1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
|
# mypy: allow-untyped-defs
import itertools
from typing import (
Any,
Callable,
Dict,
Generic,
List,
Literal,
NamedTuple,
Optional,
Tuple,
TypeVar,
Union,
)
from typing_extensions import Protocol
from unittest.mock import patch
import sympy
import torch
import torch.utils._pytree as pytree
from ..utils._ordered_set import OrderedSet
from .utils import IndentedBuffer, reduction_num_outputs, sympy_index_symbol, sympy_str
T = TypeVar("T")
StoreMode = Optional[Literal["atomic_add"]]
ReductionType = Literal[
"argmax",
"argmin",
"welford_reduce",
"welford_combine",
"any",
"max",
"min",
"prod",
"sum",
"xor_sum",
]
def _arg_str(a) -> str:
if isinstance(a, sympy.Expr):
return sympy_str(a)
return str(a)
# NB: This is not done as a parent class, because our ops handlers
# implementations make heavy use of __getattr__ magic, and pre-existing
# stubs for methods would interfere with this mechanism.
#
# TODO: A superclass that does desugaring for operations like
# reciprocal/square might be useful.
class OpsHandler(Protocol[T]):
"""
Protocol describing the set of valid operations on ``torch._inductor.virtualized.ops``,
as well as the contract for op handlers. The type T signifies the domain
of the abstract analysis AKA what all of the functions return / take as arguments
anywhere compute occurs.
While these operators are typically dtype polymorphic (e.g., you can use mul
on both integers and floats), they do NOT do promotion and usually return the
same dtype as the input. You are expected to have handled type promotion
during ATen decompositions. Most operators correspond exactly to pointwise
operations as defined by torch, so when in doubt about semantics, check the
corresponding torch documentation. These are all scalar operations (so they
are defined to operate on a single element at a time.)
For convenience, many operators take a src_dtype which indicates what the dtype
of the input argument is. Although in principle this can be derived by an
analysis, providing this for ops where it is useful helps avoid having to repeatedly
recompute dtype in code generation.
Note that this often describes a class of static methods, for stateless
ops handlers.
Handlers are often defined using ``__getattr__`` metaprogramming, which means
that you cannot declare that a type implements a protocol by inheriting from
it (as the type stubs count as attribute declarations and impede the getattr
magic method from being called). Instead, define a function that casts an
argument of your type to the protocol, which is sufficient to induce mypy to
test that the protocol is implemented correctly. Search for ``_typecheck_``
in this file to see some examples. If you see an obscure error where a
class doesn't implement a Protocol, but mypy doesn't say why, check to see
that ``__getattr__`` is typed correctly (typically, it is not possible to
type ``__getattr__`` without typing it as ``Callable[..., Any]``)
"""
def constant(self, value: Union[bool, float, int], dtype: torch.dtype) -> T:
"""Produces a scalar constant of type dtype."""
...
def load_seed(self, name: str, offset: T):
"""Computes inductor_prims.lookup_seed."""
...
def rand(self, seed: T, offset: T) -> T:
"""Computes inductor_prims.random with mode="rand". offset has dtype int32."""
...
def randn(self, seed: T, offset: T) -> T:
"""Computes inductor_prims.random with mode="randn". offset has dtype int32."""
...
def randint64(self, seed: T, offset: T, low: T, high: T) -> T:
"""Computes inductor_prims.randint. offset has dtype int32."""
...
def masked(self, mask: T, body: Callable[[], T], other: T) -> T:
"""
Computes body, but only perform loads/stores if the boolean mask
evaluates to true. For example, you would use this if you needed to
perform an indirect load that may not be valid on some elements;
without masking, invalid accesses can cause IMAs. When mask is true,
the result is the result of body; otherwise it is other. Here, `other`
needs to be a constant.
Contrast this with ops.where, which can multiplex between two values
that have been unconditionally computed.
"""
...
def where(self, condition: T, input: T, other: T) -> T:
"""
Computes torch.where: when condition is true, return input; otherwise return other.
"""
...
def index_expr(self, expr: sympy.Expr, dtype: torch.dtype) -> T:
"""
Converts a sympy expression into a scalar of type dtype. expr is typically
an indexing expression, thus the name; however, it can also be used in
non-indexing situations.
"""
...
def to_dtype(
self,
x: T,
dtype: torch.dtype,
src_dtype: Optional[torch.dtype] = None,
use_compute_types=True,
) -> T:
"""
Convert x to dtype. src_dtype can be optionally set to specify what the original
dtype of x was, which can improve code generation (used by torch to(dtype=dtype)).
