File: loop_body.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (669 lines) | stat: -rw-r--r-- 23,968 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
# mypy: allow-untyped-defs
from __future__ import annotations

import collections
import functools
import itertools
import re
from enum import auto, Enum
from typing import (
    Any,
    Callable,
    Dict,
    List,
    NamedTuple,
    Optional,
    Sequence,
    Tuple,
    TypeVar,
)

import sympy

import torch.fx
from torch._dynamo.utils import identity
from torch.fx.proxy import Scope, TracerBase
from torch.utils._sympy.symbol import SymT

from . import config, dependencies
from .codegen.common import index_prevent_reordering
from .utils import cache_on_self, sympy_index_symbol_with_prefix, sympy_subs
from .virtualized import ops, V


T = TypeVar("T")


class InterpreterShim(torch.fx.Interpreter):
    @staticmethod
    @functools.lru_cache(None)
    def _dummy_gm():
        return torch.fx.symbolic_trace(identity)

    def __init__(self, graph, submodules):
        # call super() with a placeholder to avoid constructing a
        # GraphModule which is very expensive (it does codegen).
        super().__init__(self._dummy_gm(), garbage_collect_values=False)
        self.module = self  # type: ignore[assignment]
        self.graph = graph
        self.submodules = submodules
        self.extra_traceback = False
        self.fetch_attr = submodules.__getitem__  # type: ignore[method-assign]
        self.current_node = None

    def run_node(self, n: torch.fx.Node) -> Any:
        self.current_node = n
        return super().run_node(n)

    def run(self, *args, **kwargs):
        with V.set_interpreter_handler(self):
            return super().run(*args, **kwargs)


# We don't need the nn.Module and constant handling in Tracer
class LightTracer(TracerBase):
    def __init__(self):
        super().__init__()
        self.graph = torch.fx.Graph(tracer_cls=self.__class__)  # type: ignore[arg-type]
        self.scope = Scope("", None)
        self.module_stack = {}  # type: ignore[assignment]
        self.node_name_to_scope = {}


class MemoryEntry(NamedTuple):
    index_name: str  # LoopBody.indexing_exprs[index_name]
    buffer_name: Optional[str]
    mode: Optional[str]  # V.ops.store(..., mode=mode)


class MemoryUsageType(Enum):
    # These are 1:1 with the opcode generating the usage
    LOAD = auto()
    LOAD_SEED = auto()
    STORE = auto()
    STORE_REDUCTION = auto()
    INDEX_EXPR = auto()
    CHECK_BOUNDS = auto()
    BUCKETIZE = auto()


class LoopBody:
    """
    Captures the body of a Loops subclass into an FX graph.  Persists any
    indexing simplifications and makes it easier to analyze loop bodies.
    """

    indexing_exprs: Dict[str, sympy.Expr]
    indexing_exprs_name: Dict[sympy.Expr, str]
    submodules: Dict[str, Any]
    subblocks: Dict[str, LoopBodyBlock]
    indirect_vars: List[sympy.Symbol]
    indirect_var_ranges: Dict[sympy.Symbol, sympy.Expr]
    root_block: LoopBodyBlock
    memory_usage: Dict[MemoryUsageType, List[MemoryEntry]]
    op_counts: collections.Counter[str]

    def __init__(self, fn, args, var_ranges, iter_vars, reduce_vars):
        super().__init__()

        _flat_sizes = tuple(var_ranges.values())
        self.sizes = (
            _flat_sizes[: len(iter_vars)],
            _flat_sizes[len(iter_vars) :],
        )

        self.iter_vars = iter_vars
        self.reduce_vars = reduce_vars
        self.var_ranges = var_ranges

        if isinstance(fn, LoopBody):
            self._init_with_copy(fn, args)
        else:
            self._init_with_tracing(fn, args)

        self.indexing = None

    def _init_with_tracing(self, fn, args):
        """Do an FX trace of an arbitrary callable to construct self"""
        self.indexing_exprs = {}
        self.indexing_exprs_name = {}
        self.submodules = {"get_index": self.get_index}
        self.subblocks = {}
        self.indirect_vars = []
        self.indirect_var_ranges: Dict[sympy.Symbol, sympy.Expr] = {}
        self.memory_usage = {t: [] for t in MemoryUsageType}
        self.op_counts = collections.Counter()
        self.root_block = LoopBodyBlock(self, fn, args)  # traces
        del self.indexing_exprs_name  # not used after _init_with_tracing

