1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
|
# mypy: allow-untyped-decorators
"""
# Inductor Pattern Matcher
The pattern matcher enables search/replace within an FX graph.
The main entrypoint to the pattern matcher is register_replacement(). Given a
search function and a replacement function this will register a replacement with
a pass (such as torch._inductor.fx_passes.joint_graph.patterns).
Internally the pattern matcher represents patterns as a graph (a DAG). Creating
new patterns manually as a graph is cumbersome and error-prone so the standard
way to create patterns (using register_replacement()) is to provide a search
function and a replacement function which is traced and converted into a graph.
Because the search functions are built somewhat generic (they tend to ignore
tensor sizes, for example) register_replacement() allows you to specify an
`extra_check` function which performs additional checks to verify that the
matched pattern fully matches before returning it.
## Precompiled Patterns
New patterns are added using register_replacement(). Patterns added in this way
can have a compile-time overhead because they need to be traced before
use. Patterns can be precompiled and added using gen_register_replacement()
instead. To do this you call gen_register_replacement() instead of
register_replacement(). The arguments are the same except for an additional
unique name which is used as a lookup key.
## Internals
The match DAG is represented by a graph of `PatternExpr` nodes. Each PatternExpr
implements a `_match` method which returns either a `Match` object for a
successful match or a `FailedMatch` object for a failure to match.
"""
from __future__ import annotations
import contextlib
import dataclasses
import functools
import importlib
import inspect
import itertools
import logging
import operator
import os
import re
import textwrap
import typing
from abc import ABC, abstractmethod
from collections import defaultdict
from pathlib import Path
from typing import (
Any,
Callable,
DefaultDict,
Dict,
Generator,
Iterable,
List,
Mapping,
NoReturn,
Optional,
Protocol,
Sequence,
Set,
Tuple,
Type,
TypeVar,
Union,
)
from typing_extensions import Self, TypeIs
import torch
import torch._guards
import torch.fx
import torch.utils._pytree as pytree
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.utils import counters
from torch._prims_common import is_integer_dtype
from torch._subclasses.fake_tensor import unset_fake_temporarily
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
from torch.fx.immutable_collections import immutable_dict, immutable_list
from torch.fx.passes.graph_transform_observer import GraphTransformObserver
from .._functorch import config as functorch_config
from .._functorch.aot_autograd import aot_function, make_boxed_func
from .._functorch.partitioners import default_partition
from .._subclasses import FakeTensor, FakeTensorMode
from ..fx import Transformer
from . import config
from .decomposition import select_decomp_table
from .lowering import fallback_node_due_to_unsupported_type
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
Constant = Any
NodeOrConstant = Union[Constant, torch.fx.Node]
class SearchFn(Protocol):
__name__: str
def __call__(self, *args: Any, **kwargs: Any) -> Any:
...
class ReplaceFn(Protocol):
def __call__(self, *args: Any, **kwargs: Any) -> Any:
...
class TraceFn(Protocol):
def __call__(
self, fn: Union[SearchFn, ReplaceFn], *args: Any, **kwargs: Any
) -> torch.fx.GraphModule:
...
T = TypeVar("T")
# What's a better name for this?
FnsType = Union[torch.fx.node.Target, str]
class Multiple:
def __init__(self) -> None:
# Ensure we're really a singleton.
assert "MULTIPLE" not in globals() or self is MULTIPLE
# Sentinel indicating multiple quantities can be matched
MULTIPLE = Multiple()
def _transfer_meta(new_meta: Dict[str, Any], old_meta: Dict[str, Any]) -> None:
# transfer metadata after pattern matching occurs.
# skip "val" and "tensor_meta" because this info is too specific; it's unlikely
# to remain accurate after pattern matching has occurred.
new_meta.update(
(k, v) for k, v in old_meta.items() if k in torch.fx.proxy._COPY_META_FIELDS
)
class Match:
"""
Represents a successfully matched pattern.
The `Match` object is returned to represent a successfully matched
pattern. Included in the Match are the pattern that was matched, the graph
nodes matched, and any args that were used during the matching.
The args and kwargs are specific to the type of pattern that was matched and
provide hints about what was matched.
"""
pattern: PatternExpr
args: List[Any]
kwargs: Dict[str, Any]
nodes: List[torch.fx.Node]
targets: Dict[_TargetExpr, torch.fx.node.Target]
ctx: MatchContext
replacement_graph: Optional[torch.fx.GraphModule]
def __init__(
self,
ctx: MatchContext,
pattern: PatternExpr,
args: Optional[Sequence[Any]] = None,
kwargs: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__()
self.pattern = pattern
# The input nodes that must be passed in to the result
self.args = list(args or [])
self.kwargs = kwargs or {}
# The nodes matched in this expression
self.nodes = []
# Mapping CallFunction to the node.target
self.targets = {}
self.ctx = ctx
self.replacement_graph = None
@property
def graph(self) -> torch.fx.Graph:
return self.ctx.graph
def extend(self, other: Match) -> None:
if self.kwargs:
for key in set(self.kwargs.keys()) & set(other.kwargs.keys()):
if self.kwargs[key] != other.kwargs[key]:
raise FailedMatch("kwarg mismatch: {}", key)
self.args.extend(other.args)
self.nodes.extend(other.nodes)
self.kwargs.update(other.kwargs)
self.targets.update(other.targets)
def bundle(self) -> Match:
# Wrap args in an extra list
self.args = [tuple(self.args)] if self.args else []
return self
def __repr__(self) -> str:
return f"Match(..., {self.args}, {self.kwargs})"
def erase_nodes(self) -> None:
graph = self.graph
for n in reversed(self.nodes):
if not n._erased and not n.users:
graph.erase_node(n)
def output_nodes(self) -> List[Optional[torch.fx.Node]]:
return [
(self.ctx.pattern_to_node[p] if p is not None else None)
for p in self.ctx.outputs
]
def output_node(self) -> torch.fx.Node:
return next(p for p in self.output_nodes() if p)
def replace_with_graph(
self, replacement_graph: torch.fx.Graph, args: Sequence[Any]
) -> None:
ReplacementPatternEntry.replace_with_graph(
self, self.ctx.graph, replacement_graph, args
)
def replace_by_example(
self,
replacement_fn: ReplaceFn,
args: Sequence[Any],
trace_fn: Optional[TraceFn] = None,
run_functional_passes: bool = True,
) -> None:
"""Replace with a graph generated by tracing the replacement_fn.
Args:
run_functional_passes (bool). If we should run passes that
assume functional IR (like DCE, remove_noop_ops), on the
replacement graph.
"""
from torch._inductor.virtualized import NullHandler, V
context = (
V.fake_mode
if (not isinstance(V.fake_mode, NullHandler) or (V.fake_mode is None))
else contextlib.nullcontext()
)
with context:
if trace_fn is None:
trace_fn = functools.partial(
fwd_only, run_functional_passes=run_functional_passes
)
replacement = trace_fn(
replacement_fn, torch.fx.map_arg(args, lambda arg: arg.meta["val"]) # type: ignore[arg-type]
)
if len(self.nodes) == 1:
for n in replacement.graph.nodes:
_transfer_meta(new_meta=n.meta, old_meta=self.nodes[0].meta)
ReplacementPatternEntry.replace_with_graph(
self,
self.ctx.graph,
replacement,
args,
)
class FailedMatch(RuntimeError):
"""
Represents a unsuccessful match.
The `FailedMatch` object is returned to represent a failure to match a
pattern.