"""
...
def trunc_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with truncation semantics (similar to how the int
constructor works in Python). In Inductor codegen, this just decays
to trunc and then to_dtype, but this composite operation helps
roundtrips for Sympy evaluation.
dtype is taken as an explicit parameter because the desired output
dtype is typically the index dtype, which may vary between int32 and
int64 depending on if we've shown that all the indexing operations can
be done in int32.
"""
...
def ceil_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with ceiling semantics. See also trunc_to_int.
"""
...
def floor_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with ceiling semantics. See also trunc_to_int.
"""
...
def round_to_int(self, x: T, dtype: torch.dtype) -> T:
"""
Convert x to dtype with round-to-even semantics. See also trunc_to_int.
"""
...
def to_dtype_bitcast(self, x: T, dtype: torch.dtype, src_dtype: torch.dtype) -> T:
"""
Reinterpret cast x to dtype (reinterpreting the bits in memory as another dtype.)
src_dtype must be the original type of x.
"""
...
def identity(self, x: T) -> T:
"""
Returns x as is. This is used to trigger CSE.
"""
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These operations are only available in a "kernel" context. Check
# torch._inductor.codegen.common.CSEProxy for their typical implementation
# in op handler (routing to their respective implementations in the kernel
# handler)
#
# Importantly, inside a kernel, indexing and mask variables are available
# in scope, which are typically used by sympy.Expr indexing.
def indirect_indexing(
self, x: T, size: sympy.Expr, check: bool = True, wrap_neg=True
) -> sympy.Expr:
"""
Convert an integral x into a sympy.Expr that can be subsequently used in
indexing computation. 'size' represents an upper bound on the what valid
indexes can be; when 'check' is True, we check that the x is in bounds.
NB: This is typically mandatory to implement for any analysis, because you
MUST return a valid sympy.Expr of some sort (even if it's a meaningless symbol).
"""
...
def load(self, name: str, index: sympy.Expr) -> T:
"""
Load from the memory location 'name', offset by some indexing expression 'index'.
"""
...
def store(
self,
name: str,
index: sympy.Expr,
value: T,
mode: StoreMode = None,
) -> None:
"""
Store 'value' to the memory location 'name' offset by 'expr'. If
specified, 'mode' can require the store to be an atomic addition.
"""
...
# TODO: Better explain how the "collective" semantics of these ops;
# remember that the input value is a scalar, you can't reduce on it in the
# traditional sense!
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: T,
) -> Union[T, Tuple[T, ...]]:
"""
Perform a 'reduction_type' reduction on 'value' of dtype 'src_dtype',
using 'dtype' as the accumulation dtype for the reduction. The result
is an intermediate computation which should be stored to the final
location using 'ops.store_reduction'.
Valid reduction types are . For Welford reduction types, this
function returns multiple outputs; consult reduction_num_outputs to
determine the amount in metaprogramming applications.
"""
...
# TODO: in practice, this seems to actually return None, but not returning
# a T makes common __getattr__ idioms not type correctly. Figure out if
# this should be returning something.
def store_reduction(self, name: str, index: sympy.Expr, value: T) -> T:
"""
Store the fully accumulated result of 'reduction' to the memory
location 'name' offset by 'expr'.
"""
...
def scan(
self,
dtypes: Tuple[torch.dtype, ...],
combine_fn: Callable[[Tuple[T, ...], Tuple[T, ...]], Tuple[T, ...]],
values: Tuple[T, ...],
) -> Tuple[T, ...]:
"""
Perform an associative scan on 'value'.
"""
# TODO: Improve the description with some pseudocode
...
def sort(
self,
dtypes: Tuple[torch.dtype, ...],
values: Tuple[T, ...],
stable: bool,
descending: bool,
) -> Tuple[T, ...]:
"""
Sort values along the reduction dimension.