    def _init_with_copy(self, other: LoopBody, args):
        """
        _init_with_tracing() is slow, so this is a fast path in the case
        where we are just reordering/merging/splitting the args of an
        existing LoopBody.
        """
        indexing_exprs = other.indexing_from_args(args)
        self.indexing_exprs = {
            name: V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges)
            for name, expr in indexing_exprs.items()
        }
        self.subblocks = {k: v.clone(self) for k, v in other.subblocks.items()}
        self.indirect_vars = other.indirect_vars
        self.indirect_var_ranges = other.indirect_var_ranges
        self.memory_usage = other.memory_usage
        self.op_counts = other.op_counts
        self.root_block = other.root_block.clone(self)

        submodules = {**other.submodules}
        submodules.pop("get_index")
        self.submodules = {
            "get_index": self.get_index,
            **{k: v.clone(self) for k, v in submodules.items()},  # type: ignore[attr-defined]
        }

    def has_op(self, name: str):
        return self.op_counts.get(name, 0) > 0

    def merge_loops(self) -> LoopBody:
        """
        Merge both iteration and reduction loops and return a new LoopBody.
        """
        old_body = self
        old_sizes = self.sizes
        old_iter_vars, old_reduce_vars = old_body.vars
        old_iter_sizes, old_reduce_sizes = old_sizes

        index_exprs = [*old_body.indexing_exprs.values()]

        iter_sizes, iter_reindex, _ = V.graph.sizevars._simplify_loops(
            old_iter_vars,
            old_iter_sizes,
            index_prevent_reordering(index_exprs, old_iter_vars, old_iter_sizes),
        )

        reduce_sizes, reduce_reindex, _ = V.graph.sizevars._simplify_loops(
            old_reduce_vars,
            old_reduce_sizes,
            index_prevent_reordering(index_exprs, old_reduce_vars, old_reduce_sizes),
        )

        # if iter_sizes == old_iter_sizes:
        #     # no dimensions get merged.
        #     return old_sizes, old_body

        # Note: if no dimension get merges, the symbol prefix will
        # remain 'y'. But if we merge dimensions, we change prefix to
        # 'z'. If this is an issue, we can always retrace the LoopBody
        # to change symbol prefix to 'z'.
        #
        # There is indeed an issue due to symbol name conflicting.
        # y0 maybe reused for the y dimension later.
        (
            iter_vars,
            reduce_vars,
        ), var_ranges = dependencies.index_vars_no_squeeze(
            iter_sizes, reduce_sizes, prefix="t"
        )
        new_body = LoopBody(
            old_body,
            [iter_reindex(iter_vars), reduce_reindex(reduce_vars)],
            var_ranges,
            iter_vars,
            reduce_vars,
        )

        # use the original symbol prefix
        # Can try to optimize if this is a bottleneck for compilation time
        (iter_vars2, reduce_vars2), var_ranges2 = dependencies.index_vars_no_squeeze(
            iter_sizes, reduce_sizes, prefix="p"
        )
        new_body2 = LoopBody(
            new_body, (iter_vars2, reduce_vars2), var_ranges2, iter_vars2, reduce_vars2
        )
        return new_body2

    def reorder_iter_loops(self, new_order) -> LoopBody:
        """
        Reorder iteration loops and return a new LoopBody.
        """
        from .ir import same_reorder

        old_body = self
        old_sizes = self.sizes
        assert len(old_sizes[0]) == len(new_order)
        reorder_fn = same_reorder(new_order)

        iter_size, reduce_size = old_sizes
        new_iter_size = reorder_fn(iter_size)

        new_sizes = (new_iter_size, reduce_size)

        (iter_vars, reduce_vars), var_ranges = dependencies.index_vars_no_squeeze(
            *new_sizes, prefix="t"  # type: ignore[arg-type]
        )

        inverse_order = {b: a for a, b in enumerate(new_order)}
        inverse_order = [inverse_order[i] for i in range(len(new_order))]

        def new_body(*indices: Sequence[sympy.Expr]) -> Any:
            index = list(itertools.chain(*indices))
            assert len(index) == len(iter_size) + len(reduce_size)
            iter_idx = index[: len(iter_size)]
            reduce_idx = index[len(iter_size) :]
            iter_idx = [iter_idx[i] for i in inverse_order]
            return old_body(iter_idx, reduce_idx)

        loop_body = LoopBody(
            new_body, (iter_vars, reduce_vars), var_ranges, iter_vars, reduce_vars
        )