"""
format_string: str
def __init__(self, format_string: str, *args: Any, **kwargs: Any) -> None:
self.format_string = format_string
# We want to construct error messages lazily instead of eagerly, as
# constructing them eagerly can significantly worsen compile times.
if len(format_string) > 200:
raise RuntimeError(
f"Format string too long - use lazy construction of strings instead. Format string is\n {format_string}"
)
self.args = args
self.kwargs = kwargs
def __str__(self) -> str:
return self.format_string.format(*self.args, **self.kwargs)
def __bool__(self) -> bool:
return False
MatchResult = Union[Match, FailedMatch]
def is_match(m: MatchResult) -> TypeIs[Match]:
"""
TypeIs cannot act on `self`. Thus this function exists to let mypy
recognize FailedMatch.__bool__ as a TypeIs.
"""
return bool(m)
class MatchContext:
"""
Internal state needed while running PatternExpr._match().
"""
outputs: List[Optional[PatternExpr]]
pattern_to_node: Dict[PatternExpr, Optional[torch.fx.Node]]
graph: torch.fx.Graph
exclusive_node_set: List[NodeOrConstant]
def __init__(
self,
outputs: List[Optional[PatternExpr]],
pattern_to_node: Optional[Dict[PatternExpr, torch.fx.Node]] = None,
*,
graph: torch.fx.Graph,
) -> None:
self.outputs = outputs
self.pattern_to_node = {} if pattern_to_node is None else dict(pattern_to_node)
self.graph = graph
self.exclusive_node_set = []
def match(self, pattern: PatternExpr, node: NodeOrConstant) -> MatchResult:
"""wrapper to check reused nodes in patterns"""
if pattern in self.pattern_to_node:
if self.pattern_to_node[pattern] == node:
return Match(self, pattern) # already checked this node
else:
return FailedMatch("repeated pattern differs")
m = pattern._match(node, self)
assert pattern not in self.pattern_to_node
self.pattern_to_node[pattern] = node if m else None
return m
def filter_multi_user_patterns(self) -> Dict[PatternExpr, torch.fx.Node]:
return {
pattern: node
for pattern, node in self.pattern_to_node.items()
if pattern.has_multiple_users() and node is not None
}
class PatternExpr(ABC):
"""
Base class for types of patterns.
"""
@abstractmethod
def _match(self, node: torch.fx.Node, ctx: MatchContext) -> MatchResult:
...
def match(self, node: torch.fx.Node) -> MatchResult:
try:
return MatchContext([self], graph=node.graph).match(self, node)
except FailedMatch as e:
return e
def has_multiple_users(self) -> bool:
return False
def __repr__(self) -> str:
return self.__class__.__name__ + "()"
def find_anchor_nodes(
self, ctx: MatchContext, searched: Set[torch.fx.Node]
) -> Generator[Optional[torch.fx.Node], None, None]:
if self in ctx.pattern_to_node:
yield ctx.pattern_to_node[self]
def pattern_eq(self, other: Any) -> bool:
"""
Compare two `PatternExpr`s and return true if they are the
same. Note this is NOT matching a pattern - it is comparing the pattern
structures (for debugging).
"""
return isinstance(other, self.__class__)
class Arg(PatternExpr):
"""
Capture an arg which will become an input to the handler. Args are
passed in depth first order.
"""
def _match(self, node: NodeOrConstant, ctx: MatchContext) -> MatchResult:
return Match(ctx, self, args=[node]) # matches anything
class Ignored(PatternExpr):
"""
Match an arg, but don't pass it to handler
"""
def _match(self, node: NodeOrConstant, ctx: MatchContext) -> MatchResult:
return Match(ctx, self) # matches anything
def __repr__(self) -> str:
return "*"
def pretty_print(self, pp: PatternPrettyPrinter) -> str:
return "Ignored()"
class KeywordArg(PatternExpr):
"""
Capture a kwarg which will become an input to the handler.
"""
def __init__(self, name: str) -> None:
super().__init__()
self.name = name
def __repr__(self) -> str:
return f"KeywordArg({self.name!r})"
def _match(self, node: NodeOrConstant, ctx: MatchContext) -> MatchResult:
return Match(ctx, self, kwargs={self.name: node}) # matches anything
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return super().pattern_eq(other) and self.name == other.name
class ExclusiveKeywordArg(PatternExpr):
"""
Capture a kwarg which will become an input to the handler.
"""
name: str
def __init__(self, name: str) -> None:
super().__init__()
self.name = name
def __repr__(self) -> str:
return f"ExclusiveKeywordArg({self.name!r})"
def _match(self, node: NodeOrConstant, ctx: MatchContext) -> MatchResult:
if node in ctx.exclusive_node_set:
return FailedMatch("exclusive arg appears twice")
ctx.exclusive_node_set.append(node)
return Match(ctx, self, kwargs={self.name: node}) # matches anything
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return super().pattern_eq(other) and self.name == other.name
class _TargetExpr(PatternExpr):
"""
Base class for filtering match by node.target
"""
fns: List[FnsType]
fns_set: Set[FnsType]
def __init__(
self, fns: Union[FnsType, Sequence[FnsType]], users: Union[Multiple, int] = 1
) -> None:
super().__init__()
fns = [fns] if callable(fns) or isinstance(fns, str) else list(fns)
for fn in fns:
if isinstance(fn, torch._ops.OpOverloadPacket):
fns.extend(getattr(fn, overload) for overload in fn.overloads())
self.fns = fns
self.fns_set = set(fns)
self.users = users
@property
@abstractmethod
def op(self) -> str:
...
def fns_repr(self) -> str:
first_repr = self.fns[0]
if not isinstance(first_repr, str):
first_repr = first_repr.__name__
if len(self.fns) > 1:
return f"[{first_repr}, ...]"
elif self.fns[0] is getattr(torch, first_repr, None):
return f"torch.{first_repr}"
elif isinstance(self.fns[0], torch._ops.OpOverload):
return str(self.fns[0])
else:
return first_repr
def __repr__(self) -> str:
if self.users is MULTIPLE:
comma_users = ", MULTIPLE"
elif self.users != 1:
comma_users = f", {self.users})"
else:
comma_users = ""
return f"{self.__class__.__name__}({self.fns_repr()}{comma_users})"
def has_multiple_users(self) -> bool:
return isinstance(self.users, Multiple) or self.users > 1
def find_anchor_nodes(
self, ctx: MatchContext, searched: Set[torch.fx.Node]
) -> Generator[Optional[torch.fx.Node], None, None]:
raise NotImplementedError
def _match_fns(self, node: torch.fx.Node) -> bool:
return (
isinstance(node, torch.fx.Node)
and node.op == self.op
and extract_target(node) in self.fns_set
)
def _match_users(self, node: torch.fx.Node, ctx: MatchContext) -> bool:
return (
self in ctx.outputs
or self.users is MULTIPLE
or len(node.users) == self.users
)
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return (
super().pattern_eq(other)
and self.op == other.op
and self.fns == other.fns
and self.users == other.users
)
_SimpleSpec = Tuple[Any, ...]
