1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
# mypy: allow-untyped-defs
""" Triton Implementation of the flex_attention Kernel for short query length (FlexDecoding)"""
from typing import Any, List, Tuple
import sympy
import torch
from torch._inductor.virtualized import V
from .. import config, ir
from ..ir import FixedLayout, FlexibleLayout
from ..lowering import empty, empty_strided, lowerings
from ..runtime.runtime_utils import is_power_of_2, next_power_of_2
from ..select_algorithm import autotune_select_algorithm, TritonTemplate
from .flex_attention import (
compute_forward_block_mn,
compute_forward_inner,
compute_next_offset_func,
create_indices_fake,
create_num_blocks_fake_generator,
maybe_realize,
)
aten = torch.ops.aten
prims = torch.ops.prims
def flex_decoding_grid(batch_size, kv_heads, gqa_group_size, n_keys, d_model, meta):
"""How is this kernel parallelized?
We create a grid of (batch_size * kv_heads, SPLIT_KV, 1)
Each block is responsible for iterating over blocks of keys and values calculating
the local output for their tile of keys and values over all full length of query.
groups of SPLIT_KV blocks then combine their output to produce the final result.
"""
return (batch_size * kv_heads, meta["SPLIT_KV"], 1)
flex_decoding_template = TritonTemplate(
name="flex_decoding",
grid=flex_decoding_grid,
source=r"""