        # use the original symbol prefix so we can do multiple round of reordering
        (iter_vars2, reduce_vars2), var_ranges2 = dependencies.index_vars_no_squeeze(
            *new_sizes, prefix="p"  # type: ignore[arg-type]
        )
        new_body = LoopBody(
            loop_body, (iter_vars2, reduce_vars2), var_ranges2, iter_vars2, reduce_vars2
        )
        return new_body

    @property
    def vars(self):
        assert self.iter_vars is not None
        assert self.reduce_vars is not None
        return self.iter_vars, self.reduce_vars

    @cache_on_self
    def get_nodes(self):
        all_graphs = itertools.chain(
            (self.root_block.graph,),
            (block.graph for block in self.subblocks.values()),
        )
        return [node for graph in all_graphs for node in graph.nodes]

    @cache_on_self
    def bounds(self):
        # Doing a local import to avoid dumping all the code here
        from .bounds import BoundVars

        return BoundVars(self)

    def get_read_expr(self, buffer_name):
        # reversed to match old behavior
        for entry in reversed(self.memory_usage[MemoryUsageType.LOAD]):
            if entry.buffer_name == buffer_name:
                return self.indexing_exprs[entry.index_name]
        raise KeyError(buffer_name)

    def get_write_expr(self, buffer_name):
        for entry in itertools.chain(
            self.memory_usage[MemoryUsageType.STORE],
            self.memory_usage[MemoryUsageType.STORE_REDUCTION],
        ):
            if entry.buffer_name == buffer_name:
                return self.indexing_exprs[entry.index_name]
        raise KeyError(buffer_name)

    def get_read_exprs(self):
        return [
            self.indexing_exprs[entry.index_name]
            for entry in self.memory_usage[MemoryUsageType.LOAD]
        ]

    def get_write_exprs(self):
        return [
            self.indexing_exprs[entry.index_name]
            for entry in itertools.chain(
                self.memory_usage[MemoryUsageType.STORE],
                self.memory_usage[MemoryUsageType.STORE_REDUCTION],
            )
        ]

    def debug_str(self):
        lines = [f"var_ranges = {dict(self.var_ranges)}"]
        lines.extend([f"{name} = {val}" for name, val in self.indexing_exprs.items()])
        lines.extend(
            [
                block.debug_str(name)
                for name, block in itertools.chain(
                    [("body", self.root_block)], self.subblocks.items()
                )
            ]
        )
        return "\n".join(lines)

    def is_memory_copy(self) -> bool:
        """
        True of this contains only a single loads and store.
        Note, this could involve a layout change.
        """
        return (
            len(self.memory_usage[MemoryUsageType.LOAD]) == 1
            and len(self.memory_usage[MemoryUsageType.STORE]) == 1
            and len(self.submodules) == 1  # get_index
            and self.root_block.contains_only_ops(("load", "store"))
        )

    __repr__ = debug_str

    def add_index_expr(
        self,
        expr: sympy.Expr,
        mtype: MemoryUsageType,
        buffer_name: Optional[str] = None,
        mode: Optional[str] = None,
    ):
        name = self.indexing_exprs_name.get(expr)
        if not name:
            name = f"index{len(self.indexing_exprs)}"
            self.indexing_exprs_name[expr] = name
            self.indexing_exprs[name] = expr
        self.memory_usage[mtype].append(MemoryEntry(name, buffer_name, mode))
        return name

    def add_submodule(self, block, prefix):
        """Not actually for nn.Modules, but subblocks in generated code are mapped to FX call_module opcodes"""
        if prefix[-1].isnumeric() and prefix not in self.submodules:
            name = prefix
        else:
            name = f"{prefix}{len(self.submodules)}"
        self.submodules[name] = block
        return name

    def add_indirect(self, size):
        var = sympy_index_symbol_with_prefix(SymT.INDIRECT, len(self.indirect_vars))
        assert var not in self.indirect_var_ranges
        self.indirect_vars.append(var)
        self.indirect_var_ranges[var] = size
        return var

    def replace_indirect(self, old, new):
        """Swap in a variable used in indirect indexing"""
        if str(old) == str(new):
            return
        assert self.indexing is not None
        self.indexing = {k: sympy_subs(v, {old: new}) for k, v in self.indexing.items()}

    def get_index(self, name):
        assert self.indexing is not None
        return self.indexing[name]