"""
...
def bucketize(
self,
values: T,
boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[Tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
# See [Note: Inductor bucketize op]
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# The following ops have semantics that correspond exactly to the torch
# operation with the same corresponding name.
def abs(self, x0: T) -> T:
...
def exp(self, x0: T) -> T:
...
def exp2(self, x0: T) -> T:
...
def expm1(self, x0: T) -> T:
...
def sqrt(self, x0: T) -> T:
...
def relu(self, x0: T) -> T:
...
def minimum(self, x0: T, x1: T) -> T:
...
def maximum(self, x0: T, x1: T) -> T:
...
def cos(self, x0: T) -> T:
...
def sin(self, x0: T) -> T:
...
def lgamma(self, x0: T) -> T:
...
def erf(self, x0: T) -> T:
...
def cosh(self, x0: T) -> T:
...
def sinh(self, x0: T) -> T:
...
def acos(self, x0: T) -> T:
...
def acosh(self, x0: T) -> T:
...
def asin(self, x0: T) -> T:
...
def asinh(self, x0: T) -> T:
...
def atan2(self, x0: T, x1: T) -> T:
...
def atan(self, x0: T) -> T:
...
def atanh(self, x0: T) -> T:
...
def copysign(self, x0: T, x1: T) -> T:
...
def erfc(self, x0: T) -> T:
...
def erfinv(self, x0: T) -> T:
...
def frexp(self, x0: T):
...
def hypot(self, x0: T, x1: T) -> T:
...
def log10(self, x0: T) -> T:
...
def log2(self, x0: T) -> T:
...
def nextafter(self, x0: T, x1: T) -> T:
...
def logical_and(self, x0: T, x1: T) -> T:
...
def logical_not(self, x0: T) -> T:
...
def logical_or(self, x0: T, x1: T) -> T:
...
def logical_xor(self, x0: T, x1: T) -> T:
...
def bitwise_and(self, x0: T, x1: T) -> T:
...
def bitwise_not(self, x0: T) -> T:
...
def bitwise_or(self, x0: T, x1: T) -> T:
...
def bitwise_xor(self, x0: T, x1: T) -> T:
...
def bitwise_left_shift(self, x0: T, x1: T) -> T:
...
def bitwise_right_shift(self, x0: T, x1: T) -> T:
...
def rsqrt(self, x0: T) -> T:
...
def log1p(self, x0: T) -> T:
...
def tan(self, x0: T) -> T:
...
def tanh(self, x0: T) -> T:
...
def sigmoid(self, x0: T) -> T:
...
def signbit(self, x0: T) -> T:
...
def fmod(self, x0: T, x1: T) -> T:
...
def log(self, x0: T) -> T:
...
def isinf(self, x0: T) -> T:
...
def isnan(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
# This rounds half to even to break ties
def round(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
def floor(self, x0: T) -> T:
...
def sign(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
def trunc(self, x0: T) -> T:
...
# NB: this returns a float, like the torch operation
def ceil(self, x0: T) -> T:
...
def neg(self, x0: T) -> T:
...
def reciprocal(self, x0: T) -> T:
...
def eq(self, x0: T, x1: T) -> T:
...
def ne(self, x0: T, x1: T) -> T:
...
def lt(self, x0: T, x1: T) -> T:
...
def gt(self, x0: T, x1: T) -> T:
...
def le(self, x0: T, x1: T) -> T:
...
def ge(self, x0: T, x1: T) -> T:
...
def add(self, x0: T, x1: T) -> T:
...
def sub(self, x0: T, x1: T) -> T:
...
def mul(self, x0: T, x1: T) -> T:
...
# NB: this returns a float, like the torch operation
def pow(self, x0: T, x1: T) -> T:
...
def and_(self, x0: T, x1: T) -> T:
...
def or_(self, x0: T, x1: T) -> T:
...
def xor(self, x0: T, x1: T) -> T:
...
# These are metaprogrammed by MockHandler._init_cls
def lshift(self, x0: T, x1: T) -> T:
...
def rshift(self, x0: T, x1: T) -> T:
...
def getitem(self, x0: T, x1: T) -> T:
# TODO: this is probably just illegal lol
...
def matmul(self, x0: T, x1: T) -> T:
# TODO: this is probably just illegal lol
...
def invert(self, x0: T) -> T:
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These are "special" operators. These only exist if the target
# language actually supports the operator. Keep this in sync with
# pointwise_overrides_data.
def airy_ai(self, x: T) -> T:
...
def bessel_j0(self, x: T) -> T:
...
def bessel_j1(self, x: T) -> T:
...
def bessel_y0(self, x: T) -> T:
...
def bessel_y1(self, x: T) -> T:
...
def digamma(self, x: T) -> T:
...
def erfcx(self, x: T) -> T:
...
def fma(self, x: T, y: T, z: T) -> T:
...
def igamma(self, x: T, y: T) -> T:
...
def igammac(self, x: T, y: T) -> T:
...
def gammainc(self, x: T, y: T) -> T:
...
def gammaincc(self, x: T, y: T) -> T:
...