{{def_kernel("Q", "K", "V", "M", "L", "KV_NUM_BLKS", "KV_IDX", "FULL_KV_NUM_BLKS", "FULL_KV_IDX")}}
# Sub notation for this kernel:
# Q: Query, K: Key, V: Value
# reduction buffers: M rowmax across local KV split, L local sumexp across local KV split
# M: Number of queries, N: Number of keys/values
# QK_HEAD_DIM: The dimension of the query and key embeddings
# V_HEAD_DIM: The dimension of the value embeddings
# BLOCK_M, QK_HEAD_DIM: M, and D dimemsion are always assigned to the same block
# z: Batch size, h: Number of heads, m: Number of queries per head, k: Number of keys per head t: Number of kv splits
# (Modifiable) Config options:
# SPLIT_KV: number of blocks K & V are split into
# TILE_KV: length of each local KV split
# BLOCK_M: block size that Q is padded along seqlen dim.
# BLOCK_N: block size of K & V along N dimension.
# GQA_SHARED_HEADS: number of query heads sharing one kv head in GQA setups.
#
# change of base out of the loop
# ROWS_GUARANTEED_SAFE: Is it guaranteed that at least one value in each row
# is not masked out? If so, we can skip an extra safety check
# SAFE_M_BOUNDARY: Is Q seqlen a multiple of BLOCK_M? If so, we can skip an extra boundary check for loading query.
# SAFE_N_BOUNDARY: Is KV seqlen a multiple of BLOCK_N? If so, we can skip an extra boundary check for loading key/value.
# PRESCALE_QK: Whether to pre-scale QK by 1/sqrt(d) and change of base.
#
# SPARSE_KV_BLOCK_SIZE: sparse mask block size along KV seqlen dim.
# KV_NUM_BLKS: The number of KV blocks (that may or may not require masking) for each query.
# KV_IDX: The indices of KV blocks (that may or may not require masking) for each query.
#
#
# Output: ACC output accumulated across local KV split.
tl.static_assert(SPARSE_KV_BLOCK_SIZE >= BLOCK_N and SPARSE_KV_BLOCK_SIZE % BLOCK_N == 0)
# Define Q Strides
stride_qz, stride_qh, stride_qg, stride_qm, stride_qk = {{stride("Q")}}
stride_kz, stride_kh, stride_kn, stride_kk = {{stride("K")}}
stride_vz, stride_vh, stride_vn, stride_vk = {{stride("V")}}
stride_mz, stride_mt, stride_mh, stride_mm = {{stride("M")}}
stride_lz, stride_lt, stride_lh, stride_lm = {{stride("L")}}
Z = {{size("Q", 0)}}
ZKV = {{size("K", 0)}}
HKV = {{size("Q", 1)}}
G: tl.constexpr = GQA_SHARED_HEADS
HQ = HKV * G
Q_LEN = {{size("Q", 3)}}
KV_LEN = {{size("K", 2)}}
MATMUL_PRECISION = Q.dtype.element_ty
# Make sure each split is a multiple of BLOCK_N
TILE_KV_OG = tl.cdiv(KV_LEN, SPLIT_KV)
TILE_KV = tl.cdiv(TILE_KV_OG, BLOCK_N) * BLOCK_N
TILE_KV_MULTIPLE: tl.constexpr = (TILE_KV // BLOCK_N)
off_z = tl.program_id(0) // HKV
off_zkv = off_z % ZKV
off_hkv = tl.program_id(0) % HKV
off_t = tl.program_id(1)
q_offset = off_z * stride_qz + off_hkv * stride_qh
k_offset = off_zkv * stride_kz + off_hkv * stride_kh
v_offset = off_zkv * stride_vz + off_hkv * stride_vh
SPARSE_Z = {{size("KV_NUM_BLKS", 0)}}
SPARSE_HQ = {{size("KV_NUM_BLKS", 1)}}
sparse_idx_z = off_z % SPARSE_Z
# TODO: support masks not broadcasted along the head dimension.
tl.device_assert(SPARSE_HQ == 1)
sparse_idx_h = 0
SPARSE_KV_MULTIPLE: tl.constexpr = (SPARSE_KV_BLOCK_SIZE // BLOCK_N)
SPARSE_KV_BLOCK_CNT = tl.cdiv(KV_LEN, SPARSE_KV_BLOCK_SIZE)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, V_HEAD_DIM], dtype=tl.float32)
# initialize offsets
tl.device_assert(BLOCK_M % G == 0)
BLOCK_M_PER_HQ: tl.constexpr = BLOCK_M // G
off_g = tl.arange(0, G) # [G]
offs_g = tl.ravel(tl.broadcast_to(off_g[:, None], [G, BLOCK_M_PER_HQ])) # [BLOCK_M]
offs_hq = offs_g + off_hkv * G
off_m = tl.arange(0, BLOCK_M_PER_HQ) # [BLOCK_M_PER_HQ]
offs_m = tl.ravel(tl.broadcast_to(off_m[None, :], [G, BLOCK_M_PER_HQ])) # [BLOCK_M]
offs_d = tl.arange(0, QK_HEAD_DIM)
offs_vd = tl.arange(0, V_HEAD_DIM)
# Get HZ offsets for KV_NUM_BLKS and KV_IDX
stride_block_z, stride_block_h, stride_block_row, stride_block_col = {{stride("KV_NUM_BLKS")}}
sparse_block_hz_offset = sparse_idx_z * stride_block_z + sparse_idx_h * stride_block_h