    def indexing_from_args(self, indices):
        index = [*itertools.chain.from_iterable(indices)]
        assert len(index) == len(self.var_ranges), (index, self.var_ranges)
        assert all(
            v not in self.var_ranges for v in index
        ), f"{self.var_ranges=}, {indices=}"
        replacements = dict(zip(self.var_ranges.keys(), index))
        return {
            name: sympy_subs(expr, replacements)
            for name, expr in self.indexing_exprs.items()
        }

    def __call__(self, *indices):
        self.indexing = self.indexing_from_args(indices)
        result = self.root_block()
        self.indexing = None
        return result

    def bind_set_indirect_shim(self, var, size, check, wrap_neg):
        def set_indirect(new_var):
            self.replace_indirect(
                var, V.ops.indirect_indexing(new_var, size, check, wrap_neg)
            )

        set_indirect.clone = functools.partial(  # type: ignore[attr-defined]
            LoopBody.bind_set_indirect_shim,
            var=var,
            size=size,
            check=check,
            wrap_neg=wrap_neg,
        )
        return set_indirect

    def bind_scan_shim(self, combine_fn):
        def shim(dtypes, values):
            return V.ops.scan(dtypes, combine_fn, values)

        shim.clone = functools.partial(LoopBody.bind_scan_shim, combine_fn=combine_fn)  # type: ignore[attr-defined]
        return shim

    def bind_masked_shim(self, name):
        def shim(mask, other):
            return V.ops.masked(mask, self.subblocks[name], other)

        shim.clone = functools.partial(LoopBody.bind_masked_shim, name=name)  # type: ignore[attr-defined]
        return shim


class LoopBodyBlock:
    """
    Captures the body of a Loops subclass into an FX graph.
    In normal cases there will be a 1:1 mapping between LoopBody and
    LoopBodyBlock, hower in the case of ops.masked() the masked out
    operations will manifest as an extra LoopBodyBlock.
    """

    def __init__(self, body: LoopBody, fn: Callable[..., Any], args: List[Any]):
        self.body = body

        def add_index(expr: sympy.Expr, mtype: MemoryUsageType, **kwargs):
            return tracer.create_proxy(
                "call_module",
                "get_index",
                (body.add_index_expr(expr, mtype, **kwargs),),
                {},
            )

        class CaptureIndexing(V.WrapperHandler):  # type: ignore[name-defined]
            self.name = "CaptureIndexing"

            def load(self, name: str, index: sympy.Expr):
                index = add_index(index, MemoryUsageType.LOAD, buffer_name=name)
                return self._inner.load(name, index)

            def load_seed(self, name: str, index: int):
                assert isinstance(index, int)
                body.add_index_expr(
                    sympy.Integer(index), MemoryUsageType.LOAD_SEED, buffer_name=name
                )
                return self._inner.load_seed(name, index)

            def store(self, name, index, value, mode=None):
                index = add_index(
                    index, MemoryUsageType.STORE, buffer_name=name, mode=mode
                )
                return self._inner.store(name, index, value, mode)

            def store_reduction(self, name, index, value):
                index = add_index(
                    index, MemoryUsageType.STORE_REDUCTION, buffer_name=name
                )
                return self._inner.store_reduction(name, index, value)

            def reduction(self, dtype, src_dtype, reduction_type, value):
                result = self._inner.reduction(dtype, src_dtype, reduction_type, value)
                if "welford" in reduction_type:
                    return tuple(result[i] for i in range(3))
                return result

            def index_expr(self, index, dtype):
                if isinstance(index, (int, sympy.Integer)):
                    return self._inner.constant(int(index), dtype)
                index = add_index(index, MemoryUsageType.INDEX_EXPR)
                return self._inner.index_expr(index, dtype)

            def check_bounds(self, index, size, lower, upper):
                index = add_index(index, MemoryUsageType.CHECK_BOUNDS)
                size = add_index(size, MemoryUsageType.CHECK_BOUNDS)
                return self._inner.check_bounds(index, size, lower, upper)

            def bucketize(
                self,
                values: T,
                boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
                boundary_indices: T,
                indexing_dtype: torch.dtype,
                right: bool,
                sorter: Optional[Tuple[str, sympy.Expr]] = None,
                sorter_indices: Optional[T] = None,
            ) -> T:
                """
                See [Note: Inductor bucketize op]
                """
                boundaries = (
                    boundaries[0],
                    add_index(
                        boundaries[1],
                        MemoryUsageType.BUCKETIZE,
                        buffer_name=boundaries[0],
                    ),
                    add_index(
                        boundaries[2],
                        MemoryUsageType.BUCKETIZE,
                        buffer_name=boundaries[0],
                    ),
                    add_index(
                        boundaries[3],
                        MemoryUsageType.BUCKETIZE,
                        buffer_name=boundaries[0],
                    ),
                )
                if sorter is not None:
                    sorter = (
                        sorter[0],
                        add_index(
                            sorter[1], MemoryUsageType.BUCKETIZE, buffer_name=sorter[0]
                        ),
                    )

                return self._inner.bucketize(
                    values,
                    boundaries,
                    boundary_indices,
                    indexing_dtype,
                    right,
                    sorter,
                    sorter_indices,
                )

