File: autotune_cache.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (490 lines) | stat: -rw-r--r-- 16,874 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
from __future__ import annotations

import dataclasses
import hashlib
import logging
import os
import os.path
import re
from typing import Dict, List, Optional, Tuple, TYPE_CHECKING
from typing_extensions import override

import torch
from torch.utils._triton import has_triton, has_triton_package

from ..remote_cache import (
    create_cache,
    JsonDataTy,
    RemoteCache,
    RemoteCacheBackend,
    RemoteCacheJsonSerde,
)


if TYPE_CHECKING:
    from ..remote_cache import Sample

if has_triton_package():
    from triton import Config

log = logging.getLogger(__name__)


_InductorMetaTy = Dict[str, object]


def inductor_meta_from_config() -> _InductorMetaTy:
    from torch._inductor import config

    backend_hash = None
    if has_triton():
        try:
            backend_hash = torch.utils._triton.triton_hash_with_backend()
        except RuntimeError:
            # This can get the error:
            #   RuntimeError: 0 active drivers ([]). There should only be one.
            pass

    is_hip = None
    if torch.version.hip is not None:
        is_hip = True

    return {
        "autotune_local_cache": config.autotune_local_cache,
        "autotune_remote_cache": config.autotune_remote_cache,
        "backend_hash": backend_hash,
        "bundled_autotune_remote_cache": config.bundled_autotune_remote_cache,
        "coordinate_descent_tuning": config.coordinate_descent_tuning,
        "is_fbcode": config.is_fbcode(),
        "is_hip": is_hip,
    }


@dataclasses.dataclass
class AutotuneCache:
    configs_hash: str
    local_cache: Optional[Tuple[RemoteCache[JsonDataTy], str]] = None
    remote_cache: Optional[Tuple[RemoteCache[JsonDataTy], str]] = None

    # Create a AutotuneCache. Returns None if none of the caches can be used.
    @staticmethod
    def create(
        inductor_meta: _InductorMetaTy, filename: str, configs_hash: str
    ) -> Optional[AutotuneCache]:
        cache = AutotuneCache(configs_hash)
        key = AutotuneCache._prepare_key(filename)
        cache._setup_local_cache(inductor_meta, os.path.dirname(filename), key)
        cache._setup_remote_autotune_cache(inductor_meta, key)
        if cache.local_cache or cache.remote_cache:
            return cache
        else:
            return None

    @staticmethod
    def _prepare_key(filename: str) -> str:
        from torch.compiler import config as cconfig

        # base of filename is already sha256 hash the source contents
        key = f"{os.path.basename(filename)}:{cconfig.cache_key_tag}"
        return hashlib.sha256(key.encode("utf-8")).hexdigest()

    # Read the best config options from the most local cache and return it.
    def _read(self) -> Optional[Dict[str, JsonDataTy]]:
        if local_cache := self.local_cache:
            cache, key = local_cache
            if best_config := cache.get(key):
                if isinstance(best_config, dict):
                    return best_config

        if remote_cache := self.remote_cache:
            cache, key = remote_cache
            if best_config := cache.get(key):
                if isinstance(best_config, dict):
                    return best_config

        return None

    # Read the best config options from the most local cache and figure out
    # which `configs` represents that option.
    def read_best(
        self, inductor_meta: _InductorMetaTy, configs: List[Config]
    ) -> Optional[Config]:
        if best := self._read():
            return _load_cached_autotuning(
                best, self.configs_hash, configs, inductor_meta
            )
        return None

    # Set up local filesystem caching information
    def _setup_local_cache(
        self, inductor_meta: _InductorMetaTy, dirname: str, cache_key: str
    ) -> None:
        if not inductor_meta.get("autotune_local_cache", True):
            return

        cache_filename = f"{dirname}/{cache_key}.best_config"
        local_cache = LocalAutotuneCache()
        self.local_cache = (local_cache, cache_filename)