class _TargetArgsExpr(_TargetExpr):
"""
Base class for filtering match by node.{target,args,kwargs}
"""
def __init__(
self,
fns: Union[torch.fx.node.Target, str, Sequence[Any]],
*args: Any,
_users: Union[int, Multiple] = 1,
**kwargs: Any,
) -> None:
super().__init__(fns, _users)
self.args = tuple(args)
self.kwargs = dict(kwargs)
if any(
isinstance(x, (dict, list, tuple))
for x in itertools.chain(args, kwargs.values())
):
self.flatten = self.pytree_flatten
else:
self.flatten = self.simple_flatten
self.flat_args_kwargs = self.flatten(self.args, self.kwargs)
@staticmethod
def simple_flatten(
args: Sequence[Any], kwargs: Mapping[Any, Any]
) -> Tuple[Sequence[Any], Union[_SimpleSpec, pytree.TreeSpec]]:
values = (*args, *kwargs.values())
spec = (len(args), *kwargs.keys())
return values, spec
@staticmethod
def pytree_flatten(
args: Sequence[Any], kwargs: Mapping[Any, Any]
) -> Tuple[Sequence[Any], Union[_SimpleSpec, pytree.TreeSpec]]:
type_mapping = {immutable_list: tuple, list: tuple, immutable_dict: dict}
def convert_type(x: Any) -> Any:
cls = type(x)
convert_fn = type_mapping.get(cls)
if convert_fn is not None:
return pytree.tree_map(
convert_type,
convert_fn(x),
is_leaf=lambda x: type(x) in type_mapping,
)
return x
normalized_args_tree = pytree.tree_map(
convert_type,
(args, kwargs),
is_leaf=lambda x: type(x) in type_mapping,
)
flat, spec = pytree.tree_flatten(normalized_args_tree)
return flat, spec
def __repr__(self) -> str:
args = [
self.fns_repr(),
*map(repr, self.args),
*[f"{k}={v}" for k, v in self.kwargs.items()],
]
if self.users is MULTIPLE:
args.append("_users=MULTIPLE")
elif self.users != 1:
args.append(f"_users={self.users}")
return f"{self.__class__.__name__}({', '.join(args)})"
def pretty_print(self, pp: PatternPrettyPrinter) -> str:
args = [
self.fns_repr(),
*(pp.pretty_print(x) for x in self.args),
*[f"{k}={pp.pretty_print(v)}" for k, v in self.kwargs.items()],
]
if self.users is MULTIPLE:
args.append("_users=MULTIPLE")
elif self.users != 1:
args.append(f"_users={self.users}")
joiner_str = ", "
return f"{self.__class__.__name__}({joiner_str.join(args)})"
def _match(self, node: torch.fx.Node, ctx: MatchContext) -> MatchResult:
if not self._match_fns(node) or len(node.args) != len(self.args):
return FailedMatch("function_mismatch: node={}, pattern={}", node, self)
if not self._match_users(node, ctx):
return FailedMatch("multiple_users {}", self)
_args = node.args
_kwargs = node.kwargs
if len(_kwargs) < len(self.kwargs):
from torch.fx.operator_schemas import normalize_function
normalized_args_and_kwargs = normalize_function(
node.target, node.args, node.kwargs # type: ignore[arg-type]
)
if normalized_args_and_kwargs is None:
return FailedMatch("function_mismatch: node={}, pattern={}", node, self)
else:
_args, _kwargs = normalized_args_and_kwargs
if len(_args) == len(self.args) and len(_kwargs) >= len(self.kwargs):
_kwargs = {i: _kwargs[i] for i in _kwargs if i in self.kwargs}
else:
return FailedMatch(
"function_mismatch: node={}, pattern={}", node, self
)
else:
_kwargs = {i: _kwargs[i] for i in _kwargs if i in self.kwargs}
node_items, node_spec = self.flatten(_args, _kwargs)
self_items, self_spec = self.flat_args_kwargs
if node_spec != self_spec:
return FailedMatch("args_structure {} {}", node_spec, self_spec)
assert len(node_items) == len(self_items)
m = Match(ctx, self)
for i, pattern, child_node in zip(itertools.count(), self_items, node_items):
if isinstance(pattern, PatternExpr):
child_match = ctx.match(pattern, child_node)
if not is_match(child_match):
return child_match
m.extend(child_match)
elif isinstance(child_node, torch.fx.Node) or child_node != pattern:
return FailedMatch(
"constant_args: {} {!r}!={pattern!r}", node, child_node
)
m.nodes.append(node)
m.targets[self] = node.target
return m
def find_anchor_nodes(
self, ctx: MatchContext, searched: Set[torch.fx.Node]
) -> Generator[Optional[torch.fx.Node], None, None]:
"""
This is used when we are matching a pattern with multiple outputs.
There is a partial match (stored in ctx) and we want to walk
this pattern to find a connection to an already-matched node.
Yields candidate nodes that `self._match` might like.
"""
if self in ctx.pattern_to_node:
yield ctx.pattern_to_node[self]
return
for pattern in self.flat_args_kwargs[0]:
if isinstance(pattern, PatternExpr):
for other_node in pattern.find_anchor_nodes(ctx, searched):
if not isinstance(other_node, torch.fx.Node):
continue
for node in other_node.users:
if node not in searched:
if self._match_fns(node):
yield node
searched.add(node)
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return (
super().pattern_eq(other)
and self.flat_args_kwargs[1] == other.flat_args_kwargs[1]
and all(
a.pattern_eq(b) if isinstance(a, PatternExpr) else a == b
for a, b in zip(self.flat_args_kwargs[0], other.flat_args_kwargs[0])
)
)
class CallFunction(_TargetArgsExpr):
"""
Matches a call_function node in the FX graphs: `fns[i](*args, **kwargs)`
"""
op = "call_function"
class CallMethod(_TargetArgsExpr):
"""
Matches a call_method node in the FX graphs: `fns[i].method(*args, **kwargs)`
"""
op = "call_method"
class CallModule(_TargetArgsExpr):
"""
Matches a call_module node in the FX graphs: `module(*args, **kwargs)`
"""
op = "call_module"
class _TargetExprVarArgs(_TargetExpr):
"""
Matches a call_function node with any arguments which are passed into the pattern
"""
def _match(self, node: torch.fx.Node, ctx: MatchContext) -> MatchResult:
if not self._match_fns(node):
return FailedMatch("function_mismatch")
if not self._match_users(node, ctx):
return FailedMatch("multiple_users")
m = Match(ctx, self)
m.nodes.append(node)
m.targets[self] = node.target
m.args.extend(node.args)
m.kwargs.update(node.kwargs)
return m
class CallFunctionVarArgs(_TargetExprVarArgs):
op = "call_function"
class CallMethodVarArgs(_TargetExprVarArgs):
op = "call_method"
class CallModuleVarArgs(_TargetExprVarArgs):
op = "call_module"
class ListOf(PatternExpr):
"""
Matches a repeated pattern
"""
def __init__(self, pattern: PatternExpr, partial: bool = False) -> None:
super().__init__()
assert isinstance(pattern, PatternExpr)
self.pattern = pattern
self.partial = partial
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.pattern})"
def _match(self, node: List[torch.fx.Node], ctx: MatchContext) -> MatchResult: # type: ignore[override]
if not isinstance(node, (list, tuple)) or len(node) == 0:
return FailedMatch("non_list")
m = Match(ctx, self)
# Propagating patterns with multiple users will ensure we don't revisit
# the same nodes
pattern_to_node = ctx.filter_multi_user_patterns()
matched = False
for i, child_node in enumerate(node):
child_ctx = MatchContext(
ctx.outputs, pattern_to_node, graph=child_node.graph
)
child_match = child_ctx.match(self.pattern, child_node)
pattern_to_node = child_ctx.filter_multi_user_patterns()
if not is_match(child_match):
if not self.partial:
return FailedMatch("list[{}]: {}", i, child_match)
continue
matched = True
m.extend(child_match.bundle())
if not matched:
return FailedMatch("list: no_match")
return m.bundle()
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return (
super().pattern_eq(other)
and self.pattern.pattern_eq(other.pattern)
and self.partial == other.partial
)
class MultiOutputPattern(PatternExpr):
outputs: List[Optional[PatternExpr]]
def __init__(self, outputs: Sequence[Optional[PatternExpr]]) -> None:
super().__init__()
assert isinstance(outputs[0], _TargetExpr)
assert all(x is None or isinstance(x, PatternExpr) for x in outputs), outputs
self.outputs = list(outputs)
self.op = outputs[0].op
@property
def fns(self) -> Union[Callable[..., Any], str, Sequence[Any]]:
# This cast is checked above in __init__()
output = typing.cast(_TargetExpr, self.outputs[0])
return output.fns
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.outputs})"
def pretty_print(self, pp: PatternPrettyPrinter) -> str:
args = [pp.pretty_print(x) for x in self.outputs]
