1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
import io
import json
import logging
import os
import shlex
import subprocess
import tempfile
import zipfile
from pathlib import Path
from typing import Dict, List, Optional, Union
import torch
import torch._inductor
import torch.utils._pytree as pytree
from torch._inductor import exc
from torch._inductor.cpp_builder import BuildOptionsBase, CppBuilder
from torch.export._tree_utils import reorder_kwargs
from .pt2_archive_constants import AOTINDUCTOR_DIR, ARCHIVE_VERSION
log = logging.getLogger(__name__)
class PT2ArchiveWriter:
def __init__(self, archive_path: Union[str, io.BytesIO]) -> None:
self.archive_path: Union[str, io.BytesIO] = archive_path
self.archive_file: Optional[zipfile.ZipFile] = None
def __enter__(self) -> "PT2ArchiveWriter":
assert self.archive_file is None
self.archive_file = zipfile.ZipFile(
self.archive_path, "w", compression=zipfile.ZIP_STORED
)
self.writestr("version", str(ARCHIVE_VERSION))
self.writestr("archive_format", "pt2")
return self
def __exit__(self, *args) -> None: # type: ignore[no-untyped-def]
assert self.archive_file is not None
self.archive_file.close()
self.archive_file = None
return None
def writestr(self, name: str, data: Union[bytes, str]) -> None:
assert self.archive_file is not None
self.archive_file.writestr(name, data)
def write_file(self, name: str, file_path: str) -> None:
"""
Copy a file into the archive.
name: The destination file inside the archive.
file_path: The source file on disk.
"""
assert Path(file_path).is_file(), f"{file_path} is not a valid file path"
assert self.archive_file is not None
self.archive_file.write(file_path, arcname=name)
class PT2ArchiveReader:
def __init__(self, archive_path: str) -> None:
self.archive_path: str = archive_path
self.archive_file: Optional[zipfile.ZipFile] = None
def __enter__(self) -> "PT2ArchiveReader":
self.archive_file = zipfile.ZipFile(
self.archive_path, "r", compression=zipfile.ZIP_STORED
)
return self
def __exit__(self, *args) -> None: # type: ignore[no-untyped-def]
if self.archive_file is not None:
self.archive_file.close()
return None
def read(self, name: str) -> bytes:
assert self.archive_file is not None
return self.archive_file.read(name)
def extract_to_path(self, member: str, path: str) -> str:
assert self.archive_file is not None
return self.archive_file.extract(member, path)
def extractall(self, path: str) -> None:
assert self.archive_file is not None
self.archive_file.extractall(path)
def get_file_names(self) -> List[str]:
assert self.archive_file is not None
return self.archive_file.namelist()
def _run_command_and_check(cmd: str) -> None:
cmd = shlex.split(cmd)
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
raise exc.CppCompileError(cmd, e.output) from e
def compile_so(aoti_dir: str, aoti_files: List[str], so_path: str) -> str:
def get_aoti_file_with_suffix(suffix: str) -> str:
for file in aoti_files:
if file.endswith(suffix):
return file
raise RuntimeError(f"Unable to find file with suffix {suffix}")
# Compile all the files into a .so
cpp_file = os.path.join(aoti_dir, get_aoti_file_with_suffix(".cpp"))
consts_o = os.path.join(aoti_dir, get_aoti_file_with_suffix(".o"))
file_name = os.path.splitext(cpp_file)[0]
# Parse compile flags and build the .o file
with open(file_name + "_compile_flags.json") as f:
compile_flags = json.load(f)
compile_options = BuildOptionsBase(**compile_flags)
object_builder = CppBuilder(
name=file_name,
sources=cpp_file,
BuildOption=compile_options,
)
compile_cmd = object_builder.get_command_line()
output_o = object_builder.get_target_file_path()
_run_command_and_check(compile_cmd)
# Parse linker flags and build the .so file
with open(file_name + "_linker_flags.json") as f:
linker_flags = json.load(f)
linker_options = BuildOptionsBase(**linker_flags)
so_builder = CppBuilder(
name=os.path.split(so_path)[-1],
sources=[output_o, consts_o],
BuildOption=linker_options,
output_dir=so_path,
)
link_cmd = so_builder.get_command_line()
output_so = so_builder.get_target_file_path()
_run_command_and_check(link_cmd)
# mmapped weights
serialized_weights_filename = file_name + "_serialized_weights.bin"
if serialized_weights_filename in aoti_files:
with open(serialized_weights_filename, "rb") as f_weights:
serialized_weights = f_weights.read()
with open(output_so, "a+b") as f_so:
so_size = f_so.tell()
# Page align the weights
f_so.write(b" " * (16384 - so_size % 16384))
f_so.write(serialized_weights)
return output_so
def package_aoti(
archive_file: Union[str, io.BytesIO],
aoti_files: Union[List[str], Dict[str, List[str]]],
) -> Union[str, io.BytesIO]:
"""
Saves the AOTInductor generated files to the PT2Archive format.
