File: bmm.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (225 lines) | stat: -rw-r--r-- 7,707 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# mypy: allow-untyped-defs
import logging

import torch
from torch._inductor.codegen.rocm.ck_universal_gemm_template import CKGemmTemplate

from .. import ir, lowering as L
from ..select_algorithm import (
    autotune_select_algorithm,
    ExternKernelChoice,
    TritonTemplate,
)
from ..utils import (
    ceildiv as cdiv,
    use_aten_gemm_kernels,
    use_ck_template,
    use_cpp_bmm_template,
    use_cutlass_template,
    use_triton_template,
)
from ..virtualized import V
from .mm_common import (
    _is_static_problem,
    addmm_epilogue,
    mm_args,
    mm_configs,
    mm_options,
)


log = logging.getLogger(__name__)
aten = torch.ops.aten


def bmm_grid(b, m, n, meta):
    return (cdiv(m, meta["BLOCK_M"]) * cdiv(n, meta["BLOCK_N"]), b, 1)


def _is_large_block_for_cpu(m, n, k):
    # Thresholds are experimentally determined to reduce Triton CPU compile times
    if m > 128 or n > 128 or k > 128:
        return True
    return m * n > 2**12


def bmm_configs(m, n, k, *, device_type):
    if device_type == "cpu":
        return mm_configs(m, n, k, scale=0.5, exclude=_is_large_block_for_cpu)
    return mm_configs(m, n, k)


bmm_template = TritonTemplate(
    name="bmm",
    grid=bmm_grid,
    source=r"""
{{def_kernel("A", "B")}}
    M = {{size("A", -2)}}
    N = {{size("B", -1)}}
    K = {{size("A", -1)}}

    stride_aq = {{stride("A", 0)}}
    stride_am = {{stride("A", 1)}}
    stride_ak = {{stride("A", 2)}}

    stride_bq = {{stride("B", 0)}}
    stride_bk = {{stride("B", 1)}}
    stride_bn = {{stride("B", 2)}}

    # based on triton.ops.matmul
    pid = tl.program_id(0)
    grid_m = (M + BLOCK_M - 1) // BLOCK_M
    grid_n = (N + BLOCK_N - 1) // BLOCK_N

    # re-order program ID for better L2 performance
    width = GROUP_M * grid_n
    group_id = pid // width
    group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
    pid_m = group_id * GROUP_M + (pid % group_size)
    pid_n = (pid % width) // (group_size)

    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    if (stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1):
        ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
    else:
        ram = rm % M
    if (stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1):
        rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
    else:
        rbn = rn % N

    rk = tl.arange(0, BLOCK_K)

    idx_q = tl.program_id(1)  # batch dimension for BMM
    A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak + idx_q*stride_aq)
    B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn + idx_q*stride_bq)

    acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
    for k in range(K, 0, -BLOCK_K):
        if EVEN_K:
            a = tl.load(A)
            b = tl.load(B)
        else:
            a = tl.load(A, mask=rk[None, :] < k, other=0.)
            b = tl.load(B, mask=rk[:, None] < k, other=0.)
        acc += tl.dot(a, b, allow_tf32=ALLOW_TF32)
        A += BLOCK_K * stride_ak
        B += BLOCK_K * stride_bk

    # rematerialize rm and rn to save registers
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    idx_q = tl.program_id(1)  # batch dimension for BMM
    idx_m = rm[:, None]
    idx_n = rn[None, :]
    mask = (idx_m < M) & (idx_n < N)

    # inductor generates a suffix
    {{store_output(("idx_q", "idx_m", "idx_n"), "acc", "mask")}}
""",
)

aten_bmm = ExternKernelChoice(torch.bmm, "at::bmm_out")
aten_baddbmm = ExternKernelChoice(
    torch.baddbmm, "at::baddbmm_out", op_overload=aten.baddbmm.out
)


