1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# mypy: allow-untyped-defs
import copy
import itertools
import logging
from typing import Callable, Optional
from .hints import TRITON_MAX_BLOCK
from .runtime_utils import red_text, triton_config_to_hashable
try:
import triton
except ImportError:
triton = None
log = logging.getLogger(__name__)
def get_field(config, name):
if name == "num_warps":
return config.num_warps
elif name == "num_stages":
return config.num_stages
else:
return config.kwargs.get(name, None)
def set_field(config, name, value):
if name == "num_warps":
config.num_warps = value
elif name == "num_stages":
config.num_stages = value
else:
config.kwargs[name] = value
class CoordescTuner:
"""
The coordinate descent tuner. Tune one field/coordinate at a time.
TODO will it be necessary to tune multiple fields simultaneously.
TODO: what if both increasing and decreasing a field can improve perf.
i.e., there are multiple local optima..
"""
def __init__(
self, is_mm=False, name="unknown", size_hints=None, inductor_meta=None
):
self.is_mm = is_mm # we will tune num_stages for mm
self.cached_benchmark_results = {}
self.name = name
self.size_hints = size_hints
self.inductor_meta = inductor_meta or {}
def get_config_max(self, prefix: str) -> int:
max_block = TRITON_MAX_BLOCK[prefix.upper()]
size_hint = self.size_hints.get(prefix) if self.size_hints is not None else None
return min(max_block, size_hint) if size_hint is not None else max_block
def get_warpsmax(self):
# Currently, CUDA has a maximum of 1024 threads, so 32 is the max
# number of warps.
return 1024 // 32
def cache_benchmark_result(self, config, timing):
self.cached_benchmark_results[triton_config_to_hashable(config)] = timing
def lookup_in_cache(self, config):
return self.cached_benchmark_results.get(triton_config_to_hashable(config))
def call_func(self, func, config):
found = self.lookup_in_cache(config)
if found is not None:
log.debug(" CACHED")
return found
timing = func(config)
self.cache_benchmark_result(config, timing)
return timing
@property
def tunable_fields(self):
out = [
"XBLOCK",
"YBLOCK",
"ZBLOCK",
# NOTE: we should not tune RBLOCK for persistent reduction.
# We rely on the fact that persistent reduction's triton.Config
# does not have the RBLOCK field to guarantee that.
"RBLOCK",
# the following 3 are for mm
"BLOCK_M",
"BLOCK_N",
"BLOCK_K",
"num_warps",
]
if self.is_mm:
out.append("num_stages")
return out
def value_too_large(self, name: str, val: int) -> bool:
if name in {"XBLOCK", "YBLOCK", "ZBLOCK", "RBLOCK"}:
return val > self.get_config_max(name[0].lower())
if name == "num_warps":
return val > self.get_warpsmax()
return False
def get_neighbour_values(self, name, orig_val, radius=1, include_self=False):
"""
Get neighbour values in 'radius' steps. The original value is not
returned as it's own neighbour.
"""
assert radius >= 1
def update(cur_val, inc=True):
if name == "num_stages":
if inc:
return cur_val + 1
else:
return cur_val - 1
else:
if inc:
return cur_val * 2
else:
return cur_val // 2
out = []
# increment loop
cur_val = orig_val
for _ in range(radius):
cur_val = update(cur_val, True)
if self.value_too_large(name, cur_val):
break
out.append(cur_val)
# decrement loop
cur_val = orig_val
for _ in range(radius):
cur_val = update(cur_val, False)
if cur_val <= 0:
break
out.append(cur_val)
if include_self:
out.append(orig_val)
return out
@staticmethod
def has_improvement(baseline, test):
threshold = 0.001 # 0.1%
return test is not None and test < baseline * (1 - threshold)
def check_all_tuning_directions(
self,
func: Callable[["triton.Config"], float],
best_config,
best_timing,
):
"""
Check all directions. We only do this once the regular coordinate
descent tuning find no better choices any more.
We only have a few tunable fields, so this should be fine.
"""
candidate_values_list = []
effective_fields = []
for field in self.tunable_fields:
old_value = get_field(best_config, field)
if old_value is None:
continue
candidate_values = self.get_neighbour_values(
field,
old_value,
radius=self.inductor_meta.get("coordinate_descent_search_radius", 1),
include_self=True,
)
candidate_values_list.append(candidate_values)
effective_fields.append(field)
choices = itertools.product(*candidate_values_list)
improved = False
for choice in choices:
assert len(choice) == len(effective_fields)
candidate_config = copy.deepcopy(best_config)
for new_val, field in zip(choice, effective_fields):
set_field(candidate_config, field, new_val)
cmp_res, candidate_timing = self.compare_config(
func, candidate_config, best_config, best_timing
)
if cmp_res:
improved = True
best_config = candidate_config
best_timing = candidate_timing
return improved, best_config, best_timing
def compare_config(self, func, candidate_config, best_config, best_timing):
"""
Check if candidate_config is better than best_config.
Return a touple of (compare_result, candidate_timing).
compare_result is true iff candidate_config is better.
"""
log.debug("Try config %s", candidate_config)
try:
candidate_timing = self.call_func(func, candidate_config)
except Exception as e:
log.debug("Got exception %s", e)
return False, float("inf")
if self.has_improvement(best_timing, candidate_timing):
log.debug(
"Tune from %s %f -> %s %f",
best_config,
best_timing,
candidate_config,
candidate_timing,
)
return True, candidate_timing
return False, candidate_timing
def autotune(
self,
func: Callable[["triton.Config"], float],
baseline_config: "triton.Config",
baseline_timing: Optional[float] = None,
) -> "triton.Config":
if baseline_timing is None:
baseline_timing = self.call_func(func, baseline_config)
log.debug("= Do coordinate descent tuning for %s =", self.name)
log.debug(
"Baseline Config %s, baseline timing %f", baseline_config, baseline_timing
)
improved = True
best_config = baseline_config
best_timing = baseline_timing
tunable_fields = self.tunable_fields
while improved:
improved = False
for name in tunable_fields:
cur_val = get_field(best_config, name)
# some kernel don't have RBLOCK/YBLOCK/ZBLOCK. So cur_val may be None
if cur_val is None:
continue
# It's possible that candidate_values is empty.
# E.g., if XBLOCK is 1 initially and size_hint for x is also 1.
# We would not try either larger or smaller XBLOCK in this case.
candidate_values = self.get_neighbour_values(name, cur_val)
for next_val in candidate_values:
candidate_config = copy.deepcopy(best_config)
set_field(candidate_config, name, next_val)
cmp_res, candidate_timing = self.compare_config(
func, candidate_config, best_config, best_timing
)
if cmp_res:
improved = True
best_config, best_timing = candidate_config, candidate_timing
if not improved and self.inductor_meta.get(
"coordinate_descent_check_all_directions"
):
old_best_timing = best_timing
improved, best_config, best_timing = self.check_all_tuning_directions(
func, best_config, best_timing
)
if improved:
msg = red_text(
"Coordinate descend tuning found improvement of %.3fx by looking in all directions."
)
log.debug(
msg,
old_best_timing / best_timing,
)
log.debug(
"Improve from %s %f -> %s %f, %.3fx",
baseline_config,
baseline_timing,
best_config,
best_timing,
baseline_timing / best_timing,
)
return best_config
|