joiner_str = f",\n{' '}"
str_out = f"{self.__class__.__name__}([{joiner_str.join(args)}"
str_out = f"{str_out}\n])"
return str_out
def _match(self, node: torch.fx.Node, ctx: MatchContext) -> MatchResult:
output = typing.cast(_TargetExpr, self.outputs[0])
m = ctx.match(output, node)
if not is_match(m):
return m
for pattern in self.outputs[1:]:
if pattern is None:
continue
child_match = self._match_from_anchors(pattern, ctx)
if not is_match(child_match):
return child_match
m.extend(child_match)
return m
def _match_from_anchors(
self, pattern: PatternExpr, ctx: MatchContext
) -> MatchResult:
prior = dict(ctx.pattern_to_node)
m: MatchResult = FailedMatch("no anchor found")
for node in pattern.find_anchor_nodes(ctx, set()):
m = ctx.match(pattern, node)
if is_match(m):
return m
# revert any partial matches
ctx.pattern_to_node = dict(prior)
return m
def match(self, node: torch.fx.Node) -> MatchResult:
try:
return MatchContext(self.outputs, graph=node.graph).match(self, node)
except FailedMatch as e:
return e
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return (
super().pattern_eq(other)
and len(self.outputs) == len(other.outputs)
and all(
a.pattern_eq(b) if isinstance(a, PatternExpr) else a == b
for a, b in zip(self.outputs, other.outputs)
)
)
class RepeatedExpr(PatternExpr):
"""
Checks for a repeated pattern. Useful for repeated operations after a node such as `split` or `unbind`
"""
def __init__(self, inner_pattern: _TargetExpr) -> None:
super().__init__()
self.inner_pattern = inner_pattern
self.op = inner_pattern.op
@property
def fns(self) -> Sequence[FnsType]:
return self.inner_pattern.fns
def _match(self, node: torch.fx.Node, ctx: MatchContext) -> MatchResult:
m = ctx.match(self.inner_pattern, node)
if not is_match(m):
return m
ctx.pattern_to_node.pop(
self.inner_pattern,
)
# Check all anchor nodes match the pattern
for anchor_node in self.inner_pattern.find_anchor_nodes(ctx, set()):
anchor_m = MatchContext([self], graph=node.graph).match(
self.inner_pattern, anchor_node
)
if not is_match(anchor_m):
return anchor_m
m.extend(anchor_m)
return m
def pattern_eq(self, other: Any) -> bool:
other = typing.cast(Self, other) # super makes sure this is true
return super().pattern_eq(other) and self.inner_pattern.pattern_eq(
other.inner_pattern
)
class PatternPrettyPrinter:
"""
Serializes Patterns to executable python.
XXX: currently only used and tested for fuse attention patterns. May not cover
all patterns.
"""
def __init__(self) -> None:
self.namespace = torch.fx.graph._Namespace()
self.memoized_objs_names: Dict[PatternExpr, str] = {}
self.memoized_objs_pp: Dict[PatternExpr, str] = {}
@staticmethod
@functools.lru_cache(None)
def run(obj: PatternExpr, output_name: str = "output") -> str:
"""
Serializes obj to python code with obj written out to `output_name`
"""
pp = PatternPrettyPrinter()
assert hasattr(obj, "pretty_print")
out_str = obj.pretty_print(pp=pp)
output = [
f"{pp.memoized_objs_names[key]} = {pp.memoized_objs_pp[key]}"
for key in pp.memoized_objs_names
]
output.append(f"{output_name} = {out_str}")
return "\n".join(output)
def pretty_print(self, obj: Any) -> str:
if isinstance(obj, _TargetArgsExpr):
if memoized_name := self.memoized_objs_names.get(obj):
return memoized_name
else:
return self.memoize(obj)
if hasattr(obj, "pretty_print"):
return obj.pretty_print(self)
return repr(obj)
def memoize(self, obj: _TargetArgsExpr) -> str:
obj_str = obj.pretty_print(self)
obj_name = obj.fns_repr()
for prefix in ("aten.", "torch.", "prims."):
obj_name = obj_name.replace(prefix, "")
tmp_name = self.namespace.create_name(obj_name, None)
self.memoized_objs_names[obj] = tmp_name
self.memoized_objs_pp[obj] = obj_str
return tmp_name
class _PassDictsType(Protocol):
def __getitem__(self, k: Tuple[str, torch.fx.node.Target]) -> List[PatternEntry]:
...
@dataclasses.dataclass
class PatternEntry:
pattern: PatternExpr
extra_check: Callable[[Match], bool]
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node) -> None:
raise NotImplementedError
def register(
self,
pass_dicts: Union[_PassDictsType, Sequence[_PassDictsType]],
target: Union[torch.fx.node.Target, None] = None,
prepend: bool = False,
) -> None:
if target is None:
assert hasattr(self.pattern, "fns")
for fn in self.pattern.fns:
self.register(pass_dicts, fn, prepend=prepend)
elif isinstance(pass_dicts, (dict, PatternMatcherPass)):
assert hasattr(self.pattern, "op")
if prepend:
pass_dicts[(self.pattern.op, target)].insert(0, self)
else:
pass_dicts[(self.pattern.op, target)].append(self)
else:
pass_dicts = typing.cast(Sequence[_PassDictsType], pass_dicts)
for x in pass_dicts:
self.register(x, target, prepend=prepend)
@dataclasses.dataclass
class LoweringPatternEntry(PatternEntry):
handler: Callable[..., Any]
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node) -> None:
handler = functools.wraps(self.handler)(functools.partial(self.handler, match))
with graph.inserting_before(node):
replacement = graph.call_function(handler, tuple(match.args), match.kwargs)
replacement.meta.update(node.meta)
node.replace_all_uses_with(replacement)
assert match.nodes[-1] is node
match.erase_nodes()
@dataclasses.dataclass
class GraphPatternEntry(PatternEntry):
"""
A pattern that runs a function on the FX graph
"""
handler: Callable[..., Any]
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node) -> None:
with graph.inserting_before(node):
self.handler(match, *match.args, **match.kwargs)
@dataclasses.dataclass
class ReplacementPatternEntry(PatternEntry):
normalize_args: Callable[..., List[Any]]
@staticmethod
def replace_with_graph(
match: Match,
graph: torch.fx.Graph,
replacement_graph: Union[torch.fx.Graph, torch.fx.GraphModule],
args: Sequence[torch.fx.Node],
) -> None:
class Replacer(torch.fx.Interpreter):
call_method = None # type: ignore[assignment]
call_module = None # type: ignore[assignment]
get_attr = None # type: ignore[assignment]
def run_node(self, node: torch.fx.Node) -> Any:
if node.op in ("placeholder", "output"):
return super().run_node(node)
if node.op == "call_function":
target = node.target
args, kwargs = self.fetch_args_kwargs_from_env(node)
result = graph.call_function(target, args, kwargs) # type: ignore[arg-type]
_transfer_meta(new_meta=result.meta, old_meta=node.meta)
if "val" in node.meta and "val" not in result.meta:
result.meta["val"] = node.meta["val"]
if isinstance(node.meta["val"], torch.Tensor):
assert "tensor_meta" in node.meta
result.meta["tensor_meta"] = node.meta["tensor_meta"]
return result
raise NotImplementedError(f"unhandled {node}")
output_nodes = match.output_nodes()
if len(output_nodes) == 1:
last_node = output_nodes[0]
else:
assert output_nodes[0]
nodes = list(output_nodes[0].graph.nodes)
indices = [
(nodes.index(n), n)
for n in output_nodes
if isinstance(n, torch.fx.Node)
]
last_node = min(indices, key=operator.itemgetter(0))[1]
def percolate_tags(
node: torch.fx.Node,
tag_name: str,
tag_value: str,
input_stops: Set[torch.fx.Node],
) -> None:
queue = [node]
visited = set()
while queue:
arg = queue.pop()
if (
arg not in visited
and arg not in input_stops
and hasattr(arg, "meta")
):
visited.add(arg)
arg.meta[tag_name] = tag_value
queue.extend(arg.all_input_nodes)
with graph.inserting_before(last_node):
replacement = Replacer(replacement_graph).run(*args) # type: ignore[arg-type]
if isinstance(replacement, torch.fx.Node):
replacement = [replacement]
def maybe_getitem(node: torch.fx.Node) -> Any:
if node.op != "call_function":
return None
if node.target != operator.getitem:
return None
assert len(node.args) == 2
return node.args[1]
def replace(
old: Union[torch.fx.Node, None],
new: Union[torch.fx.Node, Sequence[torch.fx.Node], None],
) -> None:
if old is None:
assert new is None
return
assert isinstance(old, torch.fx.Node)
if new is None:
old.replace_all_uses_with(None) # type: ignore[arg-type]
graph.erase_node(old)
return
if isinstance(new, torch.fx.Node):
if "val" not in new.meta:
new.meta.update(old.meta)