stride_kv_z, stride_kv_h, stride_kv_row, stride_kv_col = {{stride("KV_IDX")}}
sparse_idx_hz_offset = sparse_idx_z * stride_kv_z + sparse_idx_h * stride_kv_h
# Calculate KV blocks that belong this CTA.
block_n_start = off_t * TILE_KV_MULTIPLE # n_offset inside sparse block
block_n_end = block_n_start + TILE_KV_MULTIPLE # end BLOCK_N
q_range = stride_qg * off_g[:, None, None] + stride_qm * off_m[None, :, None] + stride_qk * offs_d[None, None, :]
if SAFE_M_BOUNDARY:
q = tl.load(Q + q_offset + q_range)
else:
mask = off_m[None, :, None] < Q_LEN
q = tl.load(Q + q_offset + q_range, mask)
q = tl.reshape(q, [BLOCK_M, QK_HEAD_DIM])
# ~~~~~~~~~~~~~~ normal blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Apply both score_mod and mask_mod
# find first kv block we are loading and the number of blocks we are loading
# Offset the kv_indices tensor by the correct batch and head
kv_indices = KV_IDX + sparse_idx_hz_offset
kv_num_blocks = tl.load(KV_NUM_BLKS + sparse_block_hz_offset)
indices_idx = block_n_start // SPARSE_KV_MULTIPLE
off_n_block_in_sparse = block_n_start % SPARSE_KV_MULTIPLE
off_n = tl.load(kv_indices + indices_idx) * SPARSE_KV_BLOCK_SIZE + off_n_block_in_sparse * BLOCK_N
# first kv block we're loading
# last valid block according to sparse mask
block_n_last_valid = tl.minimum(kv_num_blocks * SPARSE_KV_MULTIPLE, tl.maximum(tl.cdiv(KV_LEN, BLOCK_N), 1))
K_block_ptr = tl.make_block_ptr(
base=K + k_offset,
shape=(QK_HEAD_DIM, KV_LEN), # (d, N)
strides=(stride_kk, stride_kn),
offsets=(0, off_n),
block_shape=(QK_HEAD_DIM, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V + v_offset,
shape=(KV_LEN, V_HEAD_DIM),
strides=(stride_vn, stride_vk),
offsets=(off_n, 0),
block_shape=(BLOCK_N, V_HEAD_DIM),
order=(1, 0)
)
offs_n = tl.arange(0, BLOCK_N) + off_n
acc, l_i, m_i = forward_inner(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
# accumulatd values
acc, l_i, m_i,
#offsets
off_z, offs_hq[:, None], offs_m[:, None], offs_n[None, :],
#block sparse data
kv_indices, kv_num_blocks,
block_n_start, block_n_end if block_n_end <= block_n_last_valid else block_n_last_valid,
MATMUL_PRECISION,
IS_FULL_BLOCKS=False,
)
# ~~~~~~~~~~~~~~ "full" blocks ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# We know these blocks are guaranteed to be "full", so we don't need to
# apply mask_mod to them - only score_mod
if HAS_FULL_BLOCKS:
kv_indices = FULL_KV_IDX + sparse_idx_hz_offset
kv_num_blocks = tl.load(FULL_KV_NUM_BLKS + sparse_block_hz_offset)
indices_idx = block_n_start // SPARSE_KV_MULTIPLE
off_n_block_in_sparse = block_n_start % SPARSE_KV_MULTIPLE
off_n = tl.load(kv_indices + indices_idx) * SPARSE_KV_BLOCK_SIZE + off_n_block_in_sparse * BLOCK_N
# last valid block according to sparse mask
block_n_last_valid = tl.minimum(kv_num_blocks * SPARSE_KV_MULTIPLE, tl.maximum(tl.cdiv(KV_LEN, BLOCK_N), 1))
K_block_ptr = tl.make_block_ptr(
base=K + k_offset,
shape=(QK_HEAD_DIM, KV_LEN), # (d, N)
strides=(stride_kk, stride_kn),
offsets=(0, off_n),
block_shape=(QK_HEAD_DIM, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V + v_offset,
shape=(KV_LEN, V_HEAD_DIM),
strides=(stride_vn, stride_vk),