Args:
archive_file: The file name to save the package to.
aoti_files: This can either be a singular path to a directory containing
the AOTInductor files, or a dictionary mapping the model name to the
path to its AOTInductor generated files.
"""
if isinstance(aoti_files, list):
aoti_files = {"model": aoti_files}
assert isinstance(aoti_files, dict), (
"Please pass a list of AOTI generated files to be packaged or "
"a dictionary mapping model names to their list of AOTI generated "
"files. You can get this list of files through calling "
"`torch._inductor.aot_compile(..., options={aot_inductor.package=True})`"
)
assert isinstance(archive_file, io.BytesIO) or (
isinstance(archive_file, str) and archive_file.endswith(".pt2")
), f"Expect archive file to be a file ending in .pt2, or is a buffer. Instead got {archive_file}"
# Save using the PT2 packaging format
# (https://docs.google.com/document/d/1jLPp8MN8Whs0-VW9PmJ93Yg02W85tpujvHrTa1pc5x8/edit#heading=h.v2y2jgnwc56a)
with PT2ArchiveWriter(archive_file) as archive_writer:
for model_name, files in aoti_files.items():
num_so_files = 0
num_cpp_files = 0
for file in files:
if file == "":
continue
if file.endswith(".so"):
num_so_files += 1
if num_so_files > 1:
raise RuntimeError(
f"Multiple .so files found in {files}. "
"You might need to clear your cache "
"directory before calling aoti_compile again."
)
if file.endswith(".cpp"):
num_cpp_files += 1
if num_so_files > 1:
raise RuntimeError(
f"Multiple .cpp files found in {files}. "
"You might need to clear your cache "
"directory before calling aoti_compile again."
)
filename = os.path.basename(file)
new_filepath = os.path.join(AOTINDUCTOR_DIR, model_name, filename)
log.debug(
"Saving AOTI generated file %s to archive in %s", file, new_filepath
)
archive_writer.write_file(
str(new_filepath),
file,
)
if isinstance(archive_file, io.BytesIO):
archive_file.seek(0)
return archive_file
class AOTICompiledModel:
"""
Callable AOT Inductor loaded model from a .pt2
"""
def __init__(self, loader: torch._C._aoti.AOTIModelPackageLoader) -> None:
self.loader = loader
def __call__(self, *args, **kwargs): # type: ignore[no-untyped-def]
call_spec = self.loader.get_call_spec() # type: ignore[attr-defined]
in_spec = pytree.treespec_loads(call_spec[0])
out_spec = pytree.treespec_loads(call_spec[1])
flat_inputs = pytree.tree_flatten((args, reorder_kwargs(kwargs, in_spec)))[0]
flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)]
flat_outputs = self.loader.run(flat_inputs) # type: ignore[attr-defined]
return pytree.tree_unflatten(flat_outputs, out_spec)
def get_metadata(self) -> Dict[str, str]:
return self.loader.get_metadata() # type: ignore[attr-defined]
def load_constants(
self,
constants_map: Dict[str, torch.Tensor],
*,
check_full_update: bool,
) -> None:
"""
Given a mapping of constant fqns to tensors, load the constants into the model.
You can use ``get_constant_fqns`` to get the list of constant fqns that
are needed in the compiled model.
Args:
constants_map: A mapping of constant fqns to tensors.
check_full_update: Whether to add check to see if all the constants
are updated and have values.
"""
self.loader.load_constants(constants_map, False, check_full_update) # type: ignore[attr-defined]
def get_constant_fqns(self) -> List[str]:
return self.loader.get_constant_fqns() # type: ignore[attr-defined]
def load_package(path: Union[str, io.BytesIO], model_name: str = "model") -> AOTICompiledModel: # type: ignore[type-arg]
assert isinstance(path, io.BytesIO) or (
isinstance(path, str) and path.endswith(".pt2")
), f"Unable to load package. Path must be a buffer or a file ending in .pt2. Instead got {path}"
if isinstance(path, io.BytesIO):
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
# TODO(angelayi): We shouldn't need to do this -- miniz should
# handle reading the buffer. This is just a temporary workaround
f.write(path.read())
path.seek(0)
log.debug("Writing buffer to tmp file located at %s.", f.name)
loader = torch._C._aoti.AOTIModelPackageLoader(f.name, model_name) # type: ignore[call-arg]
return AOTICompiledModel(loader)
loader = torch._C._aoti.AOTIModelPackageLoader(path, model_name) # type: ignore[call-arg]
return AOTICompiledModel(loader)
|