            @staticmethod
            def masked(mask_proxy, masked_body: Callable[..., Any], other_proxy):
                """
                Recursively capture the masked out body in another LoopBodyBlock
                """
                name = self.body.add_submodule(None, "masked_subblock")
                self.body.submodules[name] = self.body.bind_masked_shim(name)
                self.body.subblocks[name] = LoopBodyBlock(self.body, masked_body, [])
                return tracer.create_proxy(
                    "call_module", name, (mask_proxy, other_proxy), {}
                )

            @staticmethod
            def scan(
                dtype_proxy,
                combine_fn: Callable[
                    [Tuple[Any, ...], Tuple[Any, ...]], Tuple[Any, ...]
                ],
                value_proxy,
            ):
                shim = self.body.bind_scan_shim(combine_fn)
                name = self.body.add_submodule(shim, "scan")
                result = tracer.create_proxy(
                    "call_module",
                    name,
                    (dtype_proxy, value_proxy),
                    {},
                )
                # Proxies are iterable, but some methods expect tuples/lists
                return tuple(result[i] for i in range(len(value_proxy)))

            def sort(self, dtypes, values, stable, descending):
                result = self._inner.sort(dtypes, values, stable, descending)
                # Proxies are iterable, but some methods expect tuples/lists
                return tuple(result[i] for i in range(len(values)))

            def frexp(self, value_proxy):
                result = self._inner.frexp(value_proxy)
                # Proxies are iterable, but some methods expect tuples/lists
                return (result[0], result[1])

            @staticmethod
            def indirect_indexing(index_proxy, size, check=True, wrap_neg=True):
                """
                Flow data from tensors into indexing formulas.
                Introduce a call_module to update the indexing.
                """

                var = self.body.add_indirect(size)
                set_indirect = self.body.bind_set_indirect_shim(
                    var, size, check, wrap_neg
                )
                tracer.create_proxy(
                    "call_module",
                    self.body.add_submodule(set_indirect, f"set_{var}"),
                    (index_proxy,),
                    {},
                )
                return var

            @staticmethod
            def output(result):
                tracer.create_proxy("output", "output", (result,), {})

        tracer = LightTracer()
        proxy_ops = tracer.create_proxy("placeholder", "ops", (), {})

        from .index_propagation import IndexPropagation
        from .sizevars import SimplifyIndexing

        handler: Any = CountOps(
            SimplifyIndexing(CaptureIndexing(proxy_ops), self.body.var_ranges),
            body.op_counts,
        )
        if config.constant_and_index_propagation:
            handler = IndexPropagation(
                handler, self.body.var_ranges, self.body.indirect_var_ranges
            )

        with V.set_ops_handler(handler):
            # This indirection is just a cute way to get IndexPropagation to
            # unwrap the return value.
            ops.output(fn(*args))
        self.graph = tracer.graph

    def __call__(self):
        graph = self.graph
        submodules = self.body.submodules

        return InterpreterShim(graph, submodules).run(V.get_ops_handler())

    def debug_str(self, name="block"):
        code = torch.fx.GraphModule(self.body.submodules, self.graph).code
        return re.sub(
            # strip `; del var0` suffixes to make output prettier
            r";[^\n]*",
            "",
            code.strip().replace("def forward(", f"def {name}("),
        )

    def contains_only_ops(self, allowed_ops) -> bool:
        return all(
            node.target in allowed_ops
            for node in self.graph.find_nodes(op="call_method")
        )

    def clone(self, body: LoopBody):
        """Shallow copy with a new parent LoopBody"""
        copy = LoopBodyBlock.__new__(LoopBodyBlock)
        copy.__dict__.update({**self.__dict__, "body": body})
        return copy


class CountOps:
    def __init__(self, inner: Any, counts: collections.Counter[str]):
        self._inner = inner
        self._counts = counts

    def __getattr__(self, name):
        self._counts[name] += 1
        return getattr(self._inner, name)