offsets=(off_n, 0),
block_shape=(BLOCK_N, V_HEAD_DIM),
order=(1, 0)
)
offs_n = tl.arange(0, BLOCK_N) + off_n
acc, l_i, m_i = forward_inner(
{{gen_argdefs()}},
q, K_block_ptr, V_block_ptr, Q_LEN, KV_LEN,
# accumulatd values
acc, l_i, m_i,
#offsets
off_z, offs_hq[:, None], offs_m[:, None], offs_n[None, :],
#block sparse data
kv_indices, kv_num_blocks,
block_n_start, block_n_end if block_n_end <= block_n_last_valid else block_n_last_valid,
MATMUL_PRECISION,
IS_FULL_BLOCKS=True,
)
m_offset = off_t * stride_mt + off_z * stride_mz
l_offset = off_t * stride_lt + off_z * stride_lz
M_block_ptr = tl.make_block_ptr(
base=M + m_offset,
shape=(G, Q_LEN), # (G, M)
strides=(stride_mh, stride_mm),
offsets=(off_hkv*G, 0),
block_shape=(G, BLOCK_M_PER_HQ),
order=(1, 0)
)
L_block_ptr = tl.make_block_ptr(
base=L + l_offset,
shape=(G, Q_LEN), # (G, M)
strides=(stride_lh, stride_lm),
offsets=(off_hkv*G, 0),
block_shape=(G, BLOCK_M_PER_HQ),
order=(1, 0)
)
# Store output, logsumexp and rowmax for cross CTA reduction. (all in float32, even when input data are in fp16)
m_i = m_i.reshape(G, BLOCK_M_PER_HQ)
l_i = l_i.reshape(G, BLOCK_M_PER_HQ)
if SAFE_M_BOUNDARY:
tl.store(M_block_ptr, m_i)
tl.store(L_block_ptr, l_i)
else:
tl.store(M_block_ptr, m_i, boundary_check=(1,))
tl.store(L_block_ptr, l_i, boundary_check=(1,))
# -- store output
idx_z = off_z
idx_t = off_t
idx_hq = off_hkv*G + off_g[:, None, None]
idx_m = off_m[None, :, None]
idx_d = offs_vd[None, None, :]
mask = (idx_m < Q_LEN)
acc = acc.reshape(G, BLOCK_M_PER_HQ, V_HEAD_DIM)
{{store_output(("idx_z", "idx_t", "idx_hq", "idx_m", "idx_d"), "acc", "mask")}}
"""
+ compute_forward_inner
+ compute_next_offset_func
+ compute_forward_block_mn,
)
def get_split_k(B: int, H: int, Mk: int, SM: int = 128) -> int:
"""Heuristic for the number of splits from xformer"""
bh = max(B * H, 1) # NOTE: Handle B*h=0 case
split_k = SM // bh # Each SM should at least get one block.
split_k = max(split_k, 1)
return split_k
def _get_decoding_default_config(key) -> Tuple[int, int, int]:
dtype = key.get_dtype()
head_dim = key.get_size()[-1]
sm_version = torch.cuda.get_device_capability()
default_config = (64, 2, 1)
if sm_version >= (9, 0):
if head_dim > 128 and dtype == torch.float32:
return default_config
if torch.version.hip is None:
return (64, 2, 3)
else:
return (64, 2, 1)
return default_config
def create_flex_decoding_kernel(*args, **kwargs):
(
query,
key,
value,
block_mask,
scale,
kernel_options,
score_mod_subgraph,
mask_mod_subgraph,
score_mod_other_buffers,
mask_mod_other_buffers,
) = args
(
_, # q_length
_, # kv_length
kv_num_blocks,
kv_indices,
full_kv_num_blocks, # full_kv_num_blocks,
full_kv_indices, # full_kv_indices,
_, # q_num_blocks
_, # q_indices
_, # full_q_num_blocks,
_, # full_q_indices,
_, # SPARSE_Q_BLOCK_SIZE,
SPARSE_KV_BLOCK_SIZE,
_,
) = block_mask
Bq, Hq, seq_len_q, qk_head_dim = query.get_size()
Bkv, Hkv, seq_len_kv, v_head_dim = value.get_size()
assert V.graph.sizevars.evaluate_expr(
sympy.Eq(Bq, Bkv) | sympy.Eq(Bkv, 1)
), f"Bq and Bkv must broadcastable. Got Bq={Bq} and Bkv={Bkv}"
B = Bq
kernel_options = dict(kernel_options)