def i0(self, x: T) -> T:
...
def i0e(self, x: T) -> T:
...
def i1(self, x: T) -> T:
...
def i1e(self, x: T) -> T:
...
def log_ndtr(self, x: T) -> T:
...
def modified_bessel_i0(self, x: T) -> T:
...
def modified_bessel_i1(self, x: T) -> T:
...
def modified_bessel_k0(self, x: T) -> T:
...
def modified_bessel_k1(self, x: T) -> T:
...
def ndtr(self, x: T) -> T:
...
def ndtri(self, x: T) -> T:
...
def polygamma(self, x: T, y: T) -> T:
...
def scaled_modified_bessel_k0(self, x: T) -> T:
...
def scaled_modified_bessel_k1(self, x: T) -> T:
...
def spherical_bessel_j0(self, x: T) -> T:
...
def zeta(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_t(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_u(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_v(self, x: T, y: T) -> T:
...
def chebyshev_polynomial_w(self, x: T, y: T) -> T:
...
def legendre_polynomial_p(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_t(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_u(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_v(self, x: T, y: T) -> T:
...
def shifted_chebyshev_polynomial_w(self, x: T, y: T) -> T:
...
def hermite_polynomial_h(self, x: T, y: T) -> T:
...
def hermite_polynomial_he(self, x: T, y: T) -> T:
...
def laguerre_polynomial_l(self, x: T, y: T) -> T:
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# These operators are a bit special, because they are conventionally
# natively supported in both Python and C, but the semantics differ so
# care must be taken
def truncdiv(self, x0: T, x1: T) -> T:
"""C-style trunc division between integers only. Computes the true
division of two numbers and rounds the result to zero.
"""
...
def floordiv(self, x0: T, x1: T) -> T:
"""Python-style floor division between integers only. Computes the
true division of two numbers and floors the result. If you want
floor division for floats, do regular truediv and floor the result.
"""
...
def truediv(self, x0: T, x1: T) -> T:
"""True division between floats. Integer inputs are NOT valid. To
do Python-style (int, int) -> float division, use int_truediv"""
...
def int_truediv(self, x0: T, x1: T) -> T:
"""True division between integers. This is NOT the same as promoting
to float and doing integer division, there is a bespoke algorithm for
doing the division in higher precision than the above.
"""
...
def div(self, x0: T, x1: T) -> T:
"""TODO: to be removed. This renders as / no matter what the backend is
which is incoherent."""
...
def mod(self, x0: T, x1: T) -> T:
"""C-style modulus, take sign from LHS (x0)."""
...
def remainder(self, x0: T, x1: T) -> T:
"""Python-style modulus, take sign from RHS (x1)."""
...
def round_decimal(self, x0: T, x1: T) -> T:
"""Python-style round with decimal argument"""
...
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# In CUDA, optimized implementations of other mathematical operations are
# offered separately via libdevice for double precision computation (in
# Triton, these go to tl.math rather than tl). We lower to these
# operators when doing FP64 on CUDA. Note that some operators
# unconditional go to tl.math.
#
# TODO(ezyang): Is this really the best way to do this? What if we have
# abs internally route to tl.math automatically when given a double
# precision input? One reason is that when doing codegen, we often don't
# know what the dtype of the inputs are! (In principle we do know, but
# for many analyses it's not conveniently available.)
def libdevice_abs(self, x0: T) -> T:
...
def libdevice_exp(self, x0: T) -> T:
...
def libdevice_sqrt(self, x0: T) -> T:
...
def libdevice_cos(self, x0: T) -> T:
...
def libdevice_sin(self, x0: T) -> T:
...
def libdevice_sigmoid(self, x0: T) -> T:
...
def libdevice_log(self, x0: T) -> T:
...
