jagged_len=jagged_len,
)
inverse_offsets_loader = inverse_offsets.make_loader()
# pyre-ignore[2,3,53]
def inner_fn(index):
# jagged tensor size: [sum_B(N_B), D]
jagged_idx, emb_idx = index
batch_idx, seq_idx = jagged_idx_to_dense_idx(
jagged_idx=jagged_idx,
offsets_loader=offsets_loader,
inverse_offsets_loader=inverse_offsets_loader,
batch_size=batch_size,
max_seq_len=max_seq_len,
offsets_dtype=offsets_dtype,
)
return ops.masked(
ops.lt(
ops.index_expr(seq_idx, offsets_dtype),
ops.index_expr(max_seq_len, offsets_dtype),
),
lambda: dense_loader([batch_idx, seq_idx, emb_idx]),
0.0, # jagged sequence longer than max_seq_len
)
return Pointwise.create(
device=device,
dtype=dtype,
inner_fn=inner_fn,
ranges=output_size,
)
# pyre-ignore[56]
@register_lowering(torch.ops.aten._padded_dense_to_jagged_forward)
def _dense_to_jagged_forward(
dense: TensorBox,
jagged_offsets: List[TensorBox],
jagged_len: Optional[int] = None,
) -> TensorBox:
return _dense_to_jagged_forward_impl(
fallback_op=torch.ops.aten._padded_dense_to_jagged_forward.default,
dense=dense,
jagged_offsets=jagged_offsets,
jagged_len=jagged_len,
)
|