# TODO: Fix flex decoding non-divisible case!
if seq_len_q % 128 != 0 or seq_len_kv % 128 != 0:
kernel_options.setdefault("IS_DIVISIBLE", False)
else:
kernel_options.setdefault("IS_DIVISIBLE", True)
# Calculate GQA head sharing
gqa_shared_heads = Hq // Hkv
if not is_power_of_2(gqa_shared_heads):
raise ValueError(
"Number of shared query heads sharing the same KV head must be power of 2. "
)
kernel_options.setdefault("GQA_SHARED_HEADS", gqa_shared_heads)
# Determine if there are "full" blocks where we only need to apply score_mod, and can skip mask_mod
has_full_blocks = full_kv_num_blocks is not None
kernel_options.setdefault("HAS_FULL_BLOCKS", has_full_blocks)
if not has_full_blocks:
# Create a plackeholder full block list in case it is empty
full_kv_num_blocks, full_kv_indices = (
empty(0, device=query.get_device()) for _ in range(2)
)
(
query,
key,
value,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
) = maybe_realize(
[
query,
key,
value,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
]
)
score_mod_other_buffers = maybe_realize(score_mod_other_buffers)
mask_mod_other_buffers = maybe_realize(mask_mod_other_buffers)
choices: List[Any] = []
configs: List[Tuple[int, int, int]] = []
configs.append(_get_decoding_default_config(key))
# Note: max_autotune is not supported yet. Causes error in lowering the dynamic shape in reduction ops.
if config.max_autotune:
configs += [
(64, 2, 2),
(32, 2, 3),
(128, 2, 3),
]
# Use num_stages=1 on ROCm to avoid shmem limitation
if torch.version.hip:
configs = [(c[0], c[1], 1) for c in configs]
# TODO: fix autotuning.
kernel_options.setdefault("SM_SCALE", scale)
kernel_options.setdefault("SPLIT_KV", get_split_k(B, Hkv, seq_len_kv))
MAX_SPLIT_KV = kernel_options["SPLIT_KV"]
# create config dependent intermediate buffers
buf_ACC_shape = [B, MAX_SPLIT_KV, Hq, seq_len_q, v_head_dim]
buf_ML_shape = buf_ACC_shape[:-1]
buf_M = empty_strided(
buf_ML_shape,
None,
dtype=torch.float32, # The rowmax is always stored in fp32 regardless of the input dtype
device=query.get_device(),
)
buf_L = empty_strided(
buf_ML_shape,
None,
dtype=torch.float32, # The intermediate sumexp is always stored in fp32 regardless of the input dtype
device=query.get_device(),
)
layout_acc = FixedLayout(
query.get_device(),
torch.float32,
buf_ACC_shape,
FlexibleLayout.contiguous_strides(buf_ACC_shape),
)
kernel_options.setdefault("QK_HEAD_DIM", qk_head_dim)
kernel_options.setdefault("V_HEAD_DIM", v_head_dim)
kernel_options.setdefault(
"BLOCK_M",
(
# m
# if V.graph.sizevars.evaluate_expr(sympy.Lt(query.get_size()[-2], 0))
# else # Always use a BLOCK_M > 16 before Triton fix https://github.com/triton-lang/triton/pull/4061 is in pin
max(
next_power_of_2(
V.graph.sizevars.size_hint(
seq_len_q, fallback=torch._inductor.config.unbacked_symint_fallback # type: ignore[arg-type]
)
* gqa_shared_heads
),
16,
)
),
)
query = ir.ExternKernel.realize_input(query)
stride_b, stride_hq, stride_seq_len_q, stride_qk_head_dim = query.get_stride()
# Reshape query for GQA: [B, Hq, Mq, D] -> [B, Hkv, G, Mq, D]
gqa_query_shape = (B, Hkv, gqa_shared_heads, seq_len_q, qk_head_dim)
gqa_query_stride = (
stride_b,
stride_hq * gqa_shared_heads,
stride_hq,
stride_seq_len_q,
stride_qk_head_dim,
)
query = lowerings[aten.as_strided](query, gqa_query_shape, gqa_query_stride)
V.graph.sizevars.guard_leq(
seq_len_q * gqa_shared_heads, sympy.Integer(kernel_options["BLOCK_M"])
)
kernel_options.setdefault(
"SAFE_M_BOUNDARY",
((seq_len_q * gqa_shared_heads) % kernel_options["BLOCK_M"]) == 0,
)
# TODO: This feels sketchy
kernel_options.setdefault("SAFE_N_BOUNDARY", True)