class NoopHandler:
def __getattr__(self, name):
if name == "name":
return "NoopHandler"
def inner(*args, **kwargs):
return None
return inner
@staticmethod
def masked(mask, body, other) -> None:
return None
@staticmethod
def frexp(x) -> Tuple[None, None]:
return (None, None)
@staticmethod
def scan(dtypes, combine_fn, values) -> Tuple[None, ...]:
return (None,) * len(values)
@staticmethod
def sort(dtypes, values, stable, descending) -> Tuple[None, ...]:
return (None,) * len(values)
@staticmethod
def indirect_indexing(index_var, size, check=True, wrap_neg=True) -> sympy.Symbol:
return sympy.S.Zero
# Use mypy to check protocol implemented correctly
def _typecheck_NoopHandler(h: NoopHandler) -> OpsHandler[None]:
return h
class MockHandler:
def __getattr__(self, name):
if name == "name":
return "MockHandler"
def inner(*args, **kwargs):
fargs = [_arg_str(a) for a in args]
fargs.extend(f"{k}={v}" for k, v in kwargs.items())
return f"ops.{name}({', '.join(fargs)})"
return inner
@staticmethod
def masked(mask, body, other) -> str:
return f"ops.masked({mask}, {body()}, {other})"
@staticmethod
def frexp(x):
return (f"ops.frexp({x})[0]", f"ops.frexp({x})[1]")
@staticmethod
def scan(dtypes, combine_fn, values):
return tuple(
f"ops.scan({dtypes}, {combine_fn}, {values})[{i}]"
for i in range(len(values))
)
@staticmethod
def sort(dtypes, values, stable, descending):
return tuple(
f"ops.sort({dtypes}, {values}, stable={stable}, descending={descending})[{i}]"
for i in range(len(values))
)
@staticmethod
def indirect_indexing(index_var, size, check=True, wrap_neg=True) -> sympy.Symbol:
return sympy_index_symbol(str(index_var))
@classmethod
def _init_cls(cls):
def make_handler(format_string):
@staticmethod # type: ignore[misc]
def inner(*args):
return format_string.format(*args)
return inner
for name, format_string in {
"add": "{} + {}",
"sub": "{} - {}",
"mul": "{} * {}",
"floordiv": "{} // {}",
"truediv": "{} / {}",
"mod": "{} % {}", # careful, depending on target semantics varies
"pow": "{} ** {}",
"lshift": "{} << {}",
"rshift": "{} >> {}",
"and_": "{} & {}",
"or_": "{} | {}",
"xor": "{} ^ {}",
"eq": "{} == {}",
"ne": "{} != {}",
"lt": "{} < {}",
"gt": "{} > {}",
"le": "{} <= {}",
"ge": "{} >= {}",
"neg": "-{}",
}.items():
setattr(cls, name, make_handler(format_string))
MockHandler._init_cls()
# Use mypy to check protocol implemented correctly
def _typecheck_MockHandler(h: MockHandler) -> OpsHandler[str]:
return h
class KernelFormatterHandler:
def __init__(self, parent_handler):
self.parent_handler = parent_handler
self.output = IndentedBuffer(1)
self.var_counter = itertools.count()
@staticmethod
def ir_to_string(ir_fn, index, rindex=None) -> str:
from .ir import FlexibleLayout
from .virtualized import V
args = [index, rindex] if rindex is not None else [index]
names = ["index", "rindex"] if rindex is not None else ["index"]
formatter = KernelFormatterHandler(MockHandler())
with formatter.output.indent(-1):
formatter.output.writeline(f"def inner_fn({', '.join(names)}):")
for name, arg in zip(names, args):
if arg:
lhs = ", ".join(
[
str("_" if isinstance(v, (int, sympy.Integer)) else v)
for v in arg
]
)
formatter.output.writeline(f"{lhs} = {name}")
with V.set_ops_handler(formatter), patch.object(
FlexibleLayout, "allow_indexing", True
):
result = ir_fn(*args)
return formatter.getvalue(result)
def __getattr__(self, name) -> Callable[..., Any]:
def inner(*args, **kwargs):
line = getattr(self.parent_handler, name)(*args, **kwargs)
if name == "indirect_indexing":
return line
def write(line):
# replace line with a new variable name
varname = f"tmp{next(self.var_counter)}"
self.output.writeline(f"{varname} = {line}")
return varname
return pytree.tree_map(write, line)
return inner
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[str, Tuple[str, ...]],
) -> Union[str, Tuple[str, ...]]:
line = self.parent_handler.reduction(dtype, src_dtype, reduction_type, value)
num_values = reduction_num_outputs(reduction_type)
varnames = [f"tmp{next(self.var_counter)}" for _ in range(num_values)]
self.output.writeline(f"{','.join(varnames)} = {line}")
return tuple(varnames) if num_values > 1 else varnames[0]
def getvalue(self, result):
self.output.writeline(f"return {result}")
return self.output.getvalue()