    # Set up remote caching information
    def _setup_remote_autotune_cache(
        self, inductor_meta: _InductorMetaTy, cache_key: str
    ) -> None:
        if not _should_use_remote_autotune_cache(inductor_meta):
            return

        if (backend_hash := inductor_meta.get("backend_hash", None)) is None:
            log.debug(
                "backend_hash is not passed on the inductor_meta, unable to use autotune remote cache"
            )
            return
        assert isinstance(backend_hash, str)

        is_fbcode = bool(inductor_meta.get("is_fbcode", False))

        salt = "autotune-best-config-v2"
        key = backend_hash + self.configs_hash + salt
        key = hashlib.sha256(key.encode("utf-8")).hexdigest()

        remote_cache = create_cache(
            key,
            is_fbcode,
            "FbRemoteAutotuneCache",
            "RemoteAutotuneCache",
        )
        if not remote_cache:
            return

        self.remote_cache = (remote_cache, cache_key)

    # Save the config in the caches
    def save(
        self, config: Config, time_taken_ns: int, found_by_coordesc: bool = False
    ) -> None:
        data = {
            **config.kwargs,
            "num_warps": config.num_warps,
            "num_stages": config.num_stages,
            "configs_hash": self.configs_hash,
            "found_by_coordesc": found_by_coordesc,
            "time_taken_ms": time_taken_ns // 1000000,  # Convert from NS to MS
        }

        if local_cache := self.local_cache:
            cache, key = local_cache
            cache.put(key, data)
            AutotuneCacheBundler.put(key, data)

            if log.isEnabledFor(logging.DEBUG):
                type_str = "coordesc" if found_by_coordesc else "heuristic"
                log.debug("Save %s tuning result to %s", type_str, key)

        if remote_cache := self.remote_cache:
            cache, key = remote_cache
            cache.put(key, data)


class _AutotuneCacheBundlerImpl:
    """
    Caches a set of LocalAutotuneCacheBackend entries together in a single
    cache.
    """

    _key: str
    _cache: RemoteCache[JsonDataTy]

    # All known entries from LocalAutotuneCache.put()
    _entries: Dict[str, JsonDataTy]

    def end_compile(self) -> None:
        # TODO: Do we need to compute time_taken_ms and encode that somehow?
        if self._entries:
            self._cache.put(self._key, self._entries)

    def put(self, basename: str, data: JsonDataTy) -> None:
        # Do we need to worry about duplicates? We only have a single local fs
        # entry - so probably not.
        self._entries[basename] = data

    def __init__(self, key: str, cache: RemoteCache[JsonDataTy]) -> None:
        self._key = key
        self._cache = cache
        self._entries = {}

    def sync(self) -> None:
        # We don't currently use this - but we could async load starting at
        # `begin_compile` and wait for the load to be finished here.
        pass

    @classmethod
    def _should_use_bundled_autotune_remote_cache(
        cls, inductor_meta: _InductorMetaTy
    ) -> bool:
        # The bundled autotune cache is only available if you've also got local
        # caching enabled (because we feed the bundled data to the local cache).
        if not inductor_meta.get("autotune_local_cache", True):
            return False

        # Check if the we're enabled via config
        if (
            bundled_autotune_remote_cache := inductor_meta.get(
                "bundled_autotune_remote_cache"
            )
        ) is not None:
            return bool(bundled_autotune_remote_cache)

        if not cls._get_is_fbcode(inductor_meta):
            return False
        if torch._utils_internal.is_fb_unit_test():
            return False
        if inductor_meta.get("is_hip"):
            return False

        try:
            from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
        except ModuleNotFoundError:
            return False

        jk = torch._utils_internal.justknobs_getval_int(
            "pytorch/remote_cache:bundled_autotune_remote_cache_version"
        )
        return REMOTE_CACHE_VERSION >= jk

    def _load_cache(self) -> bool:
        from torch._inductor import codecache

        # The single key is defined on construction of the cache.
        entries = self._cache.get(self._key)
        if entries is None or not isinstance(entries, dict):
            # We couldn't load the cache - so mark _entries as non-None so we
            # store local cache values.
            return False

        cache_dir = torch._inductor.runtime.runtime_utils.cache_dir()