# Mark SPARSE_KV_BLOCK_SIZE as static shapes and add guards.
SPARSE_KV_BLOCK_SIZE = V.graph.sizevars.evaluate_static_shape(SPARSE_KV_BLOCK_SIZE)
original_kernel_options = kernel_options.copy()
# Note, we don't need to pass in the captured buffers explicitly
# because they're implicitly added by the score_mod function
# We do need to explicitly pass it in for autotuning though.
for BLOCK_N, num_warps, num_stages in configs:
if SPARSE_KV_BLOCK_SIZE % BLOCK_N != 0:
continue
cur_kernel_options = original_kernel_options.copy()
# Performance tuning
cur_kernel_options.setdefault("BLOCK_N", BLOCK_N)
cur_kernel_options.setdefault("SPARSE_KV_BLOCK_SIZE", SPARSE_KV_BLOCK_SIZE)
# Work around https://github.com/pytorch/pytorch/issues/129625
if num_stages == 2:
continue
flex_decoding_template.maybe_append_choice(
choices=choices,
input_nodes=[
query,
key,
value,
buf_M,
buf_L,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
],
layout=layout_acc,
subgraphs=[
score_mod_subgraph,
mask_mod_subgraph,
],
mutated_inputs=[buf_M, buf_L],
num_stages=num_stages,
num_warps=num_warps,
call_sizes=query.get_size(),
**cur_kernel_options,
)
inputs_for_flex_decoding = (
[
query,
key,
value,
buf_M,
buf_L,
kv_num_blocks,
kv_indices,
full_kv_num_blocks,
full_kv_indices,
]
+ list(score_mod_other_buffers)
+ list(mask_mod_other_buffers)
)
input_gen_fns = {
5: create_num_blocks_fake_generator(kv_indices),
6: create_indices_fake,
7: create_num_blocks_fake_generator(full_kv_indices),
8: create_indices_fake,
}
buf_ACC = autotune_select_algorithm(
"flex_decoding",
choices,
inputs_for_flex_decoding,
layout_acc,
input_gen_fns=input_gen_fns,
)
# Reduction
g_M = lowerings[aten.max](buf_M, dim=1, keepdim=True)[0]
# See [Note] Handle fully masked out rows:
# g_M Is the global max among split kv blocks.
masked_rows = lowerings[aten.eq](g_M, -float("inf"))
adj_M = lowerings[aten.sub](buf_M, g_M)
adj_M = lowerings[aten.where](masked_rows, 0, adj_M)
alpha = lowerings[aten.exp2](adj_M)
buf_L = lowerings[aten.mul](buf_L, alpha)
g_L = lowerings[aten.sum](buf_L, axis=1)
masked_rows_squeezed = lowerings[aten.squeeze](masked_rows, dim=1)
g_L = lowerings[aten.where](masked_rows_squeezed, 1.0, g_L)
logsumexp = lowerings[aten.log2](g_L)
logsumexp = lowerings[aten.add](logsumexp, lowerings[aten.squeeze](g_M, dim=1))
alpha_unseq = lowerings[aten.unsqueeze](alpha, 4)
buf_ACC = lowerings[aten.mul](buf_ACC, alpha_unseq)
output = lowerings[aten.sum](buf_ACC, axis=1)
L_unseq = lowerings[aten.unsqueeze](g_L, 3)
output = lowerings[aten.div](output, L_unseq)
output = lowerings[prims.convert_element_type](output, query.get_dtype())
return (
output,
logsumexp,
)
|