# Use mypy to check protocol implemented correctly
def _typecheck_KernelFormatterHandler(h: KernelFormatterHandler) -> OpsHandler[str]:
return h
class WrapperHandler(Generic[T]):
def __init__(self, inner: OpsHandler[T]):
self._inner = inner
def __getattr__(self, item):
return getattr(self._inner, item)
# Use mypy to check protocol implemented correctly
def _typecheck_WrapperHandler(h: WrapperHandler[T]) -> OpsHandler[T]:
return h
class AddParenHandler(WrapperHandler[T]):
def __getattr__(self, name):
def inner(*args, **kwargs):
val = getattr(self._inner, name)(*args, **kwargs)
return f"({val})"
return inner
# Use mypy to check protocol implemented correctly
def _typecheck_AddParenHandler(h: AddParenHandler[T]) -> OpsHandler[T]:
return h
class OpCountResult(NamedTuple):
num_ops: int
used_ops: OrderedSet[str]
read_buffers: List[str]
nontrivial_read_count: int
class OpCounterCSE:
"""Shim to count how many ops are used"""
def __init__(self, inner):
super().__init__()
self.parent_handler = inner
self.op_count = 0
self.var_names = {}
self._used_ops: OrderedSet[str] = OrderedSet()
self._read_names: List[str] = []
self._nontrivial_read_count = 0
def __getattr__(self, name):
def inner(*args, **kwargs):
return pytree.tree_map(
self._update_count, getattr(self.parent_handler, name)(*args, **kwargs)
)
self._used_ops.add(name)
return inner
def _update_count(self, val):
varname = self.var_names.get(val)
if not varname:
varname = f"tmp{self.op_count}"
self.op_count += 1
self.var_names[val] = varname
return varname
def indirect_indexing(self, *args, **kwargs):
self._used_ops.add("indirect_indexing")
return self.parent_handler.indirect_indexing(*args, **kwargs)
def load(self, name: str, index: sympy.Expr) -> str:
val = self.parent_handler.load(name, index)
if val not in self.var_names:
self._used_ops.add("load")
self._read_names.append(name)
if not isinstance(index, (sympy.Integer, int)):
self._nontrivial_read_count += 1
return self._update_count(val)
def load_seed(self, name: str, offset: T):
val = self.parent_handler.load_seed(name, offset)
if val not in self.var_names:
self._used_ops.add("load_seed")
self._read_names.append(name)
return self._update_count(val)
def bucketize(
self,
values: T,
boundaries: Tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[Tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
"""
See [Note: Inductor bucketize op]
"""
val = self.parent_handler.bucketize(
values,
boundaries,
boundary_indices,
indexing_dtype,
right,
sorter,
sorter_indices,
)
if val not in self.var_names:
self._used_ops.add("bucketize")
self._read_names.append(boundaries[0])
if sorter is not None:
self._read_names.append(sorter[0])
return self._update_count(val)
def getvalue(self):
return OpCountResult(
self.op_count, self._used_ops, self._read_names, self._nontrivial_read_count
)
def _typecheck_OpCounterCSE(h: OpCounterCSE) -> OpsHandler[str]:
return h
class ExtractConstantsHandler(NoopHandler):
def __init__(self, device):
self.device = device
def constant(self, value: Any, dtype: torch.dtype) -> "torch._inductor.ir.Constant":
from torch._inductor import ir
return ir.Constant(value=value, dtype=dtype, device=self.device)
def _typecheck_ExtractConstantsHandler(h: ExtractConstantsHandler) -> OpsHandler[Any]:
return h
class SimpleCSEHandler(WrapperHandler[T]):
"""Wraps the underlying handler with a CSE pass
NOTE: Compared to codegen level CSE this is simplified as it
doesn't support stores which require load cache invalidation.
"""
def __init__(self, inner: OpsHandler[T]):
super().__init__(inner)
self.cse_cache: Dict[str, Union[T, Tuple[T, ...]]] = {}
self.mock = MockHandler()
def indirect_indexing(self, *args, **kwargs) -> sympy.Expr:
return super().indirect_indexing(*args, **kwargs) # type: ignore[misc]
def store(self, *args, **kwargs) -> T:
raise NotImplementedError("store not implemented")
def store_reduction(self, *args, **kwargs) -> T:
raise NotImplementedError("store not implemented")
def __getattr__(self, name) -> Callable[..., Any]:
def inner(*args, **kwargs):
key = getattr(self.mock, name)(*args, **kwargs)
val = self.cse_cache.get(key)
if val is not None:
return val
val = getattr(self._inner, name)(*args, **kwargs)
self.cse_cache[key] = val
return val
return inner
def _typecheck_SimpleCSEHandler(h: SimpleCSEHandler[Any]) -> OpsHandler[Any]:
return h
|