@L.register_lowering(aten.bmm)
def tuned_bmm(mat1, mat2, *, layout=None):
    if all(x.get_device().type == "cpu" for x in [mat1, mat2]):
        # decompose to small ops when memory bound
        if mat1.get_size()[1] == 1 or mat2.get_size()[2] == 1:
            mat1 = L.unsqueeze(mat1, -1)
            mat2 = L.unsqueeze(mat2, 1)
            return L.sum_(L.mul(mat1, mat2), axis=2)

        def is_valid_to_require_contiguous(t):
            if not ir.is_storage_and_layout(t):
                return True
            _, layout = ir.as_storage_and_layout(t, freeze=False)
            return isinstance(layout, ir.FlexibleLayout)

        def is_preferred_layout_as_bmm_input(sizes, strides):
            # contiguous on one of the last two dims
            return (
                strides[-1] == 1 and (sizes[-2] == 1 or strides[-2] >= sizes[-1])
            ) or (strides[-2] == 1 and (sizes[-1] == 1 or strides[-1] >= sizes[-2]))

        # Make the input of bmm contiguous
        # if it is not contiguous on either of the last two dims,
        # because bmm cpu implementation would do contiguous() if not.
        # This is to avoid additional copies in bmm.
        def may_require_contiguous(t, meta_t):
            sizes = meta_t.meta["val"].size()
            strides = meta_t.meta["val"].stride()
            if not is_preferred_layout_as_bmm_input(sizes, strides):
                t = ir.ExternKernel.require_contiguous(t)
            return t

        if is_valid_to_require_contiguous(mat1):
            meta_mat1 = V.graph.current_node.args[0]
            mat1 = may_require_contiguous(mat1, meta_mat1)
        if is_valid_to_require_contiguous(mat2):
            meta_mat2 = V.graph.current_node.args[1]
            mat2 = may_require_contiguous(mat2, meta_mat2)

    m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout)

    # options to tune from
    choices = [aten_bmm.bind((mat1, mat2), layout)] if use_aten_gemm_kernels() else []
    if use_triton_template(layout):
        for config in bmm_configs(m, n, k, device_type=ir.get_device_type(mat1)):
            bmm_template.maybe_append_choice(
                choices,
                input_nodes=(mat1, mat2),
                layout=layout,
                **mm_options(config, m, n, k, layout),
            )
    static_shape, is_nonzero = _is_static_problem(layout)
    if static_shape and is_nonzero and use_cutlass_template(layout, m, n, k):
        from ..codegen.cuda.gemm_template import CUTLASS3xGemmTemplate

        CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(choices, layout, [mat1, mat2])

    if use_cpp_bmm_template(layout, mat1, mat2):
        from ..codegen.cpp_bmm_template import CppBmmTemplate

        CppBmmTemplate.add_choices(
            choices,
            layout,
            [mat1, mat2],
        )
    if use_ck_template(layout):
        CKGemmTemplate.add_ck_gemm_choices(choices, layout, [mat1, mat2])

    if len(choices) == 0:
        log.warning("No choices for GEMM, using ATen backend as fallback")
        choices.append(aten_bmm.bind((mat1, mat2), layout))

    return autotune_select_algorithm("bmm", choices, [mat1, mat2], layout)


@L.register_lowering(aten.baddbmm)
def tuned_baddbmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None):
    m, n, k, layout, mat1, mat2, inp = mm_args(mat1, mat2, inp, layout=layout)

    # options to tune from
    choices = (
        [aten_baddbmm.bind((inp, mat1, mat2), layout, alpha=alpha, beta=beta)]
        if use_aten_gemm_kernels()
        else []
    )
    if use_triton_template(layout):
        for config in bmm_configs(m, n, k, device_type=ir.get_device_type(mat1)):
            bmm_template.maybe_append_choice(
                choices,
                input_nodes=(inp, mat1, mat2),
                layout=layout,
                **mm_options(config, m, n, k, layout),
                prefix_args=1,
                epilogue_fn=addmm_epilogue(layout.dtype, alpha, beta),
            )

    return autotune_select_algorithm("baddbmm", choices, [inp, mat1, mat2], layout)