# Preserve the recompute tags in the replacement graph. We
# look at the recompute tags of the original output node to
# propagate the tag from the output all the way to the input
# args (named as args in the replace_with_graph).
# Note that this is best effort. Since patterns are from
# many to many, there is no easy way to correctly map the
# recomputable tags. It is possible in some scenarios that we
# incorrectly tag some nodes as recomputables.
for tag_name in ["recompute", "ac_graph_id"]:
if tag_name in old.meta:
percolate_tags(new, tag_name, old.meta[tag_name], set(args))
old.replace_all_uses_with(new)
graph.erase_node(old)
return
# `new` is not a node: it's a list of nodes.
#
# This happens when we want to replace a node that has a single
# packed return with multiple unpacked returns. We need to do
# some graph surgery here.
#
# Example:
# def original_graph(x):
# a = op(x)
# b = a[0]
# c = a[1]
# ...
#
# Assume that we want to replace op(x) with the graph
# def new_op(x):
# w = x + 1
# z = x + 2
# return (w, z)
#
# We need to replace `op` with the contents of `new_op`,
# and then rewrite a[0] to be w and a[1] to be z, as so:
# def new_graph(x):
# w = x + 1
# z = x + 2
# b = w
# c = z
# ...
old_uses = list(old.users.keys())
for user in old_uses:
idx = maybe_getitem(user)
if idx is None:
raise AssertionError("can't handle")
replace(user, new[idx]) # type: ignore[index]
graph.erase_node(old)
if len(output_nodes) == len(replacement):
for old, new in zip(output_nodes, replacement):
replace(old, new)
else:
assert len(output_nodes) == 1
replace(output_nodes[0], replacement)
match.erase_nodes()
def apply(self, match: Match, graph: torch.fx.Graph, node: torch.fx.Node) -> None:
assert match.replacement_graph is not None
self.replace_with_graph(
match,
graph,
match.replacement_graph,
self.normalize_args(*match.args, **match.kwargs),
)
def _return_true(match: Match) -> bool:
return True
def log_trace_failure(search_fn: Callable[..., Any], e: RuntimeError) -> None:
log.info(
"Replacement pattern %s failed to apply due to shape mismatch: %s",
search_fn.__name__,
e,
)
def register_replacement(
search_fn: SearchFn,
replace_fn: ReplaceFn,
example_inputs: Iterable[Any],
trace_fn: TraceFn,
pass_dicts: Union[_PassDictsType, Sequence[_PassDictsType]],
extra_check: Callable[[Match], bool] = _return_true,
scalar_workaround: Union[Dict[str, Union[float, int]], None] = None,
exclusive_arg_names: Sequence[str] = (),
search_fn_pattern: Union[PatternExpr, None] = None,
) -> bool:
"""
Create a replacement rule based on example functions that get traced
to create patterns. This supports both training and inference when
run on a joint forward+backward graph.
Args:
search_fn: traced to give original pattern
replace_fn: traced to give replacement graph
example_inputs: example inputs for initial trace
trace_fn: fwd_only or joint_fwd_bwd
pass_dict: dict of passes to register to
extra_check: additional check to run on match(using real shapes)
"""
argnames_static = [*inspect.signature(search_fn).parameters.keys()]
def check_fn(match: Match) -> bool:
"""
Often shapes get burned into the pattern, so our initial match ran with
`ignore_types=(int, ...)`.
Recheck the match with the correct shapes.
"""
argnames = list(argnames_static)
for name in argnames:
if name not in match.kwargs:
raise RuntimeError(
f"Not all inputs to pattern found in match.kwargs. Perhaps one "
f"of the inputs is unused? argnames={argnames}, match.kwargs={match.kwargs}"
)
args = list(
torch.fx.map_arg( # type: ignore[arg-type]
[match.kwargs[name] for name in argnames], lambda n: n.meta["val"]
)
)
sym_args: List[torch.SymInt] = []
with torch._dynamo.utils.detect_fake_mode(args):
for i, grad in enumerate(requires_grad):
if isinstance(args[i], torch.Tensor):
if grad and is_integer_dtype(args[i].dtype):
return False
args[i] = torch.empty_strided(
args[i].size(),
args[i].stride(),
dtype=args[i].dtype,
device=args[i].device,
requires_grad=grad,
)
for v in itertools.chain(args[i].shape, args[i].stride()):
if isinstance(v, torch.SymInt) and all(
guard_size_oblivious(v != a) for a in sym_args
):
sym_args.append(v)
# If we were given a pre-traced pattern then use that instead of
# retracing. Note that this means the pattern has to be independent
# of its args.
specific_pattern = search_fn_pattern
if not specific_pattern:
if sym_args:
# AOT Autograd and make fx will dedupe symbolic shape size
# accesses of sym ints that appear as inputs
# We don't want the sym_size uses to interfere with pattern matching
# so we provide them as inputs.
# Later, when we actually do the replacement, the symbolic shape
# sizes will get re-traced and added to the graph.
def search_fn_new(*args_new: Any) -> Any:
return search_fn(*args_new[len(args_new) - len(args) :])
try:
specific_graph = trace_fn(search_fn_new, sym_args + args)
except RuntimeError as e:
log_trace_failure(search_fn, e)
return False
# correct argnames in the graph
sym_arg_names = []
for i, placeholder in zip(
range(len(sym_args) + len(args)),
specific_graph.graph.nodes,
):
if i < len(sym_args):
sym_arg_names.append(placeholder.target)
continue
with specific_graph.graph.inserting_after(placeholder):
new_node = specific_graph.graph.placeholder(
argnames[i - len(sym_args)]
)
new_node.target = new_node.name
placeholder.replace_all_uses_with(new_node)
specific_graph.graph.erase_node(placeholder)
argnames = sym_arg_names + argnames
else:
try:
specific_graph = trace_fn(search_fn, args)
except RuntimeError as e:
log_trace_failure(search_fn, e)
return False
specific_pattern = fx_to_pattern(
specific_graph,
argnames=argnames,
exclusive_arg_names=exclusive_arg_names,
scalar_workaround=scalar_workaround,
)
node = match.output_nodes()[0]
assert node is not None
specific_pattern_match = specific_pattern.match(node)
if is_match(specific_pattern_match) and extra_check(specific_pattern_match):
# trace the pattern using the shapes from the user program
match.replacement_graph = trace_fn(replace_fn, args)
if len(match.nodes) == 1:
for n in match.replacement_graph.graph.nodes:
_transfer_meta(
new_meta=n.meta,
old_meta=match.nodes[0].meta,
)
return True
return False
def normalize_args(**kwargs: Any) -> List[Any]:
args = [kwargs.pop(name) for name in argnames_static]
for i in range(1, len(kwargs) + 1):
if f"tangents_{i}" not in kwargs:
break
args.append(kwargs.pop(f"tangents_{i}"))
assert not kwargs, f"leftover kwargs: {kwargs!r}"
return args
if trace_fn is joint_fwd_bwd:
# If inference mode is enabled during compilation, assume that we don't
# want to match on any training graph patterns
if torch.is_inference_mode_enabled():
return False
# TODO: Revisit the functionalize_rng_ops for lowmem dropout
with functorch_config.patch(functionalize_rng_ops=False):
requires_grad: List[bool] = [
isinstance(x, torch.Tensor) and x.requires_grad for x in example_inputs
]
if search_fn_pattern is None:
pattern = gen_pattern(
search_fn,
example_inputs,
trace_fn,
scalar_workaround,
exclusive_arg_names,
)
else:
pattern = search_fn_pattern
pattern_repr = PatternPrettyPrinter.run(pattern)
assert pattern_repr not in _seen_patterns
_seen_patterns.add(pattern_repr)
pattern = ReplacementPatternEntry(
pattern=pattern,
extra_check=check_fn,
normalize_args=normalize_args,
)
pattern.register(pass_dicts)
return pattern.pattern
_serialized_patterns: Set[str] = set()
def _serialize_pattern(
unique_name: str,
search_fn: SearchFn,
example_inputs: Iterable[Any],
trace_fn: TraceFn,
scalar_workaround: Union[Dict[str, Union[float, int]], None],
) -> PatternExpr:
def get_file_template() -> str:
auto_generated_msg = textwrap.dedent(
"""\
# This is an auto-generated file. Please do not modify it by hand.
# To re-generate, run:
# cd ~/pytorch && python torchgen/fuse/gen_patterns.py
"""
)
file_template = textwrap.dedent(
"""\
# mypy: ignore-errors
# noqa: F401, E501
{msg}
import torch
import torch._inductor
aten = torch.ops.aten
prims = torch.ops.prims
"""
).format(msg=auto_generated_msg)
pattern_matcher_imports = []
for name in dir(torch._inductor.pattern_matcher):
attr = getattr(torch._inductor.pattern_matcher, name)
if isinstance(attr, type) and issubclass(attr, (PatternExpr, _TargetExpr)):
pattern_matcher_imports.append(name)
formatted_imports = ",\n ".join(pattern_matcher_imports)
formatted_imports = f"from torch._inductor.pattern_matcher import (\n {formatted_imports},\n)\n"
return f"{file_template}{formatted_imports}"
if not SERIALIZED_PATTERN_PATH.is_dir():
raise RuntimeError(
f"Could not find serialized patterns directory at {SERIALIZED_PATTERN_PATH}"
)
pattern_name = search_fn.__name__
from torch._functorch import config as functorch_config
with functorch_config.patch(functionalize_rng_ops=False):
pattern = gen_pattern(search_fn, example_inputs, trace_fn, scalar_workaround)
serialized_pattern = PatternPrettyPrinter.run(pattern, output_name=unique_name)
if pattern_name not in _serialized_patterns:
write_mode = "w"
_serialized_patterns.add(pattern_name)
else:
write_mode = "a"
file_template = get_file_template()
with open(SERIALIZED_PATTERN_PATH / f"{pattern_name}.py", write_mode) as f:
if write_mode == "w":
f.write(file_template)
else:
f.write("\n\n")
f.write(serialized_pattern)
f.write("\n")
return pattern
SERIALIZED_PATTERN_PATH = Path(__file__).parent / "fx_passes" / "serialized_patterns"
# This is the set of serialized patterns that we've registered. Used by
# test_serialized_patterns_up_to_date() to ensure the patterns are up
# to date.
_known_precompiled_patterns: List[
Tuple[
Any,
Iterable[Any],
Callable[[Callable[..., Any], Iterable[Any]], torch.fx.GraphModule],
Any,
PatternExpr,
]
] = []
def gen_register_replacement(
unique_name: str,
search_fn: SearchFn,
replace_fn: ReplaceFn,
example_inputs: Iterable[Any],
trace_fn: TraceFn,
pass_dicts: Union[_PassDictsType, Sequence[_PassDictsType]],
extra_check: Callable[[Match], bool] = _return_true,
scalar_workaround: Union[Dict[str, Union[float, int]], None] = None,
exclusive_arg_names: Sequence[str] = (),
skip_duplicates: bool = False,
) -> None:
# Make sure the example_inputs is materialized.
example_inputs = tuple(example_inputs)
if "PYTORCH_GEN_PATTERNS" in os.environ:
pat = _serialize_pattern(
unique_name, search_fn, example_inputs, trace_fn, scalar_workaround
)
else:
pattern_name = search_fn.__name__
m = importlib.import_module(
f"torch._inductor.fx_passes.serialized_patterns.{pattern_name}"
)
if not m or not hasattr(m, unique_name):
log.warning(
"Precompiled pattern %r not found. Run torchgen/fuse/gen_patterns.py.",
unique_name,
)
pat = getattr(m, unique_name)
for arg in pytree.tree_iter(example_inputs):
if isinstance(arg, FakeTensor) and arg.constant is not None:
# This can be a problem - small fake tensors (e.g. `tensor(2)`) will
# hold onto their original constant value - and by stashing it here
# will cause a memory leak if the constant value is on GPU.
# Since this is just an optimization we can clear it out.
arg.constant = None
if PatternPrettyPrinter.run(pat) in _seen_patterns and skip_duplicates:
return
_known_precompiled_patterns.append(
(search_fn, example_inputs, trace_fn, scalar_workaround, pat)
)
register_replacement(
search_fn,
replace_fn,
example_inputs,
trace_fn,
pass_dicts,
extra_check,
scalar_workaround,
exclusive_arg_names,
search_fn_pattern=pat,
)
@functorch_config.patch(functionalize_rng_ops=False)
def gen_pattern(
search_fn: SearchFn,
example_inputs: Sequence[Any],
trace_fn: TraceFn,
scalar_workaround: Union[Dict[str, Union[float, int]], None] = None,
exclusive_arg_names: Sequence[str] = (),
) -> PatternExpr:
argnames = [*inspect.signature(search_fn).parameters.keys()]
if scalar_workaround is None:
scalar_workaround = {}
flat_inputs = []
input_idx = 0 # Positional arguments index
for argname in argnames:
if argname in scalar_workaround:
flat_inputs.append(scalar_workaround[argname])
else:
flat_inputs.append(example_inputs[input_idx])
input_idx += 1
search_gm = trace_fn(search_fn, flat_inputs)
return fx_to_pattern(
search_gm,
ignore_types=(int, float, list, torch.device, torch.dtype),
argnames=argnames,
scalar_workaround=scalar_workaround,
exclusive_arg_names=exclusive_arg_names,
)
def register_lowering_pattern(
pattern: PatternExpr,
extra_check: Callable[[Match], bool] = _return_true,
*,
pass_dict: _PassDictsType,
prepend: bool = False,
) -> Callable[[Callable[..., Any]], Callable[..., Any]]:
"""
Register an aten to inductor IR replacement pattern. The decorated
function is saved and then called a lowering time allowing direct
pattern to inductor IR conversion.