        # Go through the entries we got from the cache and save them locally.
        time_saved_ns = 0
        for basename, data in entries.items():
            # Reconstruct the final filename (see put())
            root, ext = _splitext_nodot(basename)
            _, _, filename = codecache.get_path(root, ext)
            if isinstance(data, dict) and (tsns := data.get("time_saved_ns")):
                time_saved_ns += int(tsns)  # type: ignore[arg-type]
            local_cache = LocalAutotuneCache()
            local_cache.put(filename, data)

        codecache.add_ephemeral_timeout_increase_for_distributed(time_saved_ns)

        return True

    @staticmethod
    def _get_is_fbcode(inductor_meta: _InductorMetaTy) -> bool:
        return bool(inductor_meta.get("is_fbcode", False))

    @staticmethod
    def _get_backend_hash(inductor_meta: _InductorMetaTy) -> str:
        backend_hash = inductor_meta["backend_hash"]
        assert isinstance(backend_hash, str)
        return backend_hash


class AutotuneCacheBundler:
    _bundler: Optional[_AutotuneCacheBundlerImpl] = None

    def __init__(self) -> None:
        pass

    # Call this before we start any autotune computation for an inductor python
    # file. On a cache hit it copies the individual results into the local
    # autotune caches.
    @classmethod
    def begin_compile(
        cls,
        inductor_meta: _InductorMetaTy,
        *,
        code: Optional[str] = None,
        code_hash: Optional[str] = None,
    ) -> None:
        assert cls._bundler is None

        if code is not None:
            assert code_hash is None, "Cannot specify both code and code_hash"
            code_hash = _comment_stripped_hash(code)
        assert code_hash is not None

        if not _AutotuneCacheBundlerImpl._should_use_bundled_autotune_remote_cache(
            inductor_meta
        ):
            return

        cache = create_cache(
            "bundled-autotune-v1",
            _AutotuneCacheBundlerImpl._get_is_fbcode(inductor_meta),
            "FbRemoteBundledAutotuneCache",
            "RemoteBundledAutotuneCache",
        )
        if not cache:
            return

        # We're starting a compilation phase. We have a cache key for the code
        # we're compiling. We'll get the individual autotune bundles later (via
        # self.put()). For now create the AutotuneCacheBundler and try to load
        # from the cache.

        salt = "bundled-autotune-best-configs-v1"
        backend_hash = _AutotuneCacheBundlerImpl._get_backend_hash(inductor_meta)
        # TODO: The autotune cache includes configs_hash in the key. The problem
        # is that the configs_hash includes info from the individual pointwise()
        # calls (size_hints, for example) which we can't know yet. I *think*
        # that info is basically present in the `code_hash` (since it's a
        # parameter to the pointwise decorator) - but is there other info we
        # need to include from inductor_meta?
        key = code_hash + backend_hash + salt
        key = hashlib.sha256(key.encode("utf-8")).hexdigest()

        bundler = _AutotuneCacheBundlerImpl(key, cache)
        if not bundler._load_cache():
            # We couldn't load from the cache - so save the data so we can store
            # the saved autotunes.
            cls._bundler = bundler

        # If we get a cache hit don't bother saving any of the individual
        # autotune results.

    # Call this after all individual autotune results are finished for a
    # inductor python file. If we gathered any individual results then we bundle
    # those and put it into the cache.
    @classmethod
    def end_compile(cls) -> None:
        if bundler := cls._bundler:
            cls._bundler = None
            bundler.end_compile()

    @classmethod
    def sync(cls) -> None:
        if bundler := cls._bundler:
            bundler.sync()

    @classmethod
    def put(cls, filename: str, data: JsonDataTy) -> None:
        if bundler := cls._bundler:
            # The filename comes in as something like
            # "/tmp/tmp{random}/{aa}/{basename}.py" (where aa is
            # basename[1:3]). Strip it down and make sure that it looks like a path
            # we could reconstruct (because it's possible for the caller to
            # customize the path).
            basename = os.path.basename(filename)

            # TODO: check cache_dir() vs filename, then strip dirname
            bundler.put(basename, data)


# Remove the comments from the code (which include things like run ids and file
# paths) and then hash the result.
def _comment_stripped_hash(code: str) -> str:
    code = re.sub(r"#.*$", "", code, count=0, flags=re.MULTILINE)
    return torch._inductor.codecache.code_hash(code)


def _should_use_remote_autotune_cache(inductor_meta: _InductorMetaTy) -> bool:
    if (config := inductor_meta.get("autotune_remote_cache")) is not None:
        return bool(config)
    if not inductor_meta.get("is_fbcode"):
        return False
    if torch._utils_internal.is_fb_unit_test():
        return False
    if inductor_meta.get("is_hip"):
        return False

    try:
        from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
    except ModuleNotFoundError:
        return False

    return REMOTE_CACHE_VERSION >= torch._utils_internal.justknobs_getval_int(
        "pytorch/remote_cache:autotune_memcache_version"
    )


def _load_cached_autotuning(
    best_config: Dict[str, JsonDataTy],
    configs_hash: str,
    configs: List[Config],
    inductor_meta: _InductorMetaTy,
) -> Optional[Config]:
    if best_config is None:
        return None
    if best_config.pop("configs_hash", None) != configs_hash:
        return None

    # Remove time taken for comparison
    best_config.pop("time_taken_ms", None)

    if inductor_meta.get("coordinate_descent_tuning") and best_config.pop(
        "found_by_coordesc", False
    ):
        num_warps = best_config.pop("num_warps")
        num_stages = best_config.pop("num_stages")
        triton_config = Config(best_config, num_warps=num_warps, num_stages=num_stages)
        triton_config.found_by_coordesc = True
        return triton_config

    matching_configs = [
        cfg
        for cfg in configs
        if all(val == best_config.get(key) for key, val in cfg.kwargs.items())
        and cfg.num_warps == best_config.get("num_warps")
        and cfg.num_stages == best_config.get("num_stages")
    ]
    if len(matching_configs) != 1:
        return None

    return matching_configs[0]


class _LocalAutotuneCacheBackend(RemoteCacheBackend[bytes]):
    @override
    def _get(self, key: str) -> Optional[bytes]:
        try:
            with open(key, "rb") as fd:
                return fd.read()
        except FileNotFoundError:
            return None

    @override
    def _put(self, key: str, data: bytes) -> None:
        os.makedirs(os.path.dirname(key), exist_ok=True)
        with open(key, "wb") as fd:
            fd.write(data)


class LocalAutotuneCache(RemoteCache[JsonDataTy]):
    def __init__(self) -> None:
        backend = _LocalAutotuneCacheBackend()
        serde = RemoteCacheJsonSerde()
        super().__init__(backend, serde)

    @override
    def _get(self, key: str, sample: Optional[Sample]) -> Optional[JsonDataTy]:
        AutotuneCacheBundler.sync()
        result = super()._get(key, sample)
        if result is not None:
            # What? Why are we doing a put() here? Imagine we have a new model
            # that reuses some existing kernels that have already been
            # compiled. If we didn't do a `put` here (on cache hit) then the new
            # model would only bundle *newly* compiled kernels, not existing
            # kernels that were already compiled and cached.
            AutotuneCacheBundler.put(key, result)
        return result

    @override
    def _put(self, key: str, value: JsonDataTy, sample: Optional[Sample]) -> None:
        AutotuneCacheBundler.put(key, value)
        super()._put(key, value, sample)


def _splitext_nodot(basename: str) -> Tuple[str, str]:
    root, ext = os.path.splitext(basename)
    if ext:
        ext = ext[1:]
    return root, ext