"""
def decorator(handler: Callable[..., Any]) -> Callable[..., Any]:
assert callable(handler)
LoweringPatternEntry(
pattern=pattern, extra_check=extra_check, handler=handler
).register(pass_dict, prepend=prepend)
handler._inductor_lowering_function = True # type: ignore[attr-defined]
return handler
return decorator
def register_graph_pattern(
pattern: PatternExpr,
extra_check: Callable[[Match], bool] = _return_true,
*,
pass_dict: _PassDictsType,
prepend: bool = False,
) -> Callable[[Callable[..., Any]], Callable[..., Any]]:
"""
Register a pattern that runs a function on the FX graph, allowing
custom transformation code.
"""
def decorator(handler: Callable[..., Any]) -> Callable[..., Any]:
assert callable(handler)
GraphPatternEntry(
pattern=pattern, extra_check=extra_check, handler=handler
).register(pass_dict, prepend=prepend)
return handler
return decorator
def is_start_of_fx_graph(graph: torch.fx.Graph, node: torch.fx.Node) -> bool:
# first node in the graph
return node is next(iter(graph.nodes))
# match: copy_, relu_, _set_grad_enabled, manual_seed, _enter_autocast, etc
# doesn't match: __rshift__, etc
_mutation_op_re = re.compile(r"(?<!_)(_$|_[.]|(\b|_)(set|enter|exit|seed)(\b|_))(?!_)")
def fixme_incorrect_inductor_schema_op(op: torch._ops.OpOverload) -> bool:
if op.namespace != "inductor":
return False
# TODO - fix schema
# Dont add any more !
return op in (
torch.ops.inductor.accumulate_grad_.default,
torch.ops.inductor.resize_storage_bytes_.default,
)
def is_mutation_op(node: torch.fx.Node) -> bool:
if isinstance(
node.target, torch._ops.OpOverload
) and not fixme_incorrect_inductor_schema_op(node.target):
return node.target._schema.is_mutable
elif isinstance(
node.target, torch._higher_order_ops.auto_functionalize.AutoFunctionalized
):
return False
if node.op == "call_function":
if _mutation_op_re.search(node.target.__name__): # type: ignore[union-attr]
return True
elif node.op == "call_method":
if _mutation_op_re.search(node.target): # type: ignore[union-attr, arg-type]
return True
return node.kwargs.get("out") is not None
def same_mutation_regions(a: torch.fx.Node, b: torch.fx.Node) -> bool:
assert "mutation_region_id" in a.meta
assert "mutation_region_id" in b.meta
return a.meta["mutation_region_id"] == b.meta["mutation_region_id"]
def get_mutation_region_id(graph: torch.fx.Graph, node: torch.fx.Node) -> int:
n = node
while "mutation_region_id" not in n.meta and not is_start_of_fx_graph(graph, n):
n = n.prev
mutation_region_id = n.meta.get("mutation_region_id", 0)
while n is not node:
n = n.next
if is_mutation_op(n):
mutation_region_id += 1
n.meta["mutation_region_id"] = mutation_region_id
return mutation_region_id
def should_compute_mutation_region_ids(graph: torch.fx.GraphModule) -> bool:
return "mutation_region_id" not in next(iter(graph.nodes)).meta # type: ignore[arg-type]
def compute_mutation_region_ids(graph: torch.fx.GraphModule) -> None:
mutation_region_id = 0
for nd in graph.nodes: # type: ignore[union-attr]
if is_mutation_op(nd):
mutation_region_id += 1
nd.meta["mutation_region_id"] = mutation_region_id
class PatternMatcherPass:
def __init__(
self,
pass_name: Optional[str] = None,
) -> None:
super().__init__()
self.patterns: DefaultDict[
Tuple[str, torch.fx.node.Target], List[PatternEntry]
] = defaultdict(list)
self.pass_name = pass_name
def __getitem__(self, item: Tuple[str, torch.fx.node.Target]) -> List[PatternEntry]:
return self.patterns[item]
def apply(self, gm: Union[torch.fx.GraphModule, torch.fx.Graph]) -> int:
if not self.patterns:
return 0
if isinstance(gm, torch.fx.GraphModule):
graph = gm.graph
elif isinstance(gm, torch.fx.Graph):
graph = gm
gm = graph.owning_module
else:
raise RuntimeError(
f"The input to PatternMatcherPass must be a GraphModule or a Graph, but got {type(gm)}"
)
if should_compute_mutation_region_ids(graph): # type: ignore[arg-type]
compute_mutation_region_ids(graph) # type: ignore[arg-type]
get_mutation_region_id_partial = functools.partial(
get_mutation_region_id, graph
)
count = 0
nodes = []
has_call_module = False
for op, target in self.patterns:
if op == "call_module":
has_call_module = True
else:
nodes.append(graph.find_nodes(op=op, target=target, sort=False))
if has_call_module:
nodes.append(graph.find_nodes(op="call_module", sort=False))
pass_name = self.pass_name if self.pass_name is not None else "pattern_matcher"
assert isinstance(gm, torch.fx.GraphModule)
with GraphTransformObserver(gm, pass_name):
for node in sorted(itertools.chain.from_iterable(nodes), reverse=True):
target = extract_target(node)
if node.op == "call_module":
if (node.op, target) not in self.patterns:
continue
# conservatively not applying pattern for cpu input,
# since some of the patterns induce codegen and split nodes.
# Note: we will only skip cpu compute if disable_cpp_codegen=True
if fallback_node_due_to_unsupported_type(node, allow_cpu_inputs=False):
continue
for entry in self.patterns[(node.op, target)]:
if node._erased:
break
m = entry.pattern.match(node)
# pattern match crosses mutation barrier - discard
if (
is_match(m)
and len(set(map(get_mutation_region_id_partial, m.nodes))) != 1 # type: ignore[possibly-undefined]
):
continue
if os.environ.get("TORCHINDUCTOR_PATTERN_MATCH_DEBUG") == node.name:
log.warning("%s%s %s %s", node, node.args, m, entry.pattern)
if is_match(m) and entry.extra_check(m):
count += 1
entry.apply(m, graph, node) # type: ignore[arg-type]
counters["inductor"]["pattern_matcher_count"] += 1
counters["inductor"]["pattern_matcher_nodes"] += len(m.nodes)
return count
def clear(self) -> None:
self.patterns.clear()
def _not_implemented(*args: Any, **kwargs: Any) -> NoReturn:
raise NotImplementedError
def fx_to_pattern(
gm: Union[torch.fx.GraphModule, torch.fx.Graph],
ignore_types: Sequence[Type[Any]] = (),
argnames: Sequence[str] = (),
scalar_workaround: Union[Dict[str, Union[float, int]], None] = None,
exclusive_arg_names: Sequence[str] = (),
) -> PatternExpr:
"""
Convert an FX graph into a PatternExpr. This is useful for simple
patterns that can only match single functions and fixed-length lists.
"""
# scalar_workaround is a hack to capture dropout_p
# see https://github.com/pytorch/pytorch/issues/97894
scalar_workaround = scalar_workaround or {}
inv_scalar_workaround = {v: k for k, v in scalar_workaround.items()}
assert len(inv_scalar_workaround) == len(scalar_workaround)
def process_arg(
x: T, ignore_types_override: Optional[Sequence[Type[Any]]] = None
) -> Union[T, KeywordArg, Ignored]:
current_ignore_types = (
ignore_types_override if ignore_types_override is not None else ignore_types
)
if isinstance(x, (float, int)) and x in inv_scalar_workaround:
return KeywordArg(inv_scalar_workaround[x])
if type(x) in current_ignore_types:
return Ignored()
if isinstance(x, list) and all(isinstance(y, Ignored) for y in x) and x:
return Ignored()
return x
argnum = itertools.count()
class Converter(torch.fx.Interpreter):
call_method = _not_implemented
call_module = _not_implemented
get_attr = _not_implemented
def placeholder(
self, target: str, args: Sequence[Any], kwargs: Mapping[str, Any] # type: ignore[override]
) -> Union[ExclusiveKeywordArg, KeywordArg]:
n = next(argnum)
if n < len(argnames):
name = argnames[n]
elif argnames:
assert target.startswith("tangent")
name = target
else:
target = re.sub(r"_\d+$", "", target) # de-mangle arg name
name = target
if name in exclusive_arg_names:
return ExclusiveKeywordArg(name)
else:
return KeywordArg(name)
def call_function(
self, target: str, args: Sequence[Any], kwargs: Mapping[str, Any] # type: ignore[override]
) -> PatternExpr:
process_arg_fn = process_arg
# Indexing is critical for matching getitem nodes, so we can't ignore int args here
if target == operator.getitem:
def process_arg_fn_impl(
x: T,
ignore_types_override: Optional[Sequence[Type[Any]]] = tuple(
t for t in ignore_types if t is not int
),
) -> Union[T, KeywordArg, Ignored]:
return process_arg(x, ignore_types_override)
process_arg_fn = process_arg_fn_impl
args, kwargs = pytree.tree_map(process_arg_fn, (args, kwargs))
if list in ignore_types:
# Handle a burned in tensor size which are now [Ignored(), Ignored(), ...]
args = [process_arg_fn(a) for a in args]
kwargs = {k: process_arg_fn(a) for k, a in kwargs.items()}
return CallFunction(target, *args, **kwargs)
def run_node(self, n: torch.fx.Node) -> Any:
rv = super().run_node(n)
if n.op == "output" and isinstance(rv, tuple):
assert len(rv) == len(n.args[0]) # type: ignore[arg-type]
for r, arg in zip(rv, n.args[0]): # type: ignore[arg-type]
r.users = len(arg.users)
else:
rv.users = len(n.users)
return rv
pattern = Converter(gm).run() # type: ignore[arg-type]
if not isinstance(pattern, PatternExpr):
return MultiOutputPattern(pytree.tree_leaves(pattern))
return pattern
@torch.no_grad()
def fwd_only(
fn: Callable[..., Any],
args: Sequence[Any],
*,
run_functional_passes: bool = True,
get_decomp_fn: Optional[Callable[..., Any]] = None,
) -> torch.fx.GraphModule:
"""Build a normalized inference graph, for use with fx_to_pattern"""
# TODO - look into using aot autograd, asserting no mutating ops here
with enable_python_dispatcher():
decompositions = (
get_decomp_fn() if get_decomp_fn is not None else select_decomp_table()
)
gm = make_fx(fn, decompositions, tracing_mode="real")(*args)
from .fx_passes.post_grad import remove_noop_ops
if run_functional_passes:
remove_noop_ops(gm.graph)
gm.graph.eliminate_dead_code()
gm.recompile()
return gm
@torch.enable_grad()
def joint_fwd_bwd(fn: Callable[..., Any], args: Sequence[Any]) -> torch.fx.GraphModule:
"""Build a normalized training graph, for use with fx_to_pattern"""
gm: Optional[torch.fx.GraphModule] = None
def record_joint_graph(
joint_graph: torch.fx.GraphModule, inputs: Sequence[Any], **kwargs: Any
) -> Tuple[torch.fx.GraphModule, torch.fx.GraphModule]:
nonlocal gm
assert not gm
gm = clone_graph(joint_graph)
return default_partition(joint_graph, inputs, **kwargs)
with torch._guards.tracing(None):
aot_function(
fn,
lambda g, i: make_boxed_func(g),
partition_fn=record_joint_graph,
decompositions=select_decomp_table(),
keep_inference_input_mutations=True,
enable_log=False,
)(*args)
assert gm
from .fx_passes.post_grad import remove_noop_ops
remove_noop_ops(gm.graph)
from .fx_passes.joint_graph import pointless_view
matcher_pass = PatternMatcherPass()
pattern = CallFunction(
torch.ops.aten.view.default, KeywordArg("arg"), KeywordArg("size")
)
GraphPatternEntry(
pattern=pattern, handler=pointless_view, extra_check=_return_true
).register(matcher_pass.patterns)
matcher_pass.apply(gm.graph) # type: ignore[arg-type]
# remove in/out specs
gm.graph._codegen = torch.fx.graph.CodeGen()
gm.graph.eliminate_dead_code()
gm.recompile()
return gm
def _args(n: torch.fx.Node) -> List[torch.fx.node.Argument]:
args: List[torch.fx.node.Argument] = []
torch.fx.map_arg((n.args, n.kwargs), args.append)
return args
def stable_topological_sort(graph: torch.fx.Graph) -> None:
# Nodes are in exactly one of these three collections:
# - Nodes in `pending` are waiting to be processed (in reverse order):
pending = list(reversed(graph.nodes))
# - Nodes in `ready` have been processed and are already in the correct
# order.
ready = set()
# - `waiting` is a mapping from a dependency to nodes which depend on that
# dependency.
waiting = defaultdict(list)
# The cursor indicates the last processed node so we can add new nodes
# after it.
cursor = None
while pending:
node = pending.pop()
waiting_for = [x for x in _args(node) if x not in ready]
if waiting_for:
# We have unprocessed input nodes. Might as well wait for the last
# arg so an already sorted list will only recheck this node once.
waiting[waiting_for[-1]].append(node)
else:
ready.add(node)
if cursor and cursor.next is not node:
cursor.append(node)
cursor = node
# Mark the nodes that have been waiting for this node to finish as
# ready to check again.
pending.extend(reversed(waiting.pop(node, ())))
assert not waiting and len(ready) == len(graph.nodes)
def init_once_fakemode(fn: Callable[..., Any]) -> Callable[[], Any]:
"""Wrapper around lazy init functions in fx_passes/"""
@functools.lru_cache(None)
@functools.wraps(fn)
def lazy_init() -> Any:
counters_ref = counters["inductor"].copy()
with torch._guards.tracing(None), unset_fake_temporarily(), FakeTensorMode():
result = fn()
# clear view matches encountered during tracing
counters["inductor"] = counters_ref
return result
return lazy_init
def config_flag(name: str) -> Callable[[Match], Any]:
"""Function for extra_check to put pass behind a flag"""
def flag_check(match: Match) -> Any:
return getattr(config, name)
return flag_check
def clone_graph(input_graph: torch.fx.GraphModule) -> torch.fx.GraphModule:
class CopyGraph(Transformer):
def run_node(self, old_node: torch.fx.Node) -> torch.fx.Node:
new_node = super().run_node(old_node)
if isinstance(new_node, torch.fx.Proxy):
new_node.node.meta.update(old_node.meta)
new_node.node.name = self.new_graph._graph_namespace.create_name(
old_node.name, None
)
return new_node
return CopyGraph(input_graph).transform()
_seen_patterns: Set[str] = set()
def get_arg_value(
node: torch.fx.Node, arg_number: int, kwarg_name: Optional[str] = None
) -> Any:
return (
node.args[arg_number]
if len(node.args) > arg_number
else node.kwargs.get(kwarg_name) # type: ignore[arg-type]
)
def filter_nodes(nodes: Iterable[torch.fx.Node], fn: Any) -> List[torch.fx.Node]:
fns = [fn]
if isinstance(fn, torch._ops.OpOverloadPacket):
fns.extend([getattr(fn, overload) for overload in fn.overloads()])
return [node for node in nodes if node.target in fns]
def extract_target(node: torch.fx.Node) -> torch.fx.node.Target:
"""For call_function and call_method, we directly use the target function;
For call_module, the target is string, and we treat the module class
as a function.
"""
if node.op == "call_module":
return getattr(node.graph.owning_module, node.target).__class__ # type: ignore[arg-type